
15 Conjugate Gradients

This method for symmetric positive definite matrices is considered to be the “original”
Krylov subspace method. It was proposed by Hestenes and Stiefel in 1952, and is
motivated by the following theorem.

Theorem 15.1 If A is symmetric positive definite, then solving Ax = b is equivalent
to minimizing the quadratic form

ϕ(x) =
1
2
xT Ax− xT b.

Proof We will consider changes of ϕ along a certain ray x+αp with α ∈ R, and fixed
direction vector p 6= 0.

First we show that ϕ(x + αp) > ϕ(x) if A symmetric positive definite.

ϕ(x + αp) =
1
2
(x + αp)T A(x + αp)− (x + αp)T b

=
1
2
xT Ax +

1
2
xT A(αp) +

1
2
(αp)T Ax +

1
2
(αp)T A(αp)− xT b− αpT b

AT =A=
1
2
xT Ax− xT b︸ ︷︷ ︸

=ϕ(x)

+αpT Ax− αpT b +
1
2
α2pT Ap

= ϕ(x) + αpT (Ax− b) +
1
2
α2 pT Ap︸ ︷︷ ︸

>0

.

Thus, we see that ϕ (as a quadratic function in α with positive leading coefficient) will
have to have a minimum along the ray x + αp.

We now decide what the value of α at this minimum is. A necessary condition (and
also sufficient since the coefficient of α2 is positive) is

d

dα
ϕ(x + αp) = 0.

To this end we compute

d

dα
ϕ(x + αp) = pT (Ax− b) + αpT Ap,

which has its root at

α̂ =
pT (b−Ax)

pT Ap
.

The corresponding minimum value is

ϕ(x + α̂p) = ϕ(x)−
[
pT (b−Ax)

]2
2pT Ap︸ ︷︷ ︸

≥0

.

The last equation shows that

ϕ(x + α̂p) < ϕ(x) if and only if pT (b−Ax) 6= 0,

116



i.e., p is not orthogonal to the residual r = b−Ax.
To see the equivalence with the solution of the linear system Ax = b we need to

consider two possibilities:

1. x is such that Ax = b. Then ϕ(x + α̂p) = ϕ(x) and ϕ(x) is the minimum value.

2. x is such that Ax 6= b. Then ϕ(x + α̂p) < ϕ(x), i.e., there exists a direction p
such that pT (b−Av) 6= 0 and ϕ(x) is not the minimum.

The preceding proof actually suggests a rough iterative algorithm:

Take x0 = 0, r0 = b, p0 = r0

for n = 1, 2, 3, . . .

Compute a step length

αn =
(
pT

n−1rn−1

)
/
(
pT

n−1Apn−1

)
Update the approximate solution

xn = xn−1 + αnpn−1

Update the residual
rn = rn−1 − αnApn−1

Find a new search direction pn

end

Note that at this point we have not specified how to pick the search directions pn.
This will be the crucial ingredient in the algorithm.

The formula above for the residual update follows from

rn = b−Axn = b−A(xn−1 + αnpn−1)
= b−Axn−1 − αnApn−1

= rn−1 − αnApn−1.

15.1 The Steepest Descent Algorithm

An obvious choice for the selection of the search direction is

pn = −∇ϕ(xn)

since we know from calculus that the direction of largest decrease of ϕ is in the direction
opposite its gradient. Moreover, since ϕ(x) = 1

2xT Ax− xT b we have

∇ϕ(x) = Axn − b.

This leads to

117



Algorithm (Steepest Descent)

Take x0 = 0, r0 = b, p0 = r0

for n = 1, 2, 3, . . .

Compute a step length

αn =
(
pT

n−1rn−1

)
/
(
pT

n−1Apn−1

)
Update the approximate solution

xn = xn−1 + αnpn−1

Update the residual
rn = rn−1 − αnApn−1

Set the new search direction
pn = rn

end

Note that for this choice of search direction the step length α can also be written
as

αn =
(
rT

n−1rn−1

)
/
(
pT

n−1Apn−1

)
.

15.2 The Conjugate Gradient Algorithm

It turns out that the “obvious” search directions are not ideal (since they are applied in
an iterative fashion). Convergence of the steepest descent algorithm is usually rather
slow. It is better to employ so-called conjugate search directions. The idea is to
somehow remove from the gradient at each step those components parallel to previously
used search directions. The resulting algorithm is

Algorithm (Conjugate Gradient)

Take x0 = 0, r0 = b, p0 = r0

for n = 1, 2, 3, . . .

Compute a step length

αn =
(
rT

n−1rn−1

)
/
(
pT

n−1Apn−1

)
Update the approximate solution

xn = xn−1 + αnpn−1

Update the residual
rn = rn−1 − αnApn−1

118



Compute a gradient correction factor

βn =
(
rT

nrn

)
/
(
rT

n−1rn−1

)
Set the new search direction

pn = rn + βnpn−1

end

For both the steepest descent and the conjugate gradient algorithm the main com-
putational cost is hidden in the one matrix-vector multiplication that is required per
iteration. As with the Arnoldi and GMRES methods, this operation is treated as a
“black box” and can be accomplished in O(m) to O(m2) operations depending on the
structure of A. In many practical cases the entire (preconditioned) CG algorithm will
require only O(m) operations. This is very fast.

As mentioned at the beginning of this section, one can also establish a connection
to Krylov subspace methods.

Theorem 15.2 Let A be symmetric positive definite. As long as the conjugate gradient
method has not yet converged (i.e., as long as rn−1 6= 0) we have

span{x1,x2, . . . ,xn} = span{p0,p1, . . . ,pn−1}
= span{r0, r1, . . . , rn−1}
= span{b, Ab, . . . , An−1b} = Kn.

Moreover, the residuals are orthogonal in the usual sense, i.e,

rT
nrj = 0, j < n,

and the search directions ar A-orthogonal (or A-conjugate), i.e.,

pT
nApj = 0, j < n.

Proof An inductive proof of this theorem can be found in the book [Trefethen/Bau].

15.3 Convergence of the CG Algorithm

Recall that the GMRES algorithm minimizes the 2-norm of the residual, ‖rn‖2 → min.
We will now show that the CG algorithm satisfies a different optimality criterion. It
minimizes the A-norm of the error, i.e., if en = x∗−xn, is the error between the exact
solution x∗ = A−1b and the n-th approximation xn, then CG minimizes

‖en‖A =
√

eT
nAen.

Theorem 15.3 Let A be symmetric positive definite. If the conjugate gradient algo-
rithm has not yet converged (i.e., rn−1 6= 0) then xn is the unique vector in Kn such
that ‖en‖A is minimized.

Moreover, ‖en‖A ≤ ‖en−1‖A and (if we are using exact arithmetic) en = 0 for
some n ≤ m.

119



Proof We will prove the first part only. From the previous theorem we know that the
approximate solution xn lies in the Krylov subspace Kn. In order to show that xn is
the unique minimizer of ‖e‖A we consider an arbitrary vector

x = xn −∆x ∈ Kn

and show that in order to minimize ‖e‖A we necessarily have ∆x = 0.
If x∗ is the exact solution of Ax = b, then

e = x∗ − x = x∗ − xn + ∆x = en + ∆x.

Therefore,

‖e‖2A = ‖en + ∆x‖2A
= (en + ∆x)T A (en + ∆x)
= eT

nAen + 2eT
nA (∆x) + (∆x)T A (∆x)

since A is symmetric.
Next we realize that

eT
nA = (x∗ − xn)T A =

(
A−1b− xn

)
A = bT − xT

nA = rT
n ,

and observe that
rT

n∆x = 0

since ∆x ∈ Kn = span{r0, r1, . . . , rn−1} and rT
nrj = 0 for j < n by the previous

theorem.
This leaves us with

‖e‖2A = eT
nAen + 2 eT

nA︸︷︷︸
=rT

n

(∆x)

︸ ︷︷ ︸
=0

+(∆x)T A (∆x)

= ‖en‖2A + (∆x)T A (∆x) .

Note that the quadratic form (∆x)T A (∆x) is certainly non-negative since A is positive
definite. Moreover, it is zero only if ∆x = 0.

Thus, the A-norm of the error is minimized if ∆x = 0, i.e., for the CG approximate
solution xn.

We can come to the same conclusion with the following argument:

‖en‖2A = eT
nAen = (x∗ − xn)T A (x∗ − xn)

= (x∗)T Ax∗︸︷︷︸
=b

−2xT
n Ax∗︸︷︷︸

=b

+xT
nAxn

= (x∗)T b + xT
nAxn − 2xT

nb

= (x∗)T b + 2ϕ(xn).

120



Here ϕ(xn) is the same quadratic form used earlier. Since (x∗)T b is a constant we see
that minimizing the A-norm of the error is equivalent to minimizing the quadratic form
ϕ(xn).

For the convergence rate of the CG algorithm one can show that

‖en‖A ≤ ‖e0‖A
(√

κ− 1√
κ + 1

)n

,

where κ = κ2(A) the 2-norm condition number of A. Since
√

κ− 1√
κ + 1

= 1− 2√
κ + 1

we see that convergence will be very slow if κ is large. This shows that preconditioning
efforts for the CG algorithm are aimed at reducing the condition number of A.

For a moderate size κ it turns out that one can expect convergence of the CG
algorithm in O(

√
κ) iterations. In fact, in practice the CG algorithm often converges

faster than predicted by this upper bound.

Remark It is possible to interpret the conjugate gradient method as an analogue of
Lanczos iteration for linear systems. Since we claimed earlier that Lanczos iteration is
a special case of Arnoldi iteration for symmetric matrices, it turns out that the (n+1)-
term recursion we derived earlier for Arnoldi iteration turn into a 3-term recursion.
One can indeed show that this 3-term recursion is hidden inside the CG algorithm.

Convergence of the CG algorithm is illustrated in the MATLAB code CGDemo.m.
The symmetric test matrix is constructed as follows. Initially it contains ones on the
main diagonal and random numbers uniformly distributed in [−1, 1] in the off-diagonal
positions. Then any off-diagonal entry with |aij | > τ is set to zero, where τ is a
parameter. For small values of τ the matrix is positive definite and very sparse, and
the CG algorithm converges rapidly. For larger values, such as τ = 0.2 the matrix is
no longer positive definite, and the CG algorithm does not converge. We also note
that for these test matrices, preconditioning does not improve convergence of the CG
algorithm.

121


