
14 Arnoldi Iteration and GMRES

14.1 Arnoldi Iteration

The classical iterative solvers we have discussed up to this point were of the form

x(k) = Gx(k−1) + c

with constant G and c. Such methods are also known as stationary methods. We will
now study a different class of iterative solvers based on optimization.

All methods will require a “black box” implementation of a matrix-vector product.
In most library implementations of such solvers the user can therefore provide a custom
function which computes the matrix-vector product as efficiently as possible for the
specific system matrix at hand.

One of the main ingredients in all of the following methods are Krylov subspaces.
Given A ∈ Cm×m and b ∈ Cm one generates

{b, Ab, A2b, A3b, . . .},

which is referred to as a Krylov sequence. Clearly, (fast) matrix-vector products play
a crucial role in generating this sequence since each subsequent vector in the sequence
is obtain from the previous one by multiplication by A.

With the Krylov sequence at hand one defines

Kn = span{b, Ab, A2b, . . . , An−1b}

as the n-th order Krylov subspace.
The Arnoldi iteration method to be derived will be applicable to both linear systems

and eigenvalue problems, and therefore we are interested in re-examining similarity
transformations of the form

A = QHQ∗,

where H is an upper Hessenberg matrix.
In our earlier work we used Householder reflectors to transform A to upper Hessen-

berg form. This had its advantages since the resulting algorithm is a stable one. When
studying the QR factorization we also looked at the modified Gram-Schmidt algorithm.
That algorithm was less stable. However, it has the advantage that one get one col-
umn of the unitary matrix Q one column at a time, i.e., the modified Gram-Schmidt
algorithm can be stopped at any time and yields a partial set of orthonormal column
vectors. On the other hand, with Householder reflectors we always have to perform the
entire QR factorization before we get (all) orthonormal vectors.

Thus, Arnoldi iteration can be seen as the use of the modified Gram-Schmidt algo-
rithm in the context of Hessenberg reduction.

14.2 Derivation of Arnoldi Iteration

We start with the similarity transformation A = QHQ∗ with m ×m matrices A, Q,
and H. Clearly, this is equivalent to

AQ = QH.

108



Now we take n < m, so that the eigenvalue equations above can be written as

A[q1, q2, . . . , qn, qn+1, . . . , qm] = [q1, q2, . . . , qn, qn+1, . . . , qm]×

×



h11 h12 . . . h1n . . . h1m

h21 h22 . . . h2n . . . h2m

0 h32 h33 h3n . . . h3m

0 h43
. . .

0
. . . hn−1,n−2

...
...

...
. . . hn,n−1 hnn

0 hn+1,n

0
. . .

. . .

0 . . . 0 hm,m−1 hmm



.

Next, we consider only part of this system. Namely, we let

Qn = [q1, q2, . . . , qn]

Qn+1 = [q1, q2, . . . , qn, qn+1]

H̃n =



h11 h12 . . . h1n

h21 h22 . . . h2n

0 h32 h33 h3n

0 h43
. . .

0
. . . hn−1,n−2

...
...

. . . hn,n−1 hnn
0 hn+1,n


and then take

AQn = Qn+1H̃n.

Note that here A ∈ Cm×m, Qn ∈ Cm×n, Qn+1 ∈ Cm×n+1, and H̃n ∈ Cn+1×n so that
both sides of the equation result in an m× n matrix.

If we compare the n-th columns on both sides, then we get

Aqn = h1nq1 + h2nq2 + . . .+ hnnqn + hn+1,nqn+1 (40)

which constitutes an (n+ 1) term recursion for the vector qn+1. Equation (40) can be
re-written as

qn+1 =
Aqn −

∑n
i=1 hi,nqi

hn+1,n
. (41)

The recursive computation of the columns of the unitary matrix Q in this manner is
known as Arnoldi iteration.

Example The first step of Arnoldi iteration proceeds as follows. We start with the
matrix A and an arbitrary normalized vector q1. Then, according to (41),

q2 =
Aq1 − h11q1

h21
.

109



Note that this step involves the matrix-vector product Aq1 (which has to be computed
efficiently with a problem specific subroutine).

Since we want q∗1q2 = 0 in order to have orthogonality of the columns of Q we get

0 = q∗1Aq1 − h11q
∗
1q1.

Taking advantage of the normalization of q1 this is equivalent to

h11 = q∗1Aq1

– a Rayleigh quotient.
Finally, we let v = Aq1 − h11q1, compute h21 = ‖v‖, and normalize

q2 =
v

h21
.

If we compare (15) with the formula

qn =
an −

∑n−1
i=1 ri,nqi
rnn

that we used earlier for the Gram-Schmidt method (cf. (17)), then it is clear that an
algorithm for Arnoldi iteration will be similar to that for the modified Gram-Schmidt
algorithm:

Algorithm (Arnoldi Iteration)

Let b be an arbitrary initial vector

q1 = b/‖b‖2

for n = 1, 2, 3, . . .

v = Aqn

for j = 1 : n

hjn = q∗jv

v = v − hjnqj
end

hn+1,n = ‖v‖2
qn+1 = v/hn+1,n

end

Remark The most expensive operation in the algorithm is the matrix-vector product
Aqn. The rest of the operations are on the order of O(mn) (so they get a little more
expensive in each iteration). Therefore, in addition to the basic Arnoldi algorithm we
need an efficient implementation of the matrix-vector product this should be taylored
to the problem. Moreover, the algorithm above treats the matrix-vector product as a
“black box” and the algorithm does not need to know or store the matrix A. The only
quantity of interest is the product Aqn, i.e., the action of A on qn.

110



14.3 Arnoldi Iteration as Projection onto Krylov Subspaces

An alternative derivation of Arnoldi iteration starts with the Krylov matrix

Kn = [b, Ab, A2b, . . . , An−1b].

Then
AKn = [Ab, A2b, A3b . . . , Anb]. (42)

Since the first n − 1 columns of the matrix on the right-hand side are the last n − 1
columns of Kn we can also write

AKn = Kn[e2, e3, . . . , en,−c],

where
c = −K−1

n Anb

and we assume that Kn is invertible. Equivalently,

AKn = KnCn

with the upper Hessenberg matrix

Cn = [e2, e3, . . . , en,−c].

This A and Cn are similar via K−1
n AKn = Cn. The problem with this formulation is

that Kn is usually ill-conditioned (since all of its columns converge to the dominant
eigenvector of A, cf. our earlier discussion of simultaneous power iteration).

Remark As a side remark we mention that the matrix Cn above is known as a com-
panion matrix. The matrix has characteristic polynomial p(z) = zn +

∑n
i=1 ciz

i−1,
where the ci are the components of c. In other words, the eigenvalues of Cn are the
roots of p. This goes also in the other direction. Given a monic polynomial p, we can
form its companion matrix Cn and then know that the roots of p are the same as the
eigenvalues of Cn.

Returning to the derivation of Arnoldi iteration, we still need to show how the above
Krylov subspace formulation is related to the earlier one based on the Gram-Schmidt
method.

Denote the QR factorization of the Krylov matrix Kn by

Kn = QnRn.

Then

K−1
n AKn = Cn

⇐⇒ R−1
n Q∗nAQnRn = Cn

⇐⇒ Q∗nAQn = RnCnR
−1
n︸ ︷︷ ︸

=Hn

.

111



It needs to be pointed out that this approach is computationally not a good one.
It is both too expensive and unstable. On the one hand, finding c involves solution of
the (ill-conditioned) linear system Knc = Anb. On the other hand, we would also be
required to provide the inverse of Rn.

However, we can get some theoretical insight from this approach. The formula

Q∗nAQn = Hn

can be interpreted as an orthogonal projection of A onto Kn with the column of Qn as
basis, i.e., Arnoldi iteration is nothing but orthogonal projection onto Krylov subspaces.

Remark If A is Hermitian, then everything above simplifies (e.g., Hessenberg matrices
turn into tridiagonal), and we get what is know in the literature separately as Lanczos
iteration.

14.4 GMRES

The method of generalized minimum residuals (or GMRES) was suggested in 1986 by
Saad and Schultz.

While application of the classical iterative solvers was limited to either diagonally
dominant or positive definite matrices, the GMRES method can be used for linear sys-
tems Ax = b with arbitrary (nonsingular) square matrices A. The essential ingredient
in this general iterative solver is Arnoldi iteration.

The main idea of the GMRES method is to solve a least squares problem at each step
of the iteration. More precisely, at step n we approximate the exact solution x∗ = A−1b
by a vector xn ∈ Kn (the n-th order Krylov subspace) such that the residual

‖rn‖2 = ‖Axn − b‖2

is minimized. We now describe how to solve this least squares problem.
We start with the Krylov matrix

Kn =
[
b, Ab, A2b, . . . , An−1b

]
∈ Cm×n.

Thus the column space of AKn is AKn.
Now the desired vector xn ∈ Kn can be written as

xn = Knc

for some appropriate vector c ∈ Cn. Therefore the residual minimization becomes

‖rn‖2 = ‖Axn − b‖2 = ‖AKnc− b‖2 → min.

The obvious way to find the least squares solution to this problem would be to compute
the QR factorization of the matrix AKn. However, this is both unstable and too
expensive.

Instead, we look for an orthonormal basis for the Krylov subspace Kn. We will
denote this by {q1, q2, . . . , qn}, the columns of the matrix Qn used in Arnoldi iteration.
With this new basis the approximate solution xn ∈ Kn can be written as

xn = Qny

112



for some appropriate vector y ∈ Cn. The residual minimization is then

‖Axn − b‖2 = ‖AQny − b‖2 → min. (43)

It is now time to recall the principle behind the Arnoldi iteration. That algorithm
is based on the partial similarity transform

AQn = Qn+1H̃n.

Thus (43) turns into
‖Qn+1H̃ny − b‖2 → min.

Next we take advantage of the fact that multiplication by a unitary matrix does
not change the 2-norm. Thus, we arrive at

‖Q∗n+1Qn+1H̃ny −Q∗n+1b‖2 → min

⇐⇒ ‖H̃ny −Q∗n+1b‖2 → min

Note that the system matrix AQn in (43) is an m × n matrix, while the new matrix
H̃n is an (n+ 1)×n matrix which is smaller, and therefore will permit a more efficient
solution.

The final simplification we can make is for the vector Q∗n+1b. In detail, this vector
is given by

Q∗n+1b =


q∗1b
q∗2b
...

q∗n+1b

 .
Recall that the Krylov subspaces are given by

K1 = span{b},
K2 = span{b, Ab},

... ,

and that the columns qj of Qn form an orthonormal basis for Kn. Thus

q1 =
b

‖b‖

and q∗jb = 0 for any j > 1. Therefore we actually have

Q∗n+1b = ‖b‖e1.

Combining all of this work we arrive at the final least squares formulation∥∥∥H̃ny − ‖b‖2e1

∥∥∥
2
→ min

with xn = Qny.

This leads to

113



Algorithm (GMRES)

Let q1 = b/‖b‖

for n = 1, 2, 3, . . .

Perform step n of Arnoldi iteration, i.e., compute new entries for H̃n and
Qn.

Find y that minimizes
∥∥∥H̃ny − ‖b‖e1

∥∥∥
2

(e.g., with QR factorization)

Set xn = Qny

end

The computational cost for the GMRES algorithm depends on the cost of the
method used for the least squares problem and that of the Arnoldi iteration. Since
the least squares system matrix is of size (n+ 1)× n it can be done in O(n2) floating
point operations. If an updating QR factorization (which we did not discuss) is used,
then even O(n) is possible. Arnoldi iteration takes O(mn) operations plus the cost
for matrix-vector multiplications. These can usually be accomplished at somewhere
between O(m) and O(m2) flops.

14.4.1 Convergence of GMRES

In exact arithmetic (which we of course do not have in a numerical computing environ-
ment) GMRES iteration will always converge in at most m steps (since Km = Cm =
range(A)). Moreover, convergence is monotonic since ‖rn+1‖ ≤ ‖rn‖. This latter fact
is true since rn is minimized over Kn, and we have Kn+1 ⊃ Kn. Thus, minimization
over a larger subspace will allow us to achieve a smaller residual norm.

For practical computations the only case of interest is when the algorithm converges
(to within a specified tolerance) in n iterations with n � m. Usually the relative
residual is used to control the convergence, i.e., we check whether

‖rn‖
‖b‖

< tol,

where tol = 10−6 or 10−8. The MATLAB code GMRESDemo.m illustrates this.
The test problems are given by 200× 200 systems with random matrices and ran-

dom right-hand side vectors b. The different test matrices are a matrix A whose entries
are independent samples from the real normal distribution of mean 2 and standard de-
viation 0.5/

√
200. Its eigenvalues are clustered in a disk in the complex plane of radius

1/2 centered at z = 2. The other test matrices have different eigenvalue distributions.
They are obtained as

• B = A+D, where the entries of the diagonal matrix D are the complex numbers

dk = (−2 + 2 sin θk) + i cos θk, θk =
k

m− 1
, 0 ≤ k ≤ m− 1.

• C, a random matrix whose eigenvalues are loosely clustered in the unit disk.

114



• D = CTC, a random symmetric positive definite matrix (with real positive eigen-
values).

• E = 1
2C, another random matrix whose eigenvalues are more densely clustered

than those of C.

The rate of convergence of the GMRES method depends on the distribution of
the eigenvalues of A in the complex plane. For fast convergence the eigenvalues need
to be clustered away from the origin. Note that the eigenvalue distribution is much
more important than the condition number of A, which is the main criterion for rapid
convergence of the conjugate gradient method (see next section).

If the GMRES method is applied to a matrix with a “good” eigenvalue distribution
(or is appropriately preconditioned) then it may solve even a system with an unstruc-
tured dense matrix faster than standard LU factorization.

115


