
16 Preconditioning

The general idea underlying any preconditioning procedure for iterative solvers is to
modify the (ill-conditioned) system

Ax = b

in such a way that we obtain an equivalent system Âx̂ = b̂ for which the iterative
method converges faster.

A standard approach is to use a nonsingular matrix M , and rewrite the system as

M−1Ax = M−1b.

The preconditioner M needs to be chosen such that the matrix Â = M−1A is better
conditioned for the conjugate gradient method, or has better clustered eigenvalues for
the GMRES method.

16.1 Preconditioned Conjugate Gradients

We mentioned earlier that the number of iterations required for the conjugate gradient
algorithm to converge is proportional to

√
κ(A). Thus, for poorly conditioned matrices,

convergence will be very slow. Thus, clearly we will want to choose M such that
κ(Â) < κ(A). This should result in faster convergence.

How do we find Â, x̂, and b̂? In order to ensure symmetry and positive definiteness
of Â we let

M−1 = LLT (44)

with a nonsingular m×m matrix L. Then we can rewrite

Ax = b ⇐⇒ M−1Ax = M−1b

⇐⇒ LT Ax = LT b

⇐⇒ LT AL︸ ︷︷ ︸
=Â

L−1x︸ ︷︷ ︸
=x̂

= LT b︸︷︷︸
=b̂

.

The symmetric positive definite matrix M is called splitting matrix or preconditioner,
and it can easily be verified that Â is symmetric positive definite, also.

One could now formally write down the standard CG algorithm with the new “hat-
ted” quantities. However, the algorithm is more efficient if the preconditioning is
incorporated directly into the iteration. To see what this means we need to examine
every single line in the CG algorithm.

We start by looking at the new residual:

r̂n = b̂− Âx̂n = LT b− (LT AL)(L−1xn) = LT b− LT Axn = LT rn,

and also define the following abbreviations

p̂n = L−1pn,

r̃n = M−1rn.
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Now we can consider how this transforms the CG algorithm (for the hatted quan-
tities). The initialization becomes x̂0 = L−1x0 = 0 and

r̂0 = b̂ ⇐⇒ LT r0 = LT b ⇐⇒ r0 = b.

The initial search direction turns out to be

p̂0 = r̂0 ⇐⇒ L−1p0 = LT r0

⇐⇒ p0 = M−1r0 = r̃0,

where we have used the definition of the preconditioner M . The step length α̂ trans-
forms as follows:

α̂n =
(
r̂T

n−1r̂n−1

)
/
(
p̂T

n−1Âp̂n−1

)
=

((
LT rn−1

)T
LT rn−1

)
/
((

L−1pn−1

)T (
LT AL

) (
L−1pn−1

))
=

(
rT

n−1LLT rn−1

)
/
(
pT

n−1L
−T LT ALL−1pn−1

)
=

(
rT

n−1 LLT︸︷︷︸
=M−1

rn−1

)
/
(
pT

n−1Apn−1

)
=

(
rT

n−1r̃n−1

)
/
(
pT

n−1Apn−1

)
.

The approximate solution is updated according to

x̂n = x̂n−1 + α̂np̂n−1 ⇐⇒ L−1xn = L−1xn−1 + α̂nL−1pn−1

⇐⇒ xn = xn−1 + α̂npn−1.

The residuals are updated as

r̂n = r̂n−1 − α̂nÂp̂n−1 ⇐⇒ LT rn = LT rn−1 − α̂n(LT AL)L−1pn−1

⇐⇒ rn = rn−1 − α̂nApn−1.

The gradient correction factor β transforms as follows:

β̂n =
(
r̂T

n r̂n

)
/
(
r̂T

n−1r̂n−1

)
=

((
LT rn

)T (
LT rn

))
/
((

LT rn−1

)T (
LT rn−1

))
=

(
rT

n LLT︸︷︷︸
=M−1

rn

)
/
(
rT

n−1 LLT︸︷︷︸
=M−1

rn−1

)
=

(
rT

n r̃n

)
/
(
rT

n−1r̃n−1

)
.

Finally, for the new search direction we have

p̂n = r̂n + β̂np̂n−1 ⇐⇒ L−1pn = LT rn + β̂nL−1pn−1

⇐⇒ pn = M−1rn + β̂npn−1

⇐⇒ pn = r̃n + β̂npn−1,

where we have multiplied by L and used the definition of M in the penultimate step.
The resulting algorithm is given by
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Algorithm (Preconditioned Conjugate Gradient)

Take x0 = 0, r0 = b

Solve M r̃0 = r0 for r̃0

Let p0 = r̃0

for n = 1, 2, 3, . . .

Compute a step length

αn =
(
rT

n−1r̃n−1

)
/
(
pT

n−1Apn−1

)
(note that r̃n−1 = M−1rn−1)

Update the approximate solution

xn = xn−1 + αnpn−1

Update the residual
rn = rn−1 − αnApn−1

Solve M r̃n = rn for r̃n

Compute a gradient correction factor

βn =
(
rT

n r̃n

)
/
(
rT

n−1r̃n−1

)
(note that r̃n−1 = M−1rn−1 and r̃n = M−1rn)

Set the new search direction

pn = r̃n + βnpn−1

(where r̃n = M−1rn)

end

Remark This algorithm requires the additional work that is needed to solve the linear
system M r̃n = rn once per iteration. Therefore we will want to choose M so that this
can be done easily and efficiently.

The two extreme cases M = I and M = A are of no interest. M = I gives us
the ordinary CG algorithm, whereas M = A (with L = A−1/2) leads to the trivial
preconditioned system Âx̂ = b̂⇐⇒ x̂ = b̂ since (using the symmetry of A)

Â = LT AL = A−T/2AT/2A1/2A−1/2 = I.

This may seem useful at first, but to get the solution x we need

x = Lx̂ = A−1/2x̂ = A−1/2b̂

= A−1/2LT b = A−1/2A−T/2b = A−1b,

which is just as complicated as the original problem.
Therefore, M should be chosen somewhere “in between”. Moreover, we want
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1. M should be symmetric and positive definite.

2. M should be such that M r̃n = rn can be solved efficiently.

3. M should approximate A−1 in the sense that ‖I −M−1A‖ < 1.

If we use the decomposition A = L + D + LT of the symmetric positive definite
matrix A then some possible choices for M are given by

M = D: Jacobi preconditioning,

M = L + D: Gauss-Seidel preconditioning,

M = 1
ω (D + ωL): SOR preconditioning.

Another popular preconditioner is M = HHT , where H is “close” to L. This method is
referred to as incomplete Cholesky factorization (see the book by Golub and van Loan
for more details).

Remark The Matlab script PCGDemo.m illustrates the convergence behavior of the
preconditioned conjugate gradient algorithm. The matrix A here is a 1000×1000 sym-
metric positive definite matrix with all zeros except aii = 0.5 +

√
i on the diagonal,

aij = 1 on the sub- and superdiagonal, and aij = 1 on the 100th sub- and superdiag-
onals, i.e., for |i− j| = 100. The right-hand side vector is b = [1, . . . , 1]T . We observe
that the basic CG algorithm converges very slowly, whereas the Jacobi-preconditioned
method converges much faster.
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