
2 Singular Value Decomposition

The singular value decomposition (SVD) allows us to transform a matrix A ∈ Cm×n to
diagonal form using unitary matrices, i.e.,

A = Û Σ̂V ∗. (4)

Here Û ∈ Cm×n has orthonormal columns, Σ̂ ∈ Cn×n is diagonal, and V ∈ Cn×n is
unitary. This is the practical version of the SVD also known as the reduced SVD. We
will discuss the full SVD later. It is of the form

A = UΣV ∗

with unitary matrices U and V and Σ ∈ Cm×n.
Before we worry about how to find the matrix factors of A we give a geometric

interpretation. First note that since V is unitary (i.e., V ∗ = V −1) we have the equiva-
lence

A = Û Σ̂V ∗ ⇐⇒ AV = Û Σ̂.

Considering each column of V separately the latter is the same as

Avj = σjuj , j = 1, . . . , n. (5)

Thus, the unit vectors of an orthogonal coordinate system {v1, . . . ,vn} are mapped
under A onto a new “scaled” orthogonal coordinate system {σ1u1, . . . , σnun}. In other
words, the unit sphere with respect to the matrix 2-norm (which is a perfectly round
sphere in the v-system) is transformed to an ellipsoid with semi-axes σjuj (see Fig-
ure 2). We will see below that, depending on the rank of A, some of the σj may be zero.
Therefore, yet another geometrical interpretation of the SVD is: Any m× n matrix A
maps the 2-norm unit sphere in Rn to an ellipsoid in Rr (r ≤ min(m,n)).
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Figure 2: Geometrical interpretation of singular value decomposition.

In (5) we refer to the σj as singular values of A (the diagonal entries of Σ̂). They
are usually ordered such that σ1 ≥ σ2 ≥ . . . ≥ σn. The orthonormal vectors uj (the
columns of Û) are called the left singular vectors of A, and the orthonormal vectors vj

(the columns of V ) are called the right singular vectors of A).

Remark For most practical purposes it suffices to compute the reduced SVD (4). We
will give examples of its use, and explain how to compute it later.
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QR Compression ratio 0.2000, 25 columns used
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Compression ratio 0.2000, relative error 0.0320, 25 singular values used
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Figure 3: Image compressed using QR factorization (left) and SVD (right).

Besides applications to inconsistent and underdetermined linear systems and least
squares problems, the SVD has important applications in image and data compression
(see our discussion of low-rank approximation below). Figure 3 shows the difference
between using the SVD and the QR factorization (to be introduced later) for com-
pression of the same image. In both cases the same amount (20%) of information was
retained. Clearly, the SVD does a much better job in picking out what information
is “important”. We will also see below that a number of theoretical facts about the
matrix A can be obtained via the SVD.

2.0.4 Full SVD

The idea is to extend Û to an orthonormal basis of Cm×m by adding appropriate
orthogonal (but otherwise arbitrary) columns and call this new matrix U . This will
also force Σ̂ to be extended to an m× n matrix Σ. Since we do not want to alter the
product of the factors, the additional rows (or columns – depending on whether m > n
or m < n) of Σ will be all zero. Thus, in the case of m ≥ n we have

A = UΣV ∗ (6)

=
[

Û Ũ
] [ Σ̂

O

]
V ∗.

Since U is now also a unitary matrix we have

U∗AV = Σ,

i.e., unitary transformations (reflections or rotations) are applied from the left and
right to A in order to obtain a diagonal matrix Σ.

Remark Note that the “diagonal” matrix Σ is in many cases rectangular and will
contain extra rows/columns of all zeros.

It is clear that the SVD will simplify the solution of many problems since the
transformed system matrix is diagonal, and thus trivial to work with.
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2.0.5 Existence and Uniqueness Theorem

Theorem 2.1 Let A be a complex m×n matrix. A has a singular value decomposition
of the form

A = UΣV ∗,

where Σ is a uniquely determined m×n (real) diagonal matrix, U is an m×m unitary
matrix, and V is an n× n unitary matrix.

Proof We prove only existence. The uniqueness part of the proof follows directly from
the geometric interpretation. A (more rigorous?) algebraic argument can be found,
e.g., in [Trefethen/Bau].

We use induction on the dimensions of A. All of the following arguments assume
m ≥ n (the case m < n can be obtained by transposing the arguments).

For n = 1 (and any m) the matrix A is a column vector. We take V = 1, Σ̂ = ‖A‖2
and Û = A

‖A‖2 . Then, clearly, we have found a reduced SVD, i.e., A = Û Σ̂V ∗. The full

SVD is obtained by extending Û to U by the Gram-Schmidt algorithm and adding the
necessary zeros to Σ̂.

We now assume an SVD exists for the case (m − 1, n − 1) and show it also exists
for (m,n). To this end we pick v1 ∈ Cn such that ‖v1‖2 = 1 and

‖A‖2 = sup
v1∈Cn

‖v1‖2=1

‖Av1‖2 > 0.

Now we take
u1 =

Av1

‖Av1‖2
. (7)

Next, we use the Gram-Schmidt algorithm to arbitrarily extend u1 and v1 to unitary
matrices by adding columns Ũ1 and Ṽ1, i.e.,

U1 =
[

u1 Ũ1

]
V1 =

[
v1 Ṽ1

]
.

This results in

U∗
1 AV1 =

[
u∗1
Ũ∗

1

]
A
[

v1 Ṽ1

]
=

[
u∗1Av1 u∗1AṼ1

Ũ∗
1 Av1 Ũ∗

1 AṼ1

]
.

We now look at three of these four blocks:

• Using (7) and the specific choice of v1 we have

u∗1Av1 =
(Av1)∗

‖Av1‖2
Av1

=
‖Av1‖22
‖Av1‖2

= ‖Av1‖2

= ‖A‖2.

For this quantity we introduce the abbreviation σ1 = ‖A‖2.
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• Again, using (7) we get
Ũ∗

1 Av1 = Ũ∗
1 u1‖Av1‖2.

This, however, is a zero vector since U1 has orthonormal columns, i.e., Ũ∗
1 u1 = 0.

• We show that u∗1AṼ1 =
[

0 · · · 0
]

by contradiction. If it were nonzero then
we could look at the first row of the block matrix U∗

1 AV1 and see that

U∗
1 AV1(1, :) =

[
σ1 u∗1AṼ1

]
with ‖

[
σ1 u∗1AṼ1

]
‖2 > σ1. On the other hand, we know that unitary matrices

leave the 2-norm invariant, i.e.,

‖U∗
1 AV1‖2 = ‖A‖2 = σ1.

Since the norm of the first row of the block matrix U∗
1 AV1 cannot exceed that of

the entire matrix we have reached a contradiction.

We now abbreviate the fourth block with Ã = Ũ∗
1 AṼ1 and can write the block

matrix as

U∗
1 AV1 =

[
σ1 0T

0 Ã

]
.

To complete the proof we apply the induction hypothesis to Ã, i.e., we use the SVD
Ã = U2Σ2V

∗
2 . Then

U∗
1 AV1 =

[
σ1 0T

0 U2Σ2V
∗
2

]
=

[
1 0T

0 U2

] [
σ1 0T

0 Σ2

] [
1 0T

0 V2

]∗
or

A = U1

[
1 0T

0 U2

] [
σ1 0T

0 Σ2

] [
1 0T

0 V2

]∗
V ∗

1 ,

another SVD (since the product of unitary matrices is unitary).

2.1 SVD as a Change of Basis

We now discuss the use of the SVD to diagonalize systems of linear equations. Consider
the linear system

Ax = b

with A ∈ Cm×n. Using the SVD we can write

Ax = UΣV ∗x ⇐⇒ b = Ub′.

Thus, we can express b ∈ range(A) in terms of range(U):

Ub′ = b ⇐⇒ b′ = U∗b
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where we have used the columns of U as an orthonormal basis for range(A).
Similarly, any x ∈ Cn (the domain of A) can be written in terms of range(V ):

x′ = V ∗x.

Now

Ax = b ⇐⇒ U∗Ax = U∗b

⇐⇒ U∗UΣV ∗x = U∗b

⇐⇒ IΣV ∗x = U∗b

⇐⇒ Σx′ = b′,

and we have diagonalized the linear system.
In summary, expressing the range space of A in terms of the columns of U and the

domain space of A in terms of the columns of V converts Ax = b to a diagonal system.

2.1.1 Connection to Eigenvalues

If A ∈ Cm×m is square with a linearly independent set of eigenvectors (i.e., nondefec-
tive), then

AX = ΛX ⇐⇒ X−1AX = Λ,

where X contains the eigenvectors of A as its columns and Λ = diag(λ1, . . . , λm) is a
diagonal matrix of the eigenvalues of A.

If we compare this eigen-decomposition of A to the SVD we see that the SVD is a
generalization: A need not be square, and the SVD always exists (whereas even a square
matrix need not have an eigen-decomposition). The price we pay is that we require
two unitary matrices U and V instead of only X (which is in general not unitary).

2.1.2 Theoretical Information via SVD

A number of theoretical facts about the matrix A can be obtained via the SVD. They
are summarized in

Theorem 2.2 Assume A ∈ Cm×n, p = min(m,n), and r ≤ p denotes the number of
positive singular values of A. Then

1. rank(A) = r

2. range(A) = range(U(:, 1 : r))
null(A) = range(V (:, r + 1, : n))

3. ‖A‖2 = σ1

‖A‖F =
√

σ2
1 + σ2

2 + . . . + σ2
r

4. The eigenvalues of A∗A are the σ2
i and the vi are the corresponding (orthonor-

malized) eigenvectors. The eigenvalues of AA∗ are the σ2
i and possibly m − n

zeros. The corresponding orthonormalized eigenvectors are given by the ui.
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5. If A = A∗ (Hermitian or real symmetric), then the eigen-decomposition A =
XΛX∗ and the SVD A = UΣV ∗ are almost identical. We have U = X, σi = |λi|,
and vi = sign(λi)ui.

6. If A ∈ Cm×m then |det(A)| =
∏m

i=1 σi.

Proof We discuss items 1–3 and 6.

1. Since U and V are unitary matrices of full rank and rank(Σ) = r the statement
follows from the SVD A = UΣV ∗.

2. Both statements follow from the fact that the range of Σ is spanned by e1, . . . ,er

and that U and V are full-rank unitary matrices whose ranges are Cm and Cn,
respectively.

3. The invariance of the 2-norm and Frobenius norm under unitary transformations
imply ‖A‖2 = ‖Σ‖2 and ‖A‖F = ‖Σ‖F . Since Σ is diagonal we clearly have
‖Σ‖2 = max x∈Cn

‖x‖2=1
‖Σx‖2 = max1≤i≤r σi = σ1. The formula for ‖Σ‖F follows

directly from the definition of the Frobenius norm.

6. We know that the determinant of a unitary matrix is either plus or minus 1,
and that of a diagonal matrix is the product of the diagonal entries. Finally, the
determinant of a product of matrices is given by the product of their determinant.
Thus, the SVD yields the stated result.

2.1.3 Low-rank Approximation

Theorem 2.3 The m× n matrix A can be decomposed into a sum of r rank-one ma-
trices:

A =
r∑

j=1

σjujv
∗
j . (8)

Moreover, the best 2-norm approximation of rank ν (0 ≤ ν ≤ r) to A is given by

Aν =
ν∑

j=1

σjujv
∗
j .

In fact,
‖A−Aν‖2 = σν+1. (9)

Proof The representation (8) of the SVD follows immediately from the full SVD (6)
by splitting Σ into a sum of diagonal matrices Σj = diag(0, . . . , 0, σj , 0, . . . , 0).

Formula (9) for the approximation error follows from the fact that U∗AV = Σ and
the expansion for Aν so that U∗(A−Aν)V = diag(0, . . . , 0, σν+1, . . .) and ‖A−Aν‖2 =
σν+1 by the invariance of the 2-norm under unitary transformations and item 3 of the
previous theorem.

The claim regarding the best approximation property is a little more involved, and
omitted.
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Remark There are many possible rank-ν decompositions of A (e.g., by taking partial
sums of the LU or QR factorization). Theorem 2.3, however, says that the ν-th partial
sum of the SVD captures as much of the energy of A (measured in the 2-norm) as pos-
sible. This fact gives rise to many applications in image processing, data compression,
data mining, and other fields. See, e.g., the Matlab scripts svd compression.m and
qr compression.m.

A geometric interpretation of Theorem 2.3 is given by the best approximation of a
hyperellipsoid by lower-dimensional ellipsoids. For example, the best approximation of
a given hyperellipsoid by a line segment is given by the line segment corresponding to
the hyperellipsoids longest axis. Similarly, the best approximation by an ellipse is given
by that ellipse whose axes are the longest and second-longest axis of the hyperellipsoid.

2.1.4 Computing the SVD by Hand

We now list a simplistic algorithm for computing the SVD of a matrix A. It can be
used fairly easily for manual computation of small examples. For a given m×n matrix
A the procedure is as follows:

1. Form A∗A.

2. Find the eigenvalues and orthonormalized eigenvectors of A∗A, i.e.,

A∗A = V ΛV ∗.

3. Sort the eigenvalues according to their magnitude, and let σj =
√

λj , j = 1, . . . , n.

4. Find the first r columns of U via

uj = σ−1
j Avj , j = 1, . . . , r.

Pick the remaining columns such that U is unitary.

Example Find the SVD for

A =

 1 2
2 2
2 1

 .

1.

A∗A =
[

9 8
8 9

]
.

2. The eigenvalues (in order of decreasing magnitude) are λ1 = 17 and λ2 = 1, and
the corresponding eigenvectors

ṽ1 =
[

1
1

]
, ṽ2 =

[
1
−1

]
,

so that (after normalization)

V =

[
1√
2

1√
2

1√
2
− 1√

2

]
.
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3. σ1 =
√

17 and σ2 = 1, so that

Σ =

 √
17 0
0 1
0 0

 .

4. The first two columns of U can be computed as

u1 =
1√
17

Av1

=
1√
17

1√
2

 1 2
2 2
2 1

[ 1
1

]

=
1√
34

 3
4
3

 ,

and

u2 =
1
1
Av2

=
1√
2

 1 2
2 2
2 1

[ 1
−1

]

=
1√
2

 −1
0
1

 .

Thus far we have

U =


3√
34

−1√
2

u3(1)
4√
34

0 u3(2)
3√
34

1√
2

u3(3)

 .

In order to determine u3(i), i = 1, 2, 3, we need to satisfy

u∗ju3 = δj3, j = 1, 2, 3.

The following choice satisfies this requirement

u3 =
1√
17

 2
−3
2

 ,

so that

A = UΣV ∗ =


3√
34

−1√
2

2√
17

4√
34

0 −3√
17

3√
34

1√
2

2√
17


 √

17 0
0 1
0 0

[ 1√
2

1√
2

1√
2
− 1√

2

]
.
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The reduced SVD is given by

A = Û Σ̂V ∗ =


3√
34

−1√
2

4√
34

0
3√
34

1√
2

[ √17 0
0 1

][ 1√
2

1√
2

1√
2
− 1√

2

]
.

Remark A practical computer implementation of the SVD will require an algorithm
for finding eigenvalues. We will study this later. The two most popular SVD imple-
mentations use either a method called Golub-Kahan-Bidiagonalization (GKB) (from
1965), or some Divide-and-Conquer strategy (which have been studied since around
1980).
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