
13 Classical Iterative Methods for the Solution of Linear
Systems

13.1 Why Iterative Methods?

Virtually all methods for solving Ax = b or Ax = λx require O(m3) operations. In
practical applications A often has a certain structure and/or is sparse, i.e., A contains
many zeros.

A typical problem that arises in practice is the Poisson problem mentioned at the
beginning of the class. We want to find u such that

−∇2u(x, y) = − [uxx(x, y) + uyy(x, y)] = f(x, y), in Ω = [0, 1]2

u(x, y) = 0, on ∂Ω.

One of the standard numerical algorithms is a finite difference approach. The
Laplacian is discretized on a grid of (n + 1)2 equally spaced points (xi, yj) = (ih, jh),
i, j = 0, . . . , n with h = 1

n . This results in the discrete Laplacian

∇2u(xi, yj) ≈
ui−1,j + ui,j−1 + ui+1,j + ui,j+1 − 4ui,j

h2
,

where ui,j = u(xi, yj).
The boundary conditions of the PDE allow us to set the solution at the points along

the boundary as

ui,0 = ui,n = u0,j = un,j = 0, i, j = 0, 1, . . . , n.

At the (n− 1)2 interior grid points we obtain the following system of linear equations
for the values of u there

4ui,j − ui−1,j − ui,j−1 − ui+1,j − ui,j+1 =
fi,j

n2
, i, j = 1, . . . , n− 1

The system matrix is of size m×m, where m = (n− 1)2. Each row contains at most
five nonzero entries, and therefore is very sparse. Thus, special methods are called
for to take advantage of this sparsity when we solve this linear system. Obviously, a
full-blown LU or Cholesky factorization will be much too costly if m is large (typical
values for m are often 106 or even larger).

13.2 The Splitting Approach

The basic iterative scheme to solve Ax = b will be of the form

x(k) = Gx(k−1) + c, k = 1, 2, 3, (38)

Here we assume that A ∈ Cm×m, x(0) is an initial guess for the solution, and G and c
are a constant iteration matrix and vector, respectively, defining the iterative scheme.

Most classical iterative methods are based on a splitting of the matrix A of the form

A = M −N

100

with a nonsingular matrix M . One then defines

G = M−1N and c = M−1b.

Then (38) becomes
x(k) = M−1Nx(k−1) + M−1b

or
Mx(k) = Nx(k−1) + b. (39)

In practice we will want to choose the splitting factors so that

1. (39) is easily solved,

2. (39) converges rapidly.

Theorem 13.1 If
‖G‖ = ‖M−1N‖ < 1

then (38) converges to a solution of Ax = b for any initial guess x(0).

Proof (38) describes a fixed point iteration (i.e., is of the form x = g(x)), and the
fixed point of (38) is a solution of Ax = b as can be seen from

x = Gx + c

⇐⇒ x = M−1Nx + M−1b

⇐⇒ Mx = Nx + b

⇐⇒ (M −N)︸ ︷︷ ︸
=A

x = b.

Now we let e(k) = x(k)−x, where x is the solution of the fixed point problem, and
show that this quantity goes to zero as k →∞. First we observe that

e(k) = x(k) − x

= Gx(k−1) −Gx

= G
(
x(k−1) − x

)
= Ge(k−1).

Taking norms we have

‖e(k)‖ = ‖Ge(k−1)‖
≤ ‖G‖‖e(k−1)‖
≤ ‖G‖k‖e(0)‖,

where the last inequality is obtained by recursion.
If now – as we assume – ‖G‖ < 1, then ‖e(k)‖ → 0 as k → ∞, and therefore

x(k) → x and the method converges.

With some more effort one can show

Theorem 13.2 The iteration (38) converges to the solution of Ax = b for any initial
guess x(0) if and only if ρ(G) = ρ(M−1N) < 1.

Here ρ(G) is the spectral radius of G, i.e., the largest eigenvalue of G (in modulus).

101

13.3 How should we choose M and N?

13.3.1 The Jacobi Method

We formally decompose A = L + D + U into a lower triangular, diagonal, and upper
triangular part. Then we let

M = D, N = −(L + U).

Thus (39) becomes
Dx(k) = −(L + U)x(k−1) + b

or
x(k) = D−1

[
b− (L + U)x(k−1)

]
.

By writing this formula componentwise we have

x
(k)
i =

bi −
∑

j 6=i aijx
(k−1)
j

aii
, i = 1, . . . ,m.

This means we have the following algorithm.

Algorithm (Jacobi method)

Let x(0) be an arbitrary initial guess

for k = 1, 2, . . .

for i = 1 : m

x
(k)
i =

bi −
i−1∑
j=1

aijx
(k−1)
j −

m∑
j=i+1

aijx
(k−1)
j

 /aii

end

end

Example If we apply the Jacobi method to the finite difference discretization of the
Poisson problem then we can be more efficient by taking advantage of the matrix
structure. The central part of the algorithm (the loop for i = 1 : m) can then be
replaced by

for i = 1 : n− 1

for j = 1 : n− 1

u
(k)
i,j =

(
u

(k−1)
i−1,j + u

(k−1)
i,j−1 + u

(k−1)
i+1,j + u

(k−1)
i,j+1 +

fi,j

n2

)
/4

end

end

102

Note that the unknowns are now uij instead of xi. This algorithm can be implemented
in one line of Matlab (see homework).

Remark While the Jacobi method is not used that often in practice on serial comput-
ers it does lend itself to a naturally parallel implementation.

In order to get a convergence result for the Jacobi method we need to recall the
concept of diagonal dominance. We say a matrix A is strictly row diagonally dominant
if

|aii| >
∑
j 6=i

|aij |.

Theorem 13.3 If A is strictly row diagonally dominant, then the Jacobi method con-
verges for any initial guess x(0).

Proof By the definition of diagonal dominance above we have

|aii| >
∑
j 6=i

|aij | ⇐⇒
∑
j 6=i

|aij |
|aii|

< 1.

We are done if we can show that ‖G‖ < 1. Here

‖G‖ = ‖M−1N‖ = ‖D−1(L + U)‖.

Since we can take any norm, we pick ‖ · ‖∞. Then

‖G‖∞ = ‖D−1(L + U)‖∞

= max
1≤i≤m

∑
j 6=i

|aij |
|aii|

< 1

by the diagonal dominance.

Remark An analogous result holds if A is strictly column diagonally dominant (de-
fined analogously).

As we will see in some numerical examples, the convergence of the Jacobi method
is usually rather slow. A (usually) faster method is discussed next.

13.3.2 Gauss-Seidel Method

To see how the Jacobi method can be improved we consider an example.

Example For the system

2x1 + x2 = 6
x1 + 2x2 = 6

103

or [
2 1
1 2

] [
x1

x2

]
=
[

6
6

]
the Jacobi method looks like

x
(k)
1 =

(
6− x

(k−1)
2

)
/2

x
(k)
2 =

(
6− x

(k−1)
1

)
/2.

In order to obtain an improvement we notice that the value of x
(k−1)
1 used in the

second equation is actually outdated since we already computed a newer version, x
(k)
1 ,

in the first equation. Therefore, we might consider

x
(k)
1 =

(
6− x

(k−1)
2

)
/2

x
(k)
2 =

(
6− x

(k)
1

)
/2

instead. This is known as the Gauss-Seidel method. The general algorithm is of the
form

Algorithm (Gauss-Seidel method)

Let x(0) be an arbitrary initial guess

for k = 1, 2, . . .

for i = 1 : m

x
(k)
i =

bi −
i−1∑
j=1

aijx
(k)
j −

m∑
j=i+1

aijx
(k−1)
j

 /aii

end

end

Example For one step of the finite difference solution of the Poisson problem we get

for i = 1 : n− 1

for j = 1 : n− 1

u
(k)
i,j =

(
u

(k)
i−1,j + u

(k)
i,j−1 + u

(k−1)
i+1,j + u

(k−1)
i,j+1 +

fi,j

n2

)
/4

end

end

104

Remark Note that the implementation of the Gauss-Seidel algorithm for this example
depends on the ordering of the grid points. We used the natural (or typewriter) order-
ing, i.e., we scan the grid points row by row from left to right. Sometimes a red-black
(or chessboard) ordering is used. This is especially useful if the Gauss-Seidel method
is to be parallelized.

In order to understand the matrix formulation of the Gauss-Seidel method in the
spirit of (39) we again assume that A = L + D + U .

Now the splitting matrices are chosen as

M = D + L

N = −U,

and (39) becomes

Mx(k) = Nx(k−1) + b

⇐⇒ (D + L)x(k) = b− Ux(k−1)

or
x(k) = (D + L)−1

(
b− Ux(k−1)

)
.

Note that this is also equivalent to

Dx(k) = b− Lx(k) − Ux(k−1)

or
x(k) = D−1

(
b− Lx(k) − Ux(k−1)

)
.

This latter formula corresponds nicely to the algorithm above.
The convergence criteria for Gauss-Seidel iteration are a little more general than

those for the Jacobi method. One can show

Theorem 13.4 The Gauss-Seidel method converges for any initial guess x(0) if

1. A is strictly diagonally dominant, or

2. A is symmetric positive definite.

Remark For a generic problem the Gauss-Seidel method converges faster than the
Jacobi method (see the Maple worksheet 473 IterativeSolvers.mws). However, this
does not mean that sometimes the Jacobi method may not be faster.

Remark A careful reader may notice that the sufficient conditions given in the con-
vergence theorems for the Jacobi and Gauss-Seidel methods do not cover the matrix
for our finite-difference Poisson problem. However, there are variations of the theorems
that do cover this important example.

105

13.3.3 Successive Over-Relaxation (SOR)

One can accelerate the convergence of the Gauss-Seidel method by using a weighted
average of the new Gauss-Seidel value with the one obtained during the previous iter-
ation:

x(k) = (1− ω)x(k−1) + ωx
(k)
GS.

Here ω is the so-called relaxation parameter. If ω = 1 we simply have the Gauss-Seidel
method. For ω > 1 one speaks of over-relaxation, and for ω < 1 of under-relaxation.

The resulting algorithm known as successive over-relaxation (SOR) and is (obvi-
ously) a variation of the Gauss-Seidel algorithm.

Algorithm (SOR)

Let x(0) be an arbitrary initial guess

for k = 1, 2, . . .

for i = 1 : m

x
(k)
i = (1− ω)x(k−1)

i + ω

bi −
i−1∑
j=1

aijx
(k)
j −

m∑
j=i+1

aijx
(k−1)
j

 /aii︸ ︷︷ ︸
=x

(k)
i,GS

end

end

Example For one step of the SOR algorithm applied to the finite difference solution
of the Poisson problem we get

for i = 1 : n− 1

for j = 1 : n− 1

u
(k)
i,j = (1− ω)u(k−1)

i,j + ω

(
u

(k)
i−1,j + u

(k)
i,j−1 + u

(k−1)
i+1,j + u

(k−1)
i,j+1 +

fi,j

n2

)
/4

end

end

Remark Just as for the Gauss-Seidel algorithm, the implementation of the SOR
method depends on the ordering of the grid points.

106

To describe the SOR method in terms of splitting matrices we again assume that
A = L + D + U , and take

M =
1
ω

D + L

N =
(

1
ω
− 1
)

D − U.

With these choices (39) becomes

Mx(k) = Nx(k−1) + b

⇐⇒
(

1
ω

D + L

)
x(k) =

[(
1
ω
− 1
)

D − U

]
x(k−1) + b.

The rearrangements that show that this formulation is indeed equivalent to the formula
used in the algorithm above are:(

1
ω

D + L

)
x(k) =

[(
1
ω
− 1
)

D − U

]
x(k−1) + b

⇐⇒ 1
ω

Dx(k) =
[(

1
ω
− 1
)

D − U

]
x(k−1) + b− Lx(k)

⇐⇒ x(k) = ωD−1

[(
1
ω
− 1
)

D − U

]
x(k−1) + ωD−1b− ωD−1Lx(k)

⇐⇒ x(k) = x(k−1) − ωx(k−1) − ωD−1Ux(k−1) + ωD−1b− ωD−1Lx(k)

⇐⇒ x(k) = (1− ω) x(k−1) − ω
[
D−1

(
b− Lx(k) − Ux(k−1)

)]
.

Note that the expression inside the square brackets on the last line is just what we had
for the Gauss-Seidel method earlier.

One can prove a general convergence theorem that is similar to those for the Jacobi
and Gauss-Seidel methods:

Theorem 13.5 If A is symmetric positive definite then the SOR method with 0 < ω <
2 converges for any starting value x(0).

Remark Note that this theorem says nothing about the speed of convergence. In fact,
finding a good value for the relaxation parameter ω is quite difficult. The value of ω
that yields the fastest convergence of the SOR method is known only in very special
cases. For example, if A is tridiagonal then

ωopt =
2

1 +
√

1− ρ(G)
,

where G = M−1N = (D + L)−1(−U) is the iteration matrix for the Gauss-Seidel
method.

The convergence behavior of all three classical methods is illustrated in the Maple
worksheet 473 ItertiveSolvers.mws.

107

