1. Show that the function \(f(t, x) = x^2 e^{-t^2} \sin t \) is Lipschitz continuous for \(x \in [0, 2] \).

2. (a) Approximate the function \(f(x) = e^{x/2} \) over the interval \([1, 9]\) by a fourth-degree polynomial in two ways: using a Taylor polynomial centered at \(\xi = 5 \), and using the Lagrange form of the interpolating polynomial with \(\xi_0 = 1, \xi_1 = 3, \xi_2 = 5, \xi_3 = 7, \) and \(\xi_4 = 9 \).
 (b) Plot the error estimates for these two approaches (using Taylor’s Theorem and the Lagrange form of the interpolating polynomial) for \(x \in [0, 12] \).
 (c) Plot the actual error for these approximants on \([0, 12]\). Comment.

3. Use the Peano kernel theorem to obtain the following well-known formula for Simpson’s rule:

 \[
 \int_0^2 f(x)dx = \frac{1}{3} [f(0) + 4f(1) + f(2)] - \frac{1}{90} f^{(4)}(\xi).
 \]

4. (a) Write the following system of initial value problems

 \[
 \begin{align*}
 y'' + yz &= 0, \quad y(0) = 1, \quad y'(0) = 0 \\
 z' + 2yz &= 4, \quad z(0) = 3
 \end{align*}
 \]

 as a system of first-order initial value problems.

 (b) Convert the following system of higher-order time-dependent ODEs into a system of first-order equations that do not explicitly depend on \(t \):

 \[
 \begin{align*}
 x''' - 5tx''y' + \ln(x')z &= 0 \\
 y'' - \sin(ty) + 7tx'' &= 0 \\
 z' + 16ty' - e^t xx' &= 0.
 \end{align*}
 \]

 Hint: introduce an additional differential equation for \(t \).