Math 477 – Numerical Linear Algebra

Time and Location: 1:50--3:05 TR, Location E1 242

Instructor: Greg Fasshauer

Office: 208A E1 **Phone**: 567-3149

Email: fasshauer@iit.edu

WWW: http://math.iit.edu/~fass/

Office hours: TR: 1:00--2:00, also by appointment

Textbook(s): Lloyd N. Trefethen and D. Bau, *Numerical Linear Algebra*, SIAM (1997), ISBN 0-89871-361-7.

D. Kincaid and W. Cheney, *Numerical Analysis: Mathematics of Scientific Computing*, 3rd Ed, Brooks/Cole (2002), ISBN 0-534-38905-8.

Other required material: Matlab

Prerequisites: MATH 471 Numerical Methods, or consent of the instructor

Objectives:

- 1. Students will learn the basic matrix factorization methods for solving systems of linear equations and linear least squares problems.
- 2. Students will learn basic computer arithmetic and the concepts of conditioning and stability of a numerical method.
- 3. Students will learn the basic numerical methods for computing eigenvalues.
- 4. Students will learn the basic iterative methods for solving systems of linear equations.
- 5. Students will learn how to implement and use these numerical methods in Matlab (or another similar software package).

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Course Outline:			Hours
1.	Fundamentals		5
	a.	Matrix-vector multiplication	
	b.	Orthogonal vectors and matrices	
	c.	Norms	
	d.	Computer arithmetic	
2.	Singu	lar Value Decomposition	3
3.	QR Factorization and Least Squares		8
	a.	Projectors	
	b.	QR factorization	
	c.	Gram-Schmidt orthogonalization	
	d.	Householder triangularization	
	e.	Least squares problems	
4.	Conditioning and Stability		5
	a.	Conditioning and condition numbers	
	b.	Stability	
5.	Syster	ms of Equations	5

	a. Gaussian elimination			
	b. Cholesky factorization			
6. Eig	Eigenvalues			
_	a. Overview of eigenvalue algorit	hms		
	b. Reduction to Hessenberg or tric	diagonal form		
	c. Rayleigh quotient, inverse itera	tion		
	d. QR Algorithm without and with	h shifts		
	e. Computing the SVD			
7. Iter	ative Methods		8	
	a. Overview of iterative methods			
	b. Arnoldi iteration			
	c. GMRES			
	d. Conjugate gradients			
	e. Preconditioning			
Assessmen	at: Homework	20%		
	Computer Programs/Projec			
	Midterm (Oct.17)	30%		
	Final Exam	30%		