
17 Solution of Nonlinear Systems

We now discuss the solution of systems of nonlinear equations. An important ingredient
will be the multivariate Taylor theorem.

Theorem 17.1 Let D = {[x1, x2, . . . , xm]T ∈ Rm : ai ≤ xi ≤ bi, i = 1, . . . ,m}
for some a1, a2, . . . , am, b1, b2, . . . , bm ∈ R. If f ∈ Cn+1(D), then for x + h ∈ D
(h = [h1, h2, . . . , hm]T )

f(x + h) =
n∑

k=0

1
k!

(hT∇)kf(x) + Rn(h), (45)

where
Rn(h) =

1
(n + 1)!

(hT∇)n+1f(x + θh)

with 0 < θ < 1 and ∇ =
[

∂
∂x1

, ∂
∂x2

, . . . , ∂
∂xm

]T
.

Example We are particularly interested in the linearization of a given function, i.e.,
n = 1. In this case we have

f(x + h) = f(x) + (hT∇)f(x) +
1
2

(hT∇)2f(x + θh)︸ ︷︷ ︸
=R1(h)

.

And, for m = 2, this becomes

f(x1 + h1, x2 + h2) = f(x1, x2) +
(

h1
∂

∂x1
+ h2

∂

∂x2

)
f(x1, x2)

+
1
2

(
h1

∂

∂x1
+ h2

∂

∂x2

)2

f(x1 + θh1, x2 + θh2)

= f(x1, x2) + h1
∂f

∂x1
(x1, x2) + h2

∂f

∂x2
(x1, x2)

+
1
2

(
h2

1

∂2

∂x2
1

+ 2h1h2
∂2

∂x1∂x2
+ h2

2

∂2

∂x2
2

)
f(x1 + θh1, x2 + θh2).

Therefore, the linearization of f is given by

f(x1 + h1, x2 + h2) = f(x1, x2) +
(

h1
∂

∂x1
+ h2

∂

∂x2

)
f(x1, x2).

or
f(x + h) = f(x) + (hT∇)f(x).

We now want to solve the following (square) system of nonlinear equations:

f1(x1, x2, . . . , xm) = 0,

f2(x1, x2, . . . , xm) = 0,

... (46)
fm(x1, x2, . . . , xm) = 0.

126



To derive Newton’s method for this problem we assume z = [z1, z2, . . . , zm]T is a
solution (or root) of (46), i.e., z satisfies

fi(z) = 0, i = 1, . . . ,m.

Moreover, we consider x to be an approximate root, i.e.,

x + h = z,

with a small correction h = [h1, h2, . . . , hm]T . Then, by linearizing fi, i = 1, . . . ,m,

fi(z) = fi(x + h) ≈ fi(x) + (hT∇)fi(x).

Since fi(z) = 0 we get

−fi(x) ≈ (hT∇)fi(x)

=
(

h1
∂

∂x1
+ h2

∂

∂x2
+ . . . + hm

∂

∂xm

)
fi(x).

Therefore, we have a linearized version of system (46) as

−f1(x1, . . . , xm) =
(

h1
∂

∂x1
+ . . . + hm

∂

∂xm

)
f1(x1, . . . , xm),

−f2(x1, . . . , xm) =
(

h1
∂

∂x1
+ . . . + hm

∂

∂xm

)
f2(x1, . . . , xm),

... (47)

−fm(x1, . . . , xm) =
(

h1
∂

∂x1
+ . . . + hm

∂

∂xm

)
fm(x1, . . . , xm).

Recall that h = [h1, . . . , hm]T is the unknown Newton update, and note that (47)
is a linear system for h of the form

J(x)h = −f(x),

where f = [f1, . . . , fm]T and

J =


∂f1

∂x1

∂f1

∂x2
. . . ∂f1

∂xm
∂f2

∂x1

∂f2

∂x2
. . . ∂f2

∂xm

...
...

. . .
...

∂fm

∂x1

∂fm

∂x2
. . . ∂fm

∂xm


is called the Jacobian of f .

The algorithm for Newton’s method for square nonlinear systems is now

Algorithm

Input f , J , x(0)

for k = 0, 1, 2, . . . do

127



Solve J(x(k))h(k) = −f(x(k)) for h(k)

Update x(k+1) = x(k) + h(k)

end

Output x(k+1)

Remark If we symbolically write f ′ instead of J , then the Newton iteration becomes

x(k+1) = x(k) −
[
f ′(x(k))

]
︸ ︷︷ ︸

matrix

−1
f(x(k)),

which looks just like the Newton iteration formula for the single equation/single variable
case.

Example Solve

x2 + y2 = 4
xy = 1,

which corresponds to finding the intersection points of a circle and a hyperbola in the
plane. Here

f(x, y) =
[

f1(x, y)
f2(x, y)

]
=
[

x2 + y2 − 4
xy − 1

]
and

J(x, y) =

[
∂f1

∂x
∂f1

∂y
∂f2

∂x
∂f2

∂y

]
(x, y) =

[
2x 2y
y x

]
.

This example is illustrated in the Matlab script run newtonmv.m.

Remark 1. Newton’s method requires the user to input the m×m Jacobian matrix
(which depends on the specific nonlinear system to be solved). This is rather
cumbersome.

2. In each iteration an m ×m (dense) linear system has to be solved. This makes
Newton’s method very expensive and slow.

3. For “good” starting values Newton’s method converges quadratically to simple
zeros, i.e., solutions for which J−1(z) exists.

4. An improvement which removes the strong dependence on the choice of starting
values is the so-called line search

x(k+1) = x(k) + λkh
(k),

where λk ∈ R is chosen so that fT f(x(k)) is strictly monotone decreasing with k.
In this case x(k) converges to the minimum of fT f . This method stems from an
interpretation of the solution of nonlinear systems as the minimizer of a nonlinear
function (more later).

128



17.1 Basic Fixed-point Iteration

We illustrate the use of a general fixed-point algorithm with several examples in the
Maple worksheet 577 fixedpointsMV.mws. However, as we well know, this may not
always be possible, and if it is, convergence may be very slow. Sometimes we can use
a Gauss-Seidel like strategy to accelerate convergence.

A multivariate version of the Contractive Mapping Theorem is

Theorem 17.2 Let C be a closed subset of Rm and F a contractive mapping of C into
itself. Then F has a unique fixed point z. Moreover, z = lim

k→∞
x(k), where x(k+1) =

F (x(k)) and x(0) is any starting point in C.

Here a contractive map is defined as

Definition 17.3 A function (mapping) F is called contractive if there exists a λ < 1
such that

‖F (x)− F (y)‖ ≤ λ‖x− y‖ (48)

for all x,y in the domain of F .

The property (48) is also referred to as Lipschitz continuity of F .

17.2 Quasi-Newton Methods

In the multivariate (systems) setting the extra burden associated with using the deriva-
tive (Jacobian) of f becomes much more obvious than in the single equation/single
variable case. In the algorithm listed above we need to perform m2 evaluations of
derivatives (for the Jacobian) and m evaluations of f (for the right-hand side) in each
iteration. Moreover, solving the linear system J(x)h = −f(x) usually requires O(m3)
floating point operations per iteration.

In order to reduce the computational complexity we need to apply a strategy anal-
ogous to the secant method that is commonly used for single nonlinear equations.
This will eliminate evaluations of derivatives, and reduce the number of floating point
operations required to compute the Newton update to O(m2) operations per iteration.

The idea is to provide an initial approximation B(0) to
[
J(x(0))

]−1
, and then update

this approximation from one iteration to the next, i.e.,

B(k+1) = B(k) + U (k),

where U (k) is an appropriately chosen update.
This replaces solution of the linear system J(x(k))h = −f(x(k)).
One way of updating was suggested by Broyden and is based on the Sherman-

Morrison formula for matrix inversion.

Lemma 17.4 Let A be a nonsingular m×m matrix and x,y ∈ Rm. Then (A+xyT )−1

exists provided that yT A−1x 6= −1. Moreover,

(A + xyT )−1 = A−1 − A−1xyT A−1

1 + yT A−1x
. (49)

129



The Sherman-Morrison formula (49) can be used to compute the inverse of a matrix
A(k+1) obtained by a rank-1 update xyT from A(k), i.e.,[

A(k+1)
]−1

=
[
A(k)

]−1
−
[
A(k)

]−1
xyT

[
A(k)

]−1

1 + yT
[
A(k)

]−1
x

. (50)

Thus, if A(k+1) is a rank-1 modification of A(k) then we need not recompute the inverse
of A(k+1), but instead can obtain it by updating the inverse of A(k) (available from
previous computations) via (50).

The algorithm for Broyden’s method is

Algorithm

Input f , x(0), B(0)

for k = 0, 1, 2, . . . do

h(k) = −B(k)f(x(k))
x(k+1) = x(k) + h(k)

z(k) = f(x(k+1))− f(x(k))

B(k+1) = B(k) −
(
B(k)z(k) − h(k)

) [
h(k)

]T
B(k)[

h(k)
]T

B(k)z(k)

end

Output x(k+1)

Remark 1. Only m scalar function evaluations are required per iteration along
with O(m2) floating point operations for matrix-vector products.

2. One can usually use B(0) = I to start the iteration.

In order to see how the formula for B(k+1) in the algorithm is related to (50) we
define [

J(x(k))
]−1
≈
[
A(k)

]−1
= B(k),

x =
z(k) −

[
B(k)

]−1
h(k)

‖h(k)‖22
,

y = h(k).

Then (50) becomes

B(k+1) = B(k) −
B(k) z(k)−[B(k)]−1

h(k)

‖h(k)‖22

[
h(k)

]T
B(k)

1 +
[
h(k)

]T
B(k) z(k)−[B(k)]−1

h(k)

‖h(k)‖22

= B(k) −
(
B(k)z(k) − h(k)

) [
h(k)

]T
B(k)

‖h(k)‖22 +
[
h(k)

]T
B(k)z(k) −

[
h(k)

]T
B(k)

[
B(k)

]−1
h(k)

= B(k) −
(
B(k)z(k) − h(k)

) [
h(k)

]T
B(k)

‖h(k)‖22 +
[
h(k)

]T
B(k)z(k) − ‖h(k)‖22

,

130



which is the same as the formula for B(k+1) used in the algorithm.
To see why Broyden’s method can be interpreted as a variant of the secant method,

we multiply the formula used to update B(k) in the algorithm by z(k), i.e.,

B(k+1)z(k) = B(k)z(k) −

(
B(k)z(k) − h(k)

) [
h(k)

]T
B(k)[

h(k)
]T

B(k)z(k)
z(k)

⇐⇒ B(k+1)z(k) = h(k)

⇐⇒ B(k+1)
(
f(x(k+1))− f(x(k))

)
= x(k+1) − x(k),

which is reminiscent of the secant equation

f ′(x(k+1)) =
f(x(k+1))− f(x(k))

x(k+1) − x(k)

since B(k+1) is an approximation to the inverse of the Jacobian.
We illustrate this algorithm in the Matlab script file run broyden.m with the same

example as used earlier for the multivariate Newton method.

Remark 1. Broyden’s method can also be improved by a line search, i.e., x(k+1) =
x(k) + λkh

(k) (see below).

2. Broyden’s method converges only superlinearly.

3. Both Newton’s and Broyden’s methods require good starting values. These can
be provided by the steepest descent or conjugate gradient algorithms.

17.3 Using the Steepest Descent and Conjugate Gradients with Non-
linear Systems

We now discuss the connection between solving systems of nonlinear equations and
quadratic minimization problems. The idea is to minimize the 2-norm of the residual
of (46) to get the stepsize λk, i.e., to find x = [x1, . . . , xm]T such that

g(x1, . . . , xm) =
1
2

m∑
i=1

f2
i (x1, . . . , xm) =

1
2
fT f(x)

is minimized.
For the steepest descent method we use

x(k+1) = x(k) + λk(−∇g(x(k))).

The stepsize λk is computed such that

g(x(k+1)) = g
(
x(k) − λk∇g(x(k))

)
=: γ(λk)

is minimized. This is an easier problem to solve since it involves only one variable, λk.
Note that since g(x) = 1

2fT f(x) we have ∇g(x) = [J(x)]T f(x). This shows that
this approach also requires knowledge of the Jacobian. A general line search algorithm
is

131



Algorithm

Input f , J , x(0)

for k = 0, 1, 2, . . . do

h(k) = −∇g(x(k)) = −
[
J(x(k))

]T
f(x(k))

Find λk as a minimizer of γ(λk) = g(x(k) + λkh
(k)) = 1

2fT f(x(k) + λkh
(k))

Update x(k+1) = x(k) + λkh
(k)

end

Output x(k+1)

Remark 1. The steepest descent method converges linearly.

2. One can replace the steepest descent method by conjugate gradient iteration.
This is illustrated in the Matlab script run mincg.m.

3. If only minimization of the quadratic function g is our goal, then we can try
solving ∇g(x) = 0 using Newton’s method (which will give us a critical point for
the problem). This is explained in the next section.

It is not easy to come up with a good line search strategy. However, one prac-
tical way to determine a reasonable value for λk is to use a quadratic interpolating
polynomial. The idea is to work with three values λ

(1)
k , λ

(2)
k and λ

(3)
k and construct a

quadratic polynomial that interpolates the univariate function γ at these points. If we
guess these three values reasonably close to the optimum, then the minimum of the
parabola on the interval of interest (which is easy to find) tell us how to pick λk. For
example, one can take λ

(1)
k = 0, then find a λ

(3)
k such that γ(λ(3)

k ) < γ(λ(1)
k ), and then

take λ
(2)
k as the midpoint of the previous values, i.e., λ

(2)
k = λ

(3)
k /2.

A similar (but interactive) strategy is implemented in the Matlab example ShowGN VL.m
explained in the next section.

17.4 Nonlinear Least Squares

To combine the techniques used for systems of linear equations with those for nonlinear
systems we consider the problem of finding values of x = [x1, . . . , xn]T that yield a least
squares solution of the (rectangular) nonlinear system

f1(x1, x2, . . . , xn) = 0,

f2(x1, x2, . . . , xn) = 0,

... (51)
fm(x1, x2, . . . , xn) = 0.

In other words, we want to minimize

g(x) =
1
2

m∑
i=1

f2
i (x). (52)

132



A problem like this often arises when the components of x are certain control parame-
ters in an objective function that needs to be optimized. Below we will see an example
where we need to fit the parameters to a nonlinear system describing the orbit of a
planet.

As mentioned at the end of the previous section, we can use Newton’s method to
solve this problem since a necessary condition for finding a minimal residual (52) is that
the gradient of g be zero. Thus, we are attempting to find a solution of ∇g(x) = 0.
Since Newton’s method is given by

x(k+1) = x(k) −
[
J∇g(x(k))

]−1
∇g(x(k)),

we see that we actually need not only the gradient of S (which leads to the Jacobian)
but also the second derivative (which leads to the Hessian).

For the particular minimization problem (52) this would result in

x(k+1) = x(k) −
[
J(x(k))T J(x(k)) +

m∑
i=1

fi(x(k))∇2fi(x(k))︸ ︷︷ ︸
=Hessian

]−1
J(x(k))T f(x(k)),

where now J is the regular (but rectangular) Jacobian with respect to the functions
f1, . . . , fm.

Since we decided earlier that it would be a good idea to avoid computation of
the Jacobian, clearly, computation of the Hessian should be avoided if possible. This
motivates the Gauss-Newton method. If we drop the summation term in the expression
for the Hessian above, then all we need to know is the Jacobian. This step is justified
if we are reasonably close to a solution since then fi(x(k)) will be close to zero.

Thus, the Gauss-Newton algorithm is given by

Algorithm

Input f , J , x(0)

for k = 0, 1, 2, . . . do

Solve J(x(k))T J(x(k))h(k) = −J(x(k))T f(x(k)) for h(k)

Update x(k+1) = x(k) + h(k)

end

Output x(k+1)

Note that the update h(k) here is in fact nothing but the solution to the normal
equations for the (linear) least squares problem

min
h∈Rn

‖J(x)h + f(x)‖2.

Therefore, any of our earlier algorithms (modified Gram-Schmidt, QR, SVD) can be
used to perform this step.

133



Example Let’s consider the nonlinear system

x(t) =
P −A

2
+

A + P

2
cos(t)

y(t) =
√

AP sin(t)

that describes the elliptical orbit of a planet around the sun in a two-dimensional
universe. Here A and P denote the maximum and minimum orbit-to-sun distances,
respectively.

In order to estimate the parameters of the orbit of a specific planet we use another
relationship between the parameters and the length of the orbit, r(θ), where θ is the
angle to the positive x-axis. This relationship is given by

r(θ) =
2AP

P (1− cos(θ)) + A(1 + cos(θ))
.

Let’s assume we have measurements (θi, ri) so that we can define functions

fi(A,P ) = ri −
2AP

P (1− cos(θi)) + A(1 + cos(θi))
, i = 1, . . . ,m.

Then the best choices of A and P will be given by minimizing the function

g(A,P ) =
1
2

m∑
i=1

fi(A,P )2.

This corresponds exactly to our general discussion above.
The Matlab code ShowGN VL.m written by Charles Van Loan for his book “Intro-

duction to Scientific Computing” provides an implementation of this example. The
“measurements” are created by starting with two exact values of A and P , A0 = 5
and P0 = 1, and then sampling from an orbit based on these parameters that has
been perturbed by noise. A line search is also included for which the step length λk is
entered interactively.

134


