
1 Ordinary Differential Equations

1.0 Mathematical Background

1.0.1 Smoothness

Definition 1.1 A function f defined on [a, b] is continuous at x0 ∈ [a, b] if lim
x→x0

f(x) =

f(x0).

Remark Note that this implies existence of the quantities on both sides of the equa-
tion.

f is continuous on [a, b], i.e., f ∈ C[a, b], if f is continuous at every x ∈ [a, b].
If f (n) is continuous on [a, b], then f ∈ C(n)[a, b].
Alternatively, one could start with the following ε-δ definition:

Definition 1.2 A function f defined on [a, b] is continuous at x0 ∈ [a, b] if for every
ε > 0 there exists a δε > 0 (that depends on x0) such that |f(x)− f(x0)| < ε whenever
|x− x0| < δε.

FIGURE

Example (A function that is continuous, but not uniformly continuous) f(x) = 1
x

with FIGURE.

Definition 1.3 A function f is uniformly continuous on [a, b] if it is continuous with
a uniform δε for all x0 ∈ [a, b], i.e., independent of x0.

Important for ordinary differential equations is

Definition 1.4 A function f defined on [a, b] is Lipschitz continuous on [a, b] if there
exists a number λ such that |f(x)− f(y)| ≤ λ|x− y| for all x, y ∈ [a, b]. λ is called the
Lipschitz constant.

Remark 1. In fact, any Lipschitz continuous function is uniformly continuous, and
therefore continuous.

2. For a differentiable function with bounded derivative we can take

λ = max
x∈[a,b]

|f ′(x)|,

and we see that Lipschitz continuity is “between” continuity and differentiability.

3. If the function f is Lipschitz continuous on [a, b] with Lipschitz constant λ, then
f is almost everywhere differentiable in [a, b] with |f ′(x)| ≤ λ. In other words,
Lipschitz continuous functions need not be differentiable everywhere in [a, b].

4. See also Assignment 1.

1



1.0.2 Polynomials

A real polynomial of degree at most n is of the form

p(x) =
n∑

j=0

ajx
j , x ∈ R,

with coefficients aj ∈ R. Notation: We denote the space of (univariate) polynomials of
degree at most m by p ∈ Pn.

Theorem 1.5 (Taylor’s Theorem) If f ∈ Cn[a, b] and f (n+1) exists on (a, b), then for
any x ∈ [a, b]

f(x) =
n∑

k=0

1
k!

f (k)(x0)(x− x0)k

︸ ︷︷ ︸
Taylor polynomial

+
1

(n + 1)!
f (n+1)(ξx)(x− x0)n+1︸ ︷︷ ︸
error term

,

where ξx is some point between x and x0.

FIGURE
An alternate form commonly used is

f(x0 + h) =
n∑

k=0

1
k!

f (k)(x0)hk +
1

(n + 1)!
f (n+1)(ξx)hn+1.

Remark Note that the information about f is provided locally, at x0 only. If the
information is spread out, i.e., when we are given distinct points x0 < x1 < . . . < xn ∈
[a, b] and associated values f(x0), f(x1), . . . , f(xn), then we will see below that there
exists a unique interpolation polynomial pn of degree at most n

pn(x) =
n∑

j=0

`j(x)f(xj)

with

`j(x) =
n∏

k=0
k 6=j

x− xk

xj − xk
, j = 0, 1, . . . , n,

such that pn(xi) = f(xi), i = 0, 1, . . . , n. The `j , j = 0, 1, . . . , n, are called Lagrange
functions, and the polynomial pn is said to be in Lagrange form.

Remark See Assignment 1 for an illustration of Taylor polynomials vs. interpolation
polynomials.

2



1.1 Polynomial Interpolation

In the following two subsections we will discuss the problem of fitting data given in
the form of discrete points (e.g., physical measurements, output from a differential
equations solver, design points for CAD, etc.) with an appropriate function s taken
from some (finite-dimensional) function space S of our choice. Throughout most of our
discussion the data will be univariate, i.e., of the form (xi, yi), i = 0, . . . , n, where the
xi ∈ R are referred to as data sites (or nodes), and the yi ∈ R as values (or ordinates).
Often we will assume yi = f(xi) for some (unknown) function f . Later on we will also
briefly consider multivariate data where xi ∈ Rd, d > 1.

The data can be fitted either by interpolation, i.e., by satisfying

s(xi) = yi, i = 0, . . . , n, (1)

or by approximation, i.e., by satisfying

‖s− y‖ < ε,

where s and y have to be considered as vectors of function or data values, and ‖ · ‖ is
some discrete norm on Rn+1.

We will focus our attention on interpolation.
If {b0, . . . , bn} is some basis of the function space S, then we can express s as a

linear combination in the form

s(x) =
n∑

j=0

ajbj(x).

If we are given m + 1 data points (xi, yi), i = 0, 1, . . . ,m, then the interpolation
conditions (1) lead to

n∑
j=0

ajbj(xi) = yi, i = 0, . . . ,m.

This represents a system of linear algebraic equations for the expansion coefficients aj

of the form
Ba = y,

where the m × n system matrix B has entries bj(xi). We are especially interested in
those function spaces and bases for which the case m = n yields a unique solution.

Function spaces studied in this class include polynomials, piecewise polynomials,
trigonometric polynomials, and radial basis functions.

We will begin by studying polynomials. There are several motivating factors for
doing this:

• Everyone is familiar with polynomials.

• Polynomials can be easily and efficiently evaluated using Horner’s algorithm (i.e.,
nested multiplication).

3



• We may have heard of the Weierstrass Approximation Theorem which states that
any continuous function can be approximated arbitrarily closely by a polynomial
(of sufficiently high degree).

• A lot is known about polynomial interpolation, and serves as starting point for
other methods.

Formally, we are interested in solving the following

Problem 1.6 Given data (xi, yi), i = 0, . . . , n, find a polynomial p of minimal degree
which matches the data in the sense of (1), i.e., for which

p(xi) = yi, i = 0, . . . , n.

We illustrate this problem with some numerical examples in the Maple worksheet
478578 PolynomialInterpolation.mws. The numerical experiments suggest that n+
1 data points can be interpolated by a polynomial of degree n. Indeed,

Theorem 1.7 Let n + 1 distinct real numbers x0, x1, . . . , xn and associated values
y0, y1, . . . , yn be given. Then there exists a unique polynomial pn of degree at most
n such that

pn(xi) = yi, i = 0, 1, . . . , n.

Proof Assume
pn(x) = a0 + a1x + a2x

2 + . . . + anxn.

Then the interpolation conditions (1) lead to the linear system Ba = y with

B =


1 x0 x2

0 . . . xn
0

1 x1 x2
1 . . . xn

1

1 x2 x2
2 . . . xn

2
...

...
...

...
...

1 xn x2
n . . . xn

n

 , a =


a0

a1

a2
...

an

 and y =


y0

y1

y2

. . .
yn

 .

For general data y this is a nonhomogeneous system, and we know that such a system
has a unique solution if and only if the associated homogeneous system has only the
trivial solution. The homogeneous system corresponds to

pn(xi) = 0, i = 0, 1, . . . , n.

Thus, pn has n + 1 zeros. Now, the Fundamental Theorem of Algebra states that any
nontrivial polynomial of degree n has n (possibly complex) zeros. Therefore pn must be
the zero polynomial, i.e., the homogeneous linear system has only the trivial solution
a0 = a1 = . . . = an = 0, and by the above comment the general nonhomogeneous
problem has a unique solution.

Remark The matrix B in the proof of Theorem 1.7 is referred to as a Vandermonde
matrix.

4



Next, we illustrate how such a (low-degree) interpolating polynomial can be deter-
mined.

Example Let’s assume we have the following data:

x 0 1 3
y 1 0 4

.

Now, since we want a square linear system, we pick an approximation space of
dimension three, i.e., with three basis functions. This means we use quadratic poly-
nomials, and as basis we take the monomials b0(x) = 1, b1(x) = x, and b2(x) = x2.
Therefore, the interpolating polynomial will be of the form

p2(x) = a0 + a1x + a2x
2.

In order to determine the coefficients a0, a1, and a2 we enforce the interpolation con-
ditions (1), i.e., p2(xi) = yi, i = 0, 1, 2. This leads to the linear system

(p2(0) =) a0 = 1
(p2(1) =) a0 + a1 + a2 = 0
(p2(3) =) a0 + 3a1 + 9a2 = 4

whose solution is easily verified to be a0 = 1, a1 = −2, and a2 = 1. Thus,

p2(x) = 1− 2x + x2.

Of course, this polynomial can also be written as

p2(x) = (1− x)2.

So, had we chosen the basis of shifted monomials b0(x) = 1, b1(x) = 1 − x, and
b2(x) = (1 − x)2, then the coefficients (for an expansion with respect to this basis)
would have come out to be a0 = 0, a1 = 0, and a2 = 1.

In general, use of the monomial basis leads to a Vandermonde system as listed in
the proof of the theorem above. This is a classical example of an ill-conditioned system,
and thus should be avoided. We will look at other bases later.

We now provide a second (constructive) proof of Theorem 1.7.
Constructive Proof: First we establish uniqueness. To this end we assume that pn

and qn both are n-th degree interpolating polynomials. Then

rn(x) = pn(x)− qn(x)

is also an n-th degree polynomial. Moreover, by the Fundamental Theorem of Algebra
rn has n zeros (or is the zero polynomial). However, by the nature of pn and qn we
have

rn(xi) = pn(xi)− qn(xi) = yi − yi = 0, i = 0, 1, . . . , n.

Thus, rn has n + 1 zeros, and therefore must be identically equal to zero. This ensures
uniqueness.

5



Existence is constructed by induction. For n = 0 we take p0 ≡ y0. Obviously, the
degree of p0 is less than or equal to 0, and also p0(x0) = y0.

Now we assume pk−1 to be the unique polynomial of degree at most k − 1 that
interpolates the data (xi, yi), i = 0, 1, . . . , k − 1. We will construct pk (of degree k)
such that

pk(xi) = yi, i = 0, 1, . . . , k.

We let
pk(x) = pk−1(x) + ck(x− x0)(x− x1) . . . (x− xk−1)

with ck yet to be determined. By construction, pk is a polynomial of degree k which
interpolates the data (xi, yi), i = 0, 1, . . . , k − 1.

We now determine ck so that we also have pk(xk) = yk. Thus,

(pk(xk) =) pk−1(xk) + ck(xk − x0)(xk − x1) . . . (xk − xk−1) = yk

or
ck =

yk − pk−1(xk)
(xk − x0)(xk − x1) . . . (xk − xk−1)

.

This is well defined since the denominator is nonzero due to the fact that we assume
distinct data sites.

The construction used in this alternate proof provides the starting point for the
Newton form of the interpolating polynomial.

From the proof we have

pk(x) = pk−1(x) + ck(x− x0)(x− x1) . . . (x− xk−1)
= pk−2(x) + ck−1(x− x0)(x− x1) . . . (x− xk−2) + ck(x− x0)(x− x1) . . . (x− xk−1)
...
= c0 + c1(x− x0) + c2(x− x0)(x− x1) + . . . + ck(x− x0)(x− x1) . . . (x− xk−1).

Thus, the Newton form of the interpolating polynomial is given by

pn(x) =
n∑

j=0

cj

j−1∏
i=0

(x− xi). (2)

This notation implies that the empty product (when j − 1 < 0) is equal to 1.
The proof above also provides a formula for the coefficients in the Newton form:

cj =
yj − pj−1(xj)

(xj − x0)(xj − x1) . . . (xj − xj−1)
, p0 ≡ c0 = y0. (3)

So the Newton coefficients can be computed recursively. This leads to a first algorithm
for the solution of the interpolation problem.
Algorithm

Input n, x0, x1, . . . , xn, y0, y1, . . . , yn

c0 = y0

for k = 1 : n

6



d = xk − xk−1

u = ck−1

for i = k − 2 : −1 : 0 % build pk−1

u = u(xk − xi) + ci % Horner
d = d(xk − xi) % accumulate denominator

end

ck = yk−u
d

end

Output c0, c1, . . . , cn

Remark A more detailed derivation of this algorithm is provided on page 310 of the
Kincaid/Cheney book. However, the standard, more efficient, algorithm for computing
the coefficients of the Newton form is based on the use of divided differences and will
not be discussed here.

Example We now compute the Newton form of the polynomial interpolating the data

x 0 1 3
y 1 0 4

.

According to (2) and (3) we have

p2(x) =
2∑

j=0

cj

j−1∏
i=0

(x− xi) = c0 + c1(x− x0) + c2(x− x0)(x− x1)

with

c0 = y0 = 1, and cj =
yj − pj−1(xj)

(xj − x0)(xj − x1) . . . (xj − xj−1)
, j = 1, 2.

Thus, we are representing the space of quadratic polynomials with the basis b0(x) = 1,
b1(x) = x− x0 = x, and b2(x) = (x− x0)(x− x1) = x(x− 1).

We now determine the two remaining coefficients. First,

c1 =
y1 − p0(x1)

x1 − x0
=

y1 − y0

x1 − x0
=

0− 1
1− 0

= −1.

This gives us
p1(x) = c0 + c1(x− x0) = 1− x.

Next,

c2 =
y2 − p1(x2)

(x2 − x0)(x2 − x1)
=

4− (1− x2)
3 · 2

= 1,

and so
p2(x) = p1(x) + c2(x− x0)(x− x1) = 1− x + x(x− 1).

7



A third representation (after the monomial and Newton forms) of the same (unique)
interpolating polynomial is of the general form

pn(x) =
n∑

j=0

yj`j(x). (4)

Note that the coefficients here are the data values, and the polynomial basis functions
`j are so-called cardinal (or Lagrange) functions. We want these functions to depend on
the data sites x0, x1, . . . , xn, but not the data values y0, y1, . . . , yn. In order to satisfy
the interpolation conditions (1) we require

pn(xi) =
n∑

j=0

yj`j(xi) = yi, i = 0, 1, . . . , n.

Clearly, this is ensured if
`j(xi) = δij , (5)

which is called a cardinality (or Lagrange) condition.
How do we determine the Lagrange functions `j?
We want them to be polynomials of degree n and satisfy the cardinality conditions

(5). Let’s fix j, and assume

`j(x) = c(x− x0)(x− x1) . . . (x− xj−1)(x− xj+1) . . . (x− xn)

= c
n∏

i=0
i6=j

(x− xi).

Clearly, `j(xi) = 0 for j 6= i. Also, `j depends only on the data sites and is a polynomial
of degree n. The last requirement is `j(xj) = 1. Thus,

1 = c

n∏
i=0
i6=j

(xj − xi)

or
c =

1
n∏

i=0
i6=j

(xj − xi)

.

Again, the denominator is nonzero since the data sites are assumed to be distinct.
Therefore, the Lagrange functions are given by

`j(x) =
n∏

i=0
i6=j

x− xi

xj − xi
, j = 0, 1, . . . , n,

and the Lagrange form of the interpolating polynomial is

pn(x) =
n∑

j=0

yj

n∏
i=0
i6=j

x− xi

xj − xi
. (6)

8



Remark 1. We mentioned above that the monomial basis results in an interpolation
matrix (a Vandermonde matrix) that is notoriously ill-conditioned. However, an
advantage of the monomial basis representation is the fact that the interpolant
can be evaluated efficiently using Horner’s method.

2. The interpolation matrix for the Lagrange form is the identity matrix and the
coefficients in the basis expansion are given by the data values. This makes the
Lagrange form ideal for situations in which many experiments with the same data
sites, but different data values need to be performed. However, evaluation (as
well as differentiation or integration) is more expensive.

3. A major advantage of the Newton form is its efficiency in the case of adaptive
interpolation, i.e., when an existing interpolant needs to be refined by adding
more data. Due to the recursive nature, the new interpolant can be determined
by updating the existing one (as we did in the example above). If we were to
form the interpolation matrix for the Newton form we would get a triangular
matrix. Therefore, for the Newton form we have a balance between stability of
computation and ease of evaluation.

Example Returning to our earlier example, we now compute the Lagrange form of
the polynomial interpolating the data

x 0 1 3
y 1 0 4

.

According to (4) we have

p2(x) =
2∑

j=0

yj`j(x) = `0(x) + 4`2(x),

where (see (6))

`j(x) =
2∏

i=0
i6=j

x− xi

xj − xi
.

Thus,

`0(x) =
(x− x1)(x− x2)

(x0 − x1)(x0 − x2)
=

(x− 1)(x− 3)
(−1)(−3)

=
1
3
(x− 1)(x− 3),

and
`2(x) =

(x− x0)(x− x1)
(x2 − x0)(x2 − x1)

=
x(x− 1)

(3− 0)(3− 1)
=

1
6
x(x− 1).

This gives us

p2(x) =
1
3
(x− 1)(x− 3) +

2
3
x(x− 1).

Note that here we have represented the space of quadratic polynomials with the (cardi-
nal) basis b0(x) = 1

3(x− 1)(x− 3), b2(x) = 1
6x(x− 1), and b1(x) = `1(x) = −1

2x(x− 3)
(which we did not need to compute for this example since its coefficient y1 = 0).

9



Summarizing our example, we have found four different forms of the quadratic
polynomial interpolating our data:

monomial p2(x) = 1− 2x + x2

shifted monomial p2(x) = (1− x)2

Newton form p2(x) = 1− x + x(x− 1)
Lagrange form p2(x) = 1

3(x− 1)(x− 3) + 2
3x(x− 1)

The basis polynomials for these four cases are displayed in Figures 1 and 2.

0

2

4

6

8

0.5 1 1.5 2 2.5 3

x

–2

–1

0

1

2

3

4

0.5 1 1.5 2 2.5 3

x

Figure 1: Monomial (left) and shifted monomial (right) bases for the interpolation
example.

0

1

2

3

4

5

6

0.5 1 1.5 2 2.5 3

x

–0.2

0

0.2

0.4

0.6

0.8

1

0.5 1 1.5 2 2.5 3

x

Figure 2: Basis polynomials for the Newton (left) and Lagrange form (right).

1.1.1 Error in Polynomial Interpolation

In the introduction we mentioned the Weierstrass Approximation Theorem as one of
the motivations for the use of polynomials. Here are the details.

Theorem 1.8 Let f ∈ C[a, b] and ε > 0. Then there exists a polynomial p of suffi-
ciently high degree such that

|f(x)− p(x)| < ε

for all x ∈ [a, b].

10



We will not prove this theorem. A proof can, e.g., be found in the book by Kincaid
and Cheney. Now we only point out that — as nice as this theorem is — it does not
cover interpolation of (values of) f by p. For this problem we have

Theorem 1.9 Let f ∈ Cn+1[a, b] and p be a polynomial of degree at most n which
interpolates f at the n + 1 distinct points x0, x1, . . . , xn in [a, b] (i.e., p(xi) = f(xi),
i = 0, 1, . . . , n). Then, for each x ∈ [a, b] there exists a number ξx ∈ (a, b) such that

f(x)− p(x) =
1

(n + 1)!
f (n+1)(ξx)

n∏
i=0

(x− xi). (7)

In order to prove this result we need to recall Rolle’s Theorem:

Theorem 1.10 If f ∈ C[a, b] and f ′ exists on (a, b), and if f(a) = f(b) = 0, then
there exists a number ξ ∈ (a, b) such that f ′(ξ) = 0.

Proof (of Theorem 1.9) If x coincides with one of the data sites xi, i = 0, 1, . . . , n,
then it is easy to see that both sides of equation (7) are zero.

Thus we now assume x 6= xi to be fixed. We start be defining

w(t) =
n∏

i=0

(t− xi)

and
F = f − p− αw

with α such that F (x) = 0, i.e.,

α =
f(x)− p(x)

w(x)
.

We need to show that α = 1
(n+1)!f

(n+1)(ξx) for some ξx ∈ (a, b).
Since f ∈ Cn+1[a, b] we know that F ∈ Cn+1[a, b] also. Moreover,

F (t) = 0 for t = x, x0, x1, . . . , xn.

The first of these equations holds by the definition of α, the remainder by the definition
of w and the fact that p interpolates f at these points.

Now we apply Rolle’s Theorem to F on each of the n+1 subintervals generated by
the n + 2 points x, x0, x1, . . . , xn. Thus, F ′ has (at least) n + 1 distinct zeros in (a, b).

Next, by Rolle’s Theorem (applied to F ′ on n subintervals) we know that F ′′ has
(at least) n zeros in (a, b).

Continuing this argument we deduce that F (n+1) has (at least) one zero, ξx, in
(a, b).

On the other hand, since

F (t) = f(t)− p(t)− αw(t)

we have
F (n+1)(t) = f (n+1)(t)− p(n+1)(t)− αw(n+1)(t).

11



However, p is a polynomial of degree at most n, so p(n+1) ≡ 0. Since the leading
coefficient of the (n + 1)-degree polynomial w is 1 we have

w(n+1)(t) =
dn+1

dtn+1

n∏
i=0

(t− xi) = (n + 1)!.

Therefore,
F (n+1)(t) = f (n+1)(t)− α(n + 1)!.

Combining this with the information about the zero of F (n+1) we have

0 = F (n+1)(ξx) = f (n+1)(ξx)− α(n + 1)!

= f (n+1)(ξx)− f(x)− p(x)
w(x)

(n + 1)!

or
f(x)− p(x) = f (n+1)(ξx)

w(x)
(n + 1)!

.

Remark 1. The error formula (7) in Theorem 1.9 looks almost like the error formula
for Taylor polynomials from Theorem 1.5:

f(x)− Tn(x) =
f (n+1)(ξx)
(n + 1)!

(x− x0)n+1.

The difference lies in the fact that for Taylor polynomials the information is con-
centrated at one point x0, whereas for interpolation the information is obtained
at the points x0, x1, . . . , xn.

2. The error formula (7) will be used later to derive (and judge the accuracy of)
methods for solving differential equations as well as for numerical integration.

If the data sites are equally spaced, i.e., ∆xi = xi − xi−1 = h, i = 1, 2, . . . , n, it is
possible to derive the bound

n∏
i=0

|x− xi| ≤
1
4
hn+1n!

in the error formula (7). If we also assume that the derivatives of f are bounded, i.e.,
|f (n+1)(x)| ≤M for all x ∈ [a, b], then we get

|f(x)− p(x)| ≤ M

4(n + 1)
hn+1.

Thus, the error for interpolation with degree-n polynomials is O(hn+1). We illustrate
this formula for a fixed-degree polynomial in the Maple worksheet
478578 PolynomialInterpolationError.mws.

Formula (7) tells us that the interpolation error depends on the function we’re
interpolating as well as the data sites (interpolation nodes) we use. If we are interested

12



in minimizing the interpolation error, then we need to choose the data sites xi, i =
0, 1, . . . , n, such that

w(t) =
n∏

i=0

(t− xi)

is minimized. Figure 3 shows the graph of the function |w| for 10 equally spaced
(red,dashed) and 10 optimally spaced (green,solid) data sites on the interval [−1, 1].
We will derive the locations of the optimally spaced points (known as Chebyshev points)
below.

0

0.002

0.004

0.006

0.008

0.01

0.012

–1 –0.8 –0.6 –0.4 –0.2 0.2 0.4 0.6 0.8 1

x

Figure 3: Graph of the function |w| for 10 equally spaced (red,dashed) and 10 Cheby-
shev points (green,solid) on [−1, 1].

Figure 3 shows that the error near the endpoints of the interval can be significant
if we insist on using equally spaced points. A classical example that illustrates this
phenomenon is the Runge function

f(x) =
1

1 + 25x2
.

We present this example in the Maple worksheet 478578 Runge.mws.
In order to discuss Chebyshev points we need to introduce a certain family of

orthogonal polynomials called Chebyshev polynomials.

1.1.2 Chebyshev Polynomials

The Chebyshev polynomials (of the first kind) can be defined recursively. We have

T0(x) = 1, T1(x) = x,

and
Tn+1(x) = 2xTn(x)− Tn−1(x), n ≥ 1. (8)

An explicit formula for the n-th degree Chebyshev polynomial is

Tn(x) = cos(n arccos x), x ∈ [−1, 1], n = 0, 1, 2, . . . . (9)

13



We can verify this explicit formula by using the trigonometric identity

cos(A + B) = cos A cos B − sin A sinB.

This identity gives rise to the following two formulas:

cos(n + 1)θ = cos nθ cos θ − sinnθ sin θ
cos(n− 1)θ = cos nθ cos θ + sinnθ sin θ.

Addition of these two formulas yields

cos(n + 1)θ + cos(n− 1)θ = 2 cos nθ cos θ. (10)

Now, if we let x = cos θ (or θ = arccos x) then (10) becomes

cos [(n + 1) arccos x] + cos [(n− 1) arccos x] = 2 cos (n arccos x) cos (arccos x)

or
cos [(n + 1) arccos x] = 2x cos (n arccos x)− cos [(n− 1) arccos x] ,

which is of the same form as the recursion (8) for the Chebyshev polynomials provided
we identify Tn with the explicit formula (9).

Some properties of Chebyshev polynomials are

1. |Tn(x)| ≤ 1, x ∈ [−1, 1].

2. Tn

(
cos

iπ

n

)
= (−1)i, i = 0, 1, . . . , n. These are the extrema of Tn.

3. Tn

(
cos

2i− 1
2n

π

)
= 0, i = 1, . . . , n. This gives the zeros of Tn.

4. The leading coefficient of Tn, n = 1, 2, . . ., is 2n−1, i.e.,

Tn(x) = 2n−1xn + lower order terms.

Items 1–3 follow immediately from (9). Item 4 is clear from the recursion formula
(8). Therefore, 21−nTn is a monic polynomial, i.e., its leading coefficient is 1. We will
need the following property of monic polynomials below.

Theorem 1.11 For any monic polynomial p of degree n on [−1, 1] we have

‖p‖∞ = max
−1≤x≤1

|p(x)| ≥ 21−n.

Proof A proof can be found on p. 317 of the Kincaid and Cheney book.

We are now ready to return to the formula for the interpolation error. From (7) we
get on [−1, 1]

‖f − p‖∞ = max
−1≤x≤1

|f(x)− p(x)|

14



≤ 1
(n + 1)!

max
−1≤x≤1

∣∣∣f (n+1)(x)
∣∣∣ max
−1≤x≤1

∣∣∣ n∏
i=0

(x− xi)︸ ︷︷ ︸
=w(x)

∣∣∣.

We note that w is a monic polynomial of degree n + 1 with zeros xi, i = 0, 1, . . . , n,
and therefore

max
−1≤x≤1

|w(x)| ≥ 2−n.

From above we know that 2−nTn+1 is also a monic polynomial of degree n + 1 with

extrema Tn+1

(
cos

iπ

n + 1

)
=

(−1)i

2n
, i = 0, 1, . . . , n + 1. By Theorem 1.11 the minimal

value of max
−1≤x≤1

|w(x)| is 2−n. We just observed that this value is attained for Tn+1.

Thus, the zeros xi of the optimal w should coincide with the zeros of Tn+1, or

xi = cos
(

2i + 1
2n + 2

π

)
, i = 0, 1, . . . , n. (11)

These are the Chebyshev points used in Figure 3 and in the Maple worksheet 478578 Runge.mws.
If the data sites are taken to be the Chebyshev points on [−1, 1], then the interpo-

lation error (7) becomes

|f(x)− p(x)| ≤ 1
2n(n + 1)!

max
−1≤t≤1

∣∣∣f (n+1)(t)
∣∣∣ , |x| ≤ 1.

Remark The Chebyshev points (11) are for interpolation on [−1, 1]. If a different
interval is used, the Chebyshev points need to be transformed accordingly.

We just observed that the Chebyshev nodes are ”optimal” interpolation points in
the sense that for any given f and fixed degree n of the interpolating polynomial, if
we are free to choose the data sites, then the Chebyshev points will yield the most
accurate approximation (measured in the maximum norm).

For equally spaced interpolation points, our numerical examples in the Maple work-
sheets 478578 PolynomialInterpolation.mws and 478578 Runge.mws have shown that,
contrary to our intuition, the interpolation error (measured in the maximum norm)
does not tend to zero as we increase the number of interpolation points (or polynomial
degree).

The situation is even worse. There is also the following more general result proved
by Faber in 1914.

Theorem 1.12 For any fixed system of interpolation nodes a ≤ x
(n)
0 < x

(n)
1 < . . . <

x
(n)
n ≤ b there exists a function f ∈ C[a, b] such that the interpolating polynomial pn

does not uniformly converge to f , i.e.,

‖f − pn‖∞ 6→ 0, n→∞.

This, however, needs to be contrasted with the positive result (very much in the
spirit of the Weierstrass Approximation Theorem) for the situation in which we are
free to choose the location of the interpolation points.

15



Theorem 1.13 Let f ∈ C[a, b]. Then there exists a system of interpolation nodes such
that

‖f − pn‖∞ → 0, n→∞.

Proof The proof uses the Weierstrass Approximation Theorem as well as the Cheby-
shev Alternation Theorem. (cf. Kincaid and Cheney).

Finally, if we insist on using the Chebyshev points as data sites, then we have the
following theorem due to Fejér.

Theorem 1.14 Let f ∈ C[−1, 1], and x0, x1, . . . , xn−1 be the first n Chebyshev points.
Then there exists a polynomial p2n−1 of degree 2n−1 that interpolates f at x0, x1, . . . , xn−1,
and for which

‖f − p2n−1‖∞ → 0, n→∞.

Remark The polynomial p2n−1 also has zero derivatives at xi, i = 0, 1, . . . , n− 1.

1.2 Spline Interpolation

One of the main disadvantages associated with polynomial interpolation were the oscil-
lations resulting from the use of high-degree polynomials. If we want to maintain such
advantages as simplicity, ease and speed of evaluation, as well as similar approximation
properties, we are naturally led to consider piecewise polynomial interpolation or spline
interpolation.

Definition 1.15 A spline function S of degree k is a function such that

a) S is defined on an interval [a, b],

b) S ∈ Ck−1[a, b],

c) there are points a = t0 < t1 < . . . < tn = b (called knots) such that S is a
polynomial of degree at most k on each subinterval [ti, ti+1).

Example The most commonly used spline function is the piecewise linear (k = 1)
spline, i.e., given a knot sequence as in Definition 1.15, S is a linear function on each
subinterval with continuous joints at the knots.

If we are given the data

x 0 1 2 3
y 1 0 -1 3

,

then we can let the knot sequence coincide with the data sites, i.e.,

ti = i, i = 0, 1, 2, 3.

The piecewise linear spline interpolating the data is then given by the ”connect-the-
dots” approach, or in formulas

S(x) =


1− x 0 ≤ x < 1,

1− x 1 ≤ x < 2,

4x− 9 2 ≤ x < 3.

This spline is displayed in Figure 4

16



–1

0

1

2

3

0.5 1 1.5 2 2.5 3

Figure 4: Graph of the linear interpolating spline of Example 1.

Remark Definition 1.15 does not make any statement about the relation between the
location of the knots and the data sites for interpolation. We just observe that — for
linear splines — it works to let the knots coincide with the data sites. We will not
discuss the general problem in this class.

Example We use the same data as above, i.e.,

x 0 1 2 3
y 1 0 -1 3

,

but now we want to interpolate with a quadratic (C1) spline. Again, we let the knots
and data sites coincide, i.e., ti = xi, i = 0, 1, 2, 3.

Now it is not so obvious what S will look like. From Definition 1.15 we know that
S will be of the form

S(x) =


S0(x) = a0x

2 + b0x + c0, 0 ≤ x < 1,

S1(x) = a1x
2 + b1x + c1, 1 ≤ x < 2,

S2(x) = a2x
2 + b2x + c2, 2 ≤ x < 3.

Since we have three quadratic pieces there are 9 parameters (aj , bj , cj , j = 0, 1, 2) to be
determined. To this end, we collect the conditions we have on S. Obviously, we have
the 4 interpolation conditions

S(xi) = yi, i = 0, 1, 2, 3.

Moreover, S needs to satisfy the C1 (and C0) smoothness conditions of Definition 1.15
at the interior knots. That leads to four more conditions:

S0(t1) = S1(t1),
S1(t2) = S2(t2),
S′0(t1) = S′1(t1),
S′1(t2) = S′2(t2).

Thus, we have a total of 8 conditions to determine the 9 free parameters. This leaves
at least one undetermined parameter (provided the above conditions are linearly inde-
pendent).

17



Hoping that the conditions above are indeed independent, we add one more (arbi-
trary) condition S′0(0) = −1 to obtain a square linear system. Therefore, we need to
solve

S0(0) = 1,
S0(1) = 0,
S1(1) = 0,
S1(2) = −1,
S2(2) = −1,
S2(3) = 3,

S′0(1)− S′1(1) = 0,
S′1(2)− S′2(2) = 0,

S′0(0) = −1.

Note that we have implemented the C0 conditions at the two interior knots by stating
the interpolation conditions for both adjoining pieces. In matrix form, the resulting
linear system is

0 0 1 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 4 2 1 0 0 0
0 0 0 0 0 0 4 2 1
0 0 0 0 0 0 9 3 1
2 1 0 −2 −1 0 0 0 0
0 0 0 4 1 0 −4 −1 0
0 1 0 0 0 0 0 0 0





a0

b0

c0

a1

b1

c1

a2

b2

c2


=



1
0
0
−1
−1
3
0
0
−1


.

The solution of this linear system is given by

a0 = 0, b0 = −1, c0 = 1,
a1 = 0, b1 = −1, c1 = 1,

a2 = 5, b2 = −21, c2 = 21,

or

S(x) =


1− x, 0 ≤ x < 1,

1− x, 1 ≤ x < 2,

5x2 − 21x + 21, 2 ≤ x < 3.

This example is illustrated in the Maple worksheet 478578 SplineInterpolation.mws
and a plot of the quadratic spline computed in Example 2 is also provided in Figure 5.

Remark In order to efficiently evaluate a piecewise defined spline S at some point
x ∈ [t0, tn] one needs to be able to identify which polynomial piece to evaluate, i.e.,
determine in which subinterval [ti, ti+1) the evaluation point x lies. An algorithm (for
linear splines) is given in on page 350 of the Kincaid/Cheney book.

18



–1

0

1

2

3

0.5 1 1.5 2 2.5 3

x

Figure 5: Graph of the quadratic interpolating spline of Example 2.

1.2.1 Cubic Splines

Another very popular spline is the (C2) cubic spline. Assume we are given n+1 pieces
of data (xi, yi), i = 0, 1, . . . , n to interpolate. Again, we let the knot sequence {ti}
coincide with the data sites. According to Definition 1.15 the spline S will consist of n
cubic polynomial pieces with a total of 4n parameters.

The conditions prescribed in Definition 1.15 are

n + 1 interpolation conditions,

n− 1 C0 continuity conditions at interior knots,

n− 1 C1 continuity conditions at interior knots,

n− 1 C2 continuity conditions at interior knots,

for a total of 4n− 2 conditions. Assuming linear independence of these conditions, we
will be able to impose two additional conditions on S.

There are many possible ways of doing this. We will discuss:

1. S′′(t0) = S′′(tn) = 0, (so-called natural end conditions).

2. Other boundary conditions, such as

S′(t0) = f ′(t0), S′(tn) = f ′(tn)

which lead to complete splines, or

S′′(t0) = f ′′(t0), S′′(tn) = f ′′(tn).

In either case, f ′ or f ′′ needs to be provided (or estimated) as additional data.

3. The so-called ”not-a-knot” condition.

19



1.2.2 Cubic Natural Spline Interpolation

To simplify the notation we introduce the abbreviation

zi = S′′(ti), i = 0, 1, . . . , n,

for the value of the second derivative at the knots. We point out that these values are
not given as data, but are parameters to be determined.

Since S is cubic S′′ will be linear. If we write this linear polynomial on the subin-
terval [ti, ti+1) in its Lagrange form we have

S′′i (x) = zi
ti+1 − x

ti+1 − ti
+ zi+1

x− ti
ti+1 − ti

.

With another abbreviation hi = ti+1 − ti this becomes

S′′i (x) =
zi

hi
(ti+1 − x) +

zi+1

hi
(x− ti). (12)

Remark By assigning the value zi to both pieces joining together at ti we will auto-
matically enforce continuity of the second derivative of S.

Now, we obtain a representation for the piece Si by integrating (12) twice:

Si(x) =
zi

6hi
(ti+1 − x)3 +

zi+1

6hi
(x− ti)3 + C(x− ti) + D(ti+1 − x). (13)

The interpolation conditions (for the piece Si)

Si(ti) = yi, Si(ti+1) = yi+1

yield a 2× 2 linear system for the constants C and D. This leads to

Si(x) =
zi

6hi
(ti+1−x)3+

zi+1

6hi
(x−ti)3+

(
yi+1

hi
− zi+1hi

6

)
(x−ti)+

(
yi

hi
− zihi

6

)
(ti+1−x).

(14)
(Note that it is easily verified that (14) satisfies the interpolation conditions.)

Once we have determined the unknowns zi each piece of the spline S can be evalu-
ated via (14). We have not yet employed the C1 continuity conditions at the interior
knots, i.e.,

S′i−1(ti) = S′i(ti), i = 1, 2, . . . , n− 1. (15)

Thus, we have n − 1 additional conditions. Since there are n + 1 unknowns zi, i =
0, 1, . . . , n, we fix the second derivative at the endpoints to be zero, i.e.,

z0 = zn = 0.

These are the so-called natural end conditions. Differentiation of (14) leads to

S′i(x) = − zi

2hi
(ti+1 − x)2 +

zi+1

2hi
(x− ti)2 +

(
yi+1

hi
− zi+1hi

6

)
−

(
yi

hi
− zihi

6

)
.

20



Using this expression in (15) results in

zi−1hi−1 +2(hi−1 +hi)zi +zi+1hi =
6
hi

(yi+1−yi)−
6

hi−1
(yi−yi−1), i = 1, 2, . . . , n−1.

This represents a symmetric tridiagonal system for the unknowns z1, . . . , zn−1 of the
form

2(h0 + h1) h1 0 . . . 0

h1 2(h1 + h2) h2
...

0
. . . . . . . . . 0

... hn−3 2(hn−3 + hn−2) hn−2

0 . . . 0 hn−2 2(hn−2 + hn−1)




z1

z2
...

zn−2

zn−1

 =


r1

r2
...

rn−2

rn−1

 .

Here hi = ti+1 − ti and

ri =
6
hi

(yi+1 − yi)−
6

hi−1
(yi − yi−1), i = 1, 2, . . . , n− 1.

Remark The system matrix is even diagonally dominant since

2(hi−1 + hi) > hi−1 + hi

since all hi > 0 due to the fact that the knots ti are distinct and form an increasing
sequence. Thus, a very efficient tridiagonal version of Gauss elimination without piv-
oting can be employed to solve for the missing zi (see the textbook on page 353 for
such an algorithm).

1.2.3 ”Optimality” of Natural Splines

Among all smooth functions which interpolate a given function f at the knots t0, t1, . . . , tn,
the natural spline is the smoothest, i.e.,

Theorem 1.16 Let f ∈ C2[a, b] and a = t0 < t1 < . . . < tn = b. If S is the cubic
natural spline interpolating f at ti, i = 0, 1, . . . , n, then∫ b

a

[
S′′(x)

]2
dx ≤

∫ b

a

[
f ′′(x)

]2
dx.

Remark The integrals in Theorem 1.16 can be interpreted as bending energies of a
thin rod, or as ”total curvatures” (since for small deflections the curvature κ ≈ f ′′).
This optimality result is what gave rise to the name spline, since early ship designers
used a piece of wood (called a spline) fixed at certain (interpolation) points to describe
the shape of the ship’s hull.

Proof (of optimality theorem) Define an auxiliary function g = f−S. Then f = S +g
and f ′′ = S′′ + g′′ or (

f ′′
)2 =

(
S′′

)2 +
(
g′′

)2 + 2S′′g′′.

21



Therefore,∫ b

a

(
f ′′(x)

)2
dx =

∫ b

a

(
S′′(x)

)2
dx +

∫ b

a

(
g′′(x)

)2
dx +

∫ b

a
2S′′(x)g′′(x)dx.

Obviously, ∫ b

a

(
g′′(x)

)2
dx ≥ 0,

so that we are done is we can show that also∫ b

a
2S′′(x)g′′(x)dx ≥ 0.

To this end we break the interval [a, b] into the subintervals [ti−1, ti], and get∫ b

a
S′′(x)g′′(x)dx =

n∑
i=1

∫ ti

ti−1

S′′(x)g′′(x)dx.

Now we can integrate by parts (with u = S′′(x), dv = g′′(x)dx) to obtain

n∑
i=1

{[
S′′(x)g′(x)

]ti
ti−1
−

∫ ti

ti−1

S′′′(x)g′(x)dx

}
.

The first term is a telescoping sum so that

n∑
i=1

[
S′′(x)g′(x)

]ti
ti−1

= S′′(tn)g′(tn)− S′′(t0)g′(t0) = 0

due to the natural end conditions of the spline S.
This leaves ∫ b

a
S′′(x)g′′(x)dx = −

n∑
i=1

∫ ti

ti−1

S′′′(x)g′(x)dx.

However, since Si is a cubic polynomial we know that S′′′(x) ≡ ci on [ti−1, ti). Thus,∫ b

a
S′′(x)g′′(x)dx = −

n∑
i=1

ci

∫ ti

ti−1

g′(x)dx

= −
n∑

i=1

ci [g(x)]titi−1
= 0.

The last equation holds since g(ti) = f(ti)−S(ti), i = 0, 1, . . . , n, and S interpolates f
at the knots ti.

Remark Cubic natural splines should not be considered the natural choice for cubic
spline interpolation. This is due to the fact that one can show that the (rather arbitrary)
choice of natural end conditions yields an interpolation error estimate of only O(h2),
where h = max

i=1,...,n
∆ti and ∆ti = ti − ti−1. This needs to be compared to the estimate

of O(h4) obtainable by cubic polynomials as well as other cubic spline methods.

22



1.2.4 Cubic Complete Spline Interpolation

The derivation of cubic complete splines is similar to that of the cubic natural splines.
However, we impose the additional end constraints

S′(t0) = f ′(t0), S′(tn) = f ′(tn).

This requires additional data (f ′ at the endpoints), but can be shown to yields an
O(h4) interpolation error estimate.

Moreover, an energy minimization theorem analogous to Theorem 1.16 also holds
since

n∑
i=1

[
S′′(x)g′(x)

]ti
ti−1

= S′′(tn)g′(tn)− S′′(t0)g′(t0)

= S′′(tn)
(
f ′(tn)− S′(tn)

)
− S′′(t0)

(
f ′(t0)− S′(t0)

)
= 0

by the end conditions.

1.2.5 Not-a-Knot Spline Interpolation

One of the most effective cubic spline interpolation methods is obtained by choosing
the knots different from the data sites. In particular, if the data is of the form

x0 x1 x2 . . . xn−1 xn

y0 y1 y2 . . . yn−1 yn
,

then we take the n− 1 knots as

x0 x2 x3 . . . xn−2 xn

t0 t1 t2 . . . tn−3 tn−2
,

i.e., the data sites x1 and xn−1 are ”not-a-knot”.
The knots now define n−2 cubic polynomial pieces with a total of 4n−8 coefficients.

On the other hand, there are n + 1 interpolation conditions together with three sets of
(n− 3) smoothness conditions at the interior knots. Thus, the number of conditions is
equal to the number of unknown coefficients, and no additional (arbitrary) conditions
need to be imposed to solve the interpolation problem.

One can interpret this approach as using only one cubic polynomial piece to repre-
sent the first two (last two) data segments.

The cubic not-a-knot spline has an O(h4) interpolation error, and requires no ad-
ditional data. More details can be found in the book ”A Practical Guide to Splines”
by Carl de Boor.

Remark 1. If we are given also derivative information at the data sites xi, i =
0, 1, . . . , n, then we can perform piecewise cubic Hermite interpolation. The re-
sulting function will be C1 continuous, and one can show that the interpolation
error is O(h4). However, this function is not considered a spline function since it
does not have the required smoothness.

23



2. There are also piecewise cubic interpolation methods that estimate derivative
information at the data sites, i.e., no derivative information is provided as data.
Two such (local) methods are named after Bessel (yielding an O(h3) interpolation
error) and Akima (with an O(h2) error). Again, they are not spline functions as
they are only C1 smooth.

1.3 Numerical Integration Based on Interpolation

We now turn to approximate integration (or quadrature). The simplest numerical inte-
gration methods are the left/right endpoint and the midpoint rules studied in calculus.
We will focus on methods based on polynomial interpolation. The idea is a simple one
which is also frequently used for numerical differentiation: interpolate the integrand at
n+1 points, and then (exactly) integrate the degree n polynomial. Using the Lagrange
form of the interpolating polynomial this means∫ b

a
f(x)dx ≈

∫ b

a
p(x)dx =

∫ b

a

n∑
i=0

f(xi)`i(x)dx

=
n∑

i=0

f(xi)
∫ b

a
`i(x)dx

=
n∑

i=0

Aif(xi) (16)

with weights

Ai =
∫ b

a
`i(x)dx. (17)

Depending on the number of points (degree of the polynomial) used we have a different
quadrature rule. Formulas of the type (16) and (17) are collectively known as Newton-
Cotes formulas.

Example (Trapezoid Rule) In the case n = 1 we get∫ b

a
f(x)dx ≈ A0f(x0) + A1f(x1)

= A0f(a) + A1f(b).

where

A0 =
∫ b

a
`0(x)dx =

∫ b

a

x− b

a− b
dx =

1
a− b

(x− b)2

2

∣∣∣∣b
a

=
b− a

2
,

and

A1 =
∫ b

a
`1(x)dx =

∫ b

a

x− a

b− a
dx =

1
b− a

(x− a)2

2

∣∣∣∣b
a

=
b− a

2
.

Together we get ∫ b

a
f(x)dx ≈ b− a

2
[f(a) + f(b)] .

This is the well-known trapezoid rule. We can improve the accuracy by using a piece-
wise linear spline interpolation, i.e., we subdivide the interval [a, b] into subintervals

24



[x0, x1], [x1, x2], . . . , [xN−1, xN ], and form a linear polynomial interpolant on each subin-
terval. Then ∫ b

a
f(x)dx ≈

N−1∑
i=0

∫ xi+1

xi

pi(x)dx.

Using the trapezoid rule on each subinterval we have∫ b

a
f(x)dx ≈

N−1∑
i=0

xi+1 − xi

2
[f(xi) + f(xi+1)] .

To simplify this expression we assume that the subintervals are of equal length h, i.e.,
xi = a + ih, i = 0, 1, . . . , N , with h = b−a

N . This results in the composite trapezoid rule

∫ b

a
f(x)dx ≈ TNf =

b− a

2N

[
f(a) + 2

N−1∑
i=1

f(a + ih) + f(b)

]
.

The error of the composite trapezoid rule is the subject of

Theorem 1.17 If f ∈ C2[a, b] and h = b−a
N are used for TN then the error

ETN
f =

∫ b

a
f(x)dx− TNf = −b− a

12
h2f ′′(ξ) = O(h2),

where ξ ∈ (a, b).

Proof We start with the error for a single subinterval (i.e., for the basic trapezoid
rule). Without loss of generality we let [a, b] = [0, h]. Then, using the error formula for
polynomial interpolation (see Theorem 1.9),

ET1f =
∫ h

0
[f(x)− p1(x)] dx

=
∫ h

0

1
2
f ′′(ξx)

1∏
i=0

(x− xi)dx

x0=0,x1=h
=

∫ h

0

1
2
f ′′(ξx)x(x− h)dx

=
1
2
f ′′(ξ)

∫ h

0
x(x− h)dx,

where we have used the Mean-Value Theorem for integrals of continuous functions in
the last step. The last integral can of course be evaluated, and we obtain

ET1f = − 1
12

h3f ′′(ξ), ξ ∈ (a, b).

For the composite rule we now have

ETN
f =

N∑
i=1

ETif =
N∑

i=1

− 1
12

h3f ′′(ξi).

25



By rewriting one copy of h as b−a
N we get

ETN
f = −b− a

12
h2

N∑
i=1

f ′′(ξi)
N

.

Now, for some ξ ∈ (a, b) we have

N∑
i=1

f ′′(ξi)
N

= f ′′(ξ),

and therefore we are done.

Example (Simpson’s Rule) The Newton-Cotes formula in the case n = 2 (quadratic
polynomial interpolant on a single interval [a, b]) yields (the details are omitted here)∫ b

a
f(x)dx ≈ h

3

[
f(a) + 4f

(
a + b

2

)
+ f(b)

]
, (18)

where h = b−a
2 . Equation (18) is known as Simpson’s rule.

In order to formulate a composite Simpson rule we need an even number, N , of
subintervals. Then∫ b

a
f(x)dx =

∫ x2

x0

f(x)dx +
∫ x4

x2

f(x)dx + . . . +
∫ xN

xN−2

f(x)dx

≈
N/2∑
i=1

∫ x2i

x2i−2

pi(x)dx

=
N/2∑
i=1

h

3
[f(x2i−2) + 4f(x2i−1) + f(x2i)] ,

where we have used Simpson’s rule (18) on each subinterval [x2i−2, x2i]. We can rewrite
the previous formula more efficiently as

SNf =
h

3

f(a) + 2
N/2∑
i=2

f(x2i−2) + 4
N/2∑
i=1

f(x2i−1) + f(b)

 (19)

since N is even. This is the composite Simpson rule. For the error we have

Theorem 1.18 If f ∈ C4[a, b] and h = b−a
N with N even are used for SN , then

ESN
f = −b− a

180
h4f (4)(ξ) = O(h4),

where ξ ∈ (a, b).

Remark Note that the accuracy corresponds to that expected for cubic polynomials
even though only quadratic interpolating polynomials were used. We get one order of
h “for free”.

26



Proof (of Simpson error formula) Parts can be found in the book by Kincaid and
Cheney on page 484. See also the discussion of Peano kernels below, and Homework
Assignment 2.

Remark 1. An error estimate for the general Newton-Cotes formulas (on a single
interval) can be found in the Kincaid/Cheney book on pages 486-487.

2. The error is minimized by taking the interpolation nodes as the zeros of the
Chebyshev polynomials of the second kind.

1.4 Peano Kernels

A useful (and rather beautiful) tool for error estimates (especially for numerical differ-
entiation and integration problems) is the use of Peano kernels and the Peano kernel
theorem.

A linear functional L on a linear space, e.g., Cν [a, b], is a mapping that maps a
function from this space onto a scalar and is linear, i.e., L(αf + βg) = αLf + βLg for
α, β ∈ R, f, g ∈ Cν [a, b].

Example 1. Point evaluation functional:

Lf = f(x).

2. (Definite) Integration functional:

Lf =
∫ b

a
f(x)dx.

Note that linear combinations of linear functionals form new linear functionals. A
fairly general linear functional is

Lf =
n∑

i=0

∫ b

a
αi(x)f (i)(x)dx +

n∑
j=1

βijf
(i)(ξij)

 . (20)

Here ξij ∈ [a, b], f (i) denotes the ith derivative of f , βij are real numbers, and the
functions αi are at least piecewise continuous on [a, b]. The function f should be in
Cn[a, b].

Furthermore, we say that a functional annihilates polynomials Pν if

Lp = 0, for all p ∈ Pν .

The νth Peano kernel of L as in (20) is the function

kν(ξ) = L
[
(x− ξ)ν

+

]
, ξ ∈ [a, b],

where ν ≥ n and

(x− ξ)m
+ =

{
(x− ξ)m, x ≥ ξ

0, x < ξ,

is the truncated power function.

27



Example Let’s compute the Peano kernel k1 for the linear functional defined by

Lf =
∫ π

0
(cos x)f ′(x)dx.

By definition of the Peano kernel we have

k1(ξ) = L [(x− ξ)+]

=
∫ π

0
(cos x)

d

dx
(x− ξ)+dx.

Using the definition of the truncated power function we can rewrite the integral and
then evaluate ∫ π

ξ
(cos x)

d

dx
(x− ξ)dx =

∫ π

ξ
cos xdx = − sin ξ.

Theorem 1.19 (Peano Kernel Theorem) If a functional L of the form (20) annihilates
polynomials Pν , then for all f ∈ Cν+1[a, b],

Lf =
1
ν!

∫ b

a
kν(ξ)f (ν+1)(ξ)dξ

where ν ≥ n and kν is the Peano kernel of L.

Remark The Peano kernel theorem allows estimates of the form

|Lf | ≤ 1
ν!
‖kν‖1‖f (ν+1)‖∞,

|Lf | ≤ 1
ν!
‖kν‖∞‖f (ν+1)‖1,

|Lf | ≤ 1
ν!
‖kν‖2‖f (ν+1)‖2,

where we used the norms

‖f‖1 =
∫ b

a
|f(x)|dx,

‖f‖2 =
(∫ b

a
|f(x)|2dx

)1/2

,

‖f‖∞ = max
x∈[a,b]

|f(x)|.

Example Consider the integral ∫ 1

0
f(ξ)dξ

and find an approximate integration formula of the form∫ 1

0
f(ξ)dξ ≈ b1f(0) + b2f(

1
2
) + b3f(1)

that is exact if f is a polynomial in P3, and find its error.

28



To answer this question we consider the linear functional

Lf =
∫ 1

0
f(ξ)dξ − b1f(0) + b2f(

1
2
) + b3f(1),

and first find b1, b2, and b3 so that L annihilates P3.
If we let f(x) = 1, then we get the condition

0 = Lf =
∫ 1

0
1dξ − (b1 + b2 + b3) = 1− b1 − b2 − b3.

For f(x) = x we get

0 = Lf =
∫ 1

0
ξdξ − (

1
2
b2 + b3) =

1
2
− 1

2
b2 − b3,

for f(x) = x2 we get

0 = Lf =
∫ 1

0
ξ2dξ − (

1
4
b2 + b3) =

1
3
− 1

4
b2 − b3,

and for f(x) = x3 we get

0 = Lf =
∫ 1

0
ξ3dξ − (

1
8
b2 + b3) =

1
4
− 1

8
b2 − b3.

The unique solution of this system of 4 linear equations in 3 unknowns is

b1 =
1
6
, b2 =

2
3
, b3 =

1
6
,

and therefore ∫ 1

0
f(ξ)dξ ≈ 1

6

[
f(0) + 4f(

1
2
) + f(1)

]
.

To estimate the error in this approximation we use the Peano kernel of L. It is given
by

k3(ξ) = L
[
(x− ξ)3+

]
=

∫ 1

0
(x− ξ)3+dx− 1

6

[
(0− ξ)3+ + 4(

1
2
− ξ)3+ + (1− ξ)3+

]
=

∫ 1

ξ
(x− ξ)3dx− 1

6

[
4(

1
2
− ξ)3+ + (1− ξ)3+

]
=

(1− ξ)4

4
− 1

6

{[
4(1

2 − ξ)3 + (1− ξ)3
]
, 0 ≤ ξ ≤ 1

2

(1− ξ)3, 1
2 ≤ ξ ≤ 1.

=

{
− 1

12ξ3(2− 3ξ), 0 ≤ ξ ≤ 1
2

− 1
12(1− ξ)3(3ξ − 1), 1

2 ≤ ξ ≤ 1.

Now the Peano kernel theorem says that∫ 1

0
f(ξ)dξ − 1

6

[
f(0) + 4f(

1
2
) + f(1)

]
= Lf =

1
3!

∫ 1

0
k3(ξ)f (4)(ξ)dξ,

29



and we can explicitly calculate estimates of the form

|Lf | ≤ 1
1152

‖f (4)‖1, |Lf | ≤
√

14
8064

‖f (4)‖2, |Lf | ≤ 1
2880

‖f (4)‖∞ f ∈ C4[0, 1]

since

‖k3‖1 =
1

480
, ‖k3‖2 =

√
14

1344
, ‖k3‖∞ =

1
192

.

1.5 ODEs and the Lipschitz Condition

We consider the system of first-order ODE IVP

y′(t) =
dy(t)

dt
= f(t, y(t)), t ≥ t0, (21)

y(t0) = y0. (22)

Here

y =

 y1
...
yd

 , y0 =

 y0,1
...

y0,d

 , f =

 f1
...
fd

 , ∈ Rd.

Remark This approach covers not only first-order ODEs, but also higher-order ODEs,
since any d-th order ODE IVP can be converted to a system of d first-order IVPs (see
Assignment 2).

If f(t,y) = A(t)y + b(t) for some d× d matrix-valued function A and d× 1 vector-
valued function b, then the ODE is linear, and if b(t) = 0 it is linear and homogeneous.
Otherwise it is nonlinear. If f is independent of t, the ODE is called autonomous,
and if f is independent of y, then the ODE system reduces to a (vector of) indefinite
integral(s).

Theorem 1.20 (Picard-Lindelöf: Existence and Uniqueness) Let B be the ball B =
{x ∈ Rd : ‖x− y0‖ ≤ b} and let S be the cylinder

S = {(t, x) : t ∈ [t0, t0 + a], x ∈ B}

where a, b > 0. If f is continuous on S and f also satisfies the Lipschitz condition

‖f(t, x)− f(t, y)‖ ≤ λ‖x− y‖, x,y ∈ B,

then the IVP (21), (22) has a unique solution on [t0, t0 + α], where α is some constant
that depends on a, b and f . In fact,

α = min

{
a,

b

sup(t,x)∈S ‖f(t, x)‖

}
.

Note that in the system setting we need to measure differences of vectors in some
appropriate norm instead of simple absolute value.

30



Remark The proof of this theorem is rather involved.

Example For a single equation, continuity of the partial derivative ∂f(t,y)
∂y on S guar-

antees Lipschitz continuity of f with

λ = max
t∈[t0,t0+a]

y∈B

∣∣∣∣∂f(t, y)
∂y

∣∣∣∣ .

For the initial value problem

y′(t) = 2t (y(t))2 , y(0) = 1,

we have
f(t, y) = 2ty2,

∂f(t, y)
∂y

= 4ty,

which are both continuous on all of R2. The theorem above guarantees existence and
uniqueness of a solution for t near t0 = 0. In fact, it is given by

y(t) =
1

1− t2
, −1 < t < 1.

However, we see that just because f and ∂f(t,y)
∂y are continuous on all of R2 we cannot

expect existence or uniqueness of a solution y for all t.

Remark In the system setting a sufficient condition for Lipschitz continuity of f is
given by continuity of the Jacobian matrix

∂f(t, y)
∂y

=
[
∂fi(t, y1, . . . , yd)

∂yj

]d

i,j=1

.

Remark Recall that a linear system

y′ = Ay, t ≥ t0, y(t0) = y0

with d× d matrix A always has a unique solution. It is given by

y(t) =
d∑

`=1

eλ`(t−t0)α`, t ≥ t0,

where λ1, . . . , λd are the eigenvalues of A, and the α1, . . . ,αd ∈ Rd are vectors (eigen-
vectors if the eigenvalues are distinct).

1.6 Euler’s Method

1.6.1 The basic Algorithm

Recall that we are interested in general first-order IVPs (21), (22) of the form

y′(t) = f(t, y(t)), t ≥ t0
y(t0) = y0.

31



It is our goal to derive numerical methods for the solution of this kind of problem. The
first, and probably best known, method is called Euler’s method. Even though this is
one of the “original” numerical methods for the solution of IVPs, it remains important
for both practical and theoretical purposes.

The method is derived by considering the approximation

y′(t) ≈ y(t + h)− y(t)
h

of the first derivative. This implies

y(t + h) ≈ y(t) + hy′(t),

which – using the differential equation (21) – becomes

y(t + h) ≈ y(t) + hf(t, y(t)). (23)

Introducing a sequence of points t0, t1 = t0 + h, t2 = t0 + 2h, . . . , tN = t0 + Nh, this
immediately leads to an iterative algorithm.

Algorithm

Input t0, y0, f , h, N

t = t0, y = y0

for n = 1 to N do

y ← y + hf(t, y)
t← t + h

end

Remark 1. Alternately, we can derive the formula for Euler’s method via inte-
gration. Since the IVP gives us both an initial condition as well as the slope
y′ = f(t, y) of the solution, we can assume that the slope is constant on a small
interval [t0, t0 + h], i.e., f(t, y(t)) ≈ f(t0,y(t0)) for t ∈ [t0, t0 + h]. Then we can
integrate to get

y(t) = y(t0) +
∫ t

t0

f(τ,y(τ))dτ

≈ y(t0) +
∫ t

t0

f(t0,y(t0))dτ

= y(t0) + (t− t0)f(t0,y(t0))

— Euler’s method.

2. Note that Euler’s method yields a set of discrete points (tn,yn), n = 1, . . . , N ,
which approximate the graph of the solution y = y(t). In order to obtain a
continuous solution one must use an interpolation or approximation method.

3. Euler’s method is illustrated in the Maple worksheet 472 Euler Taylor.mws.

4. In principle, it is easy to use Euler’s method with a variable step size, i.e.,

y(tn+1) ≈ yn+1 = yn + hnf(tn,yn),

but analysis of the method is simpler with a constant step size hn = h.

32



1.6.2 Taylor Series Methods

An immediate generalization of Euler’s method are the so-called general Taylor series
methods. We use a Taylor expansion

y(t + h) = y(t) + hy′(t) +
h2

2
y′′(t) +

h3

6
y′′′(t) + . . . ,

and therefore obtain the numerical approximation

y(t + h) ≈
ν∑

k=0

hky(k)(t)
k!

(24)

which is referred to as a ν-th order Taylor series method.

Remark 1. Obviously, Euler’s method is a first-order Taylor method.

2. In order to program a Taylor method we need to pre-compute all higher-order
derivatives of y required by the method since the differential equation only pro-
vides a representation for y′. This implies that we will end up with code that
depends on (and changes with) the IVP to be solved.

3. Computer software with symbolic manipulation capabilities (such as Maple or
Mathematica) allows us to write code for Taylor methods for arbitrary IVPs.

We illustrate the traditional treatment of a second-order Taylor method in the
following example.

Example Consider the initial value problem (d = 1)

y′(t) = y(t)− t2 + 1

y(0) =
1
2
.

The second-order Taylor approximation is given by

y(t + h) ≈ y(t) + hy′(t) +
h2

2
y′′(t).

Therefore, we need to express y′(t) and y′′(t) in terms of y and t so that an iterative
algorithm can be formulated.

From the differential equation

y′(t) = f(t, y(t)) = y(t)− t2 + 1.

Therefore, differentiating this relation,

y′′(t) = y′(t)− 2t,

and this can be incorporated into the following algorithm.

33



Algorithm

Input t0, y0, f , h, N

t = t0, y = y0

for n = 1 to N do

y′ = f(t, y)

y′′ = y′ − 2t

y ← y + hy′ + h2

2 y′′

t← t + h

end

Remark 1. Two modifications are suggested to make the algorithm more efficient
and numerically stable.

(a) Replace the computation of y by the nested formulation

y = y + h

(
y′ +

h

2
y′′

)
.

(b) Advance the time t via t = t0 + nh.

2. An example of a fourth-order Taylor method is given in the Maple worksheet
478578 Euler Taylor.mws.

1.6.3 Errors and Convergence

When considering errors introduced using the Taylor series or Euler approximation we
need to distinguish between two different types of error:

• local truncation error, and

• global truncation error.

The local truncation error is the error introduced directly by truncation of the
Taylor series, i.e., at each time step we have an error

Eν =
hν+1

(ν + 1)!
y(ν+1)(t + θh), 0 < θ < 1.

Thus, the ν-th order Taylor method has an O(hν+1) local truncation error.
The global truncation error is the error that results if we use a ν-th order Taylor

method having O(hν+1) local truncation error to solve our IVP up to time t = t0 + t∗.
Since we will be performing

N =
⌊

t∗

h

⌋
steps we see that one order of h is lost in the global truncation error, i.e., the global
truncation error is of the order O(hν).

34



Remark • Of course, truncation errors are independent of roundoff errors which
can add to the overall error.

• As we will see later, a method with O(hν+1) local accuracy need not be globally
ν-th order. In fact, it need not converge at all. Stability will be the key to
convergence.

A numerical method for the IVP (21), (22) is called convergent if for every Lipschitz
function f and every t∗ > 0 we have

lim
h→0+

max
n=0,1,...,N

‖yn,h − y(tn)‖ = 0.

In other words, if the numerical solution approaches the analytic solution for increas-
ingly smaller step sizes h.

For Euler’s method we can establish convergence (and therefore the above heuristics
regarding truncation errors are justified).

Theorem 1.21 Euler’s method is convergent.

Proof To simplify the proof we assume that f (and therefore also y) is analytic. We
introduce the notation

en,h = yn,h − y(tn)

fir the error at step n. We need to show

lim
h→0+

max
n=0,1,...,N

‖en,h‖ = 0.

Taylor’s theorem for the analytic solution y gives us (since tn+1 = tn + h)

y(tn+1) = y(tn) + hy′(tn) +O(h2).

Replacing y′ by the ODE (21) we have

y(tn+1) = y(tn) + hf(tn,y(tn)) +O(h2).

From Euler’s method we have for the numerical solution

yn+1,h = yn,h + hf(tn,yn,h).

The difference of these last two expressions yields

en+1,h = yn+1,h − y(tn+1)
= [yn,h + hf(tn,yn,h)]−

[
y(tn) + hf(tn,y(tn)) +O(h2)

]
= en,h + h [f(tn,yn,h)− f(tn,y(tn))] +O(h2).

Since yn,h = y(tn) + en,h we have

en+1,h = en,h + h [f(tn,y(tn) + en,h)− f(tn,y(tn))] +O(h2).

35



Next we can apply norms and use the triangle inequality to obtain

‖en+1,h‖ ≤ ‖en,h‖+ h‖f(tn,y(tn) + en,h)− f(tn,y(tn))‖+ ch2.

Here we also used the definition of O-notation, i.e., g(h) = O(hp) if |g(h)| ≤ chp for
some constant c independent of h.

Now, note that f is Lipschitz, i.e., ‖f(t,x) − f(t, y)‖ ≤ λ‖x − y‖. Taking x =
y(tn) + en,h and y = y(tn) we obtain

‖en+1,h‖ ≤ ‖en,h‖+ hλ‖y(tn) + en,h − y(tn))‖+ ch2

= (1 + hλ)‖en,h‖+ ch2.

We can use induction to show that

‖en,h‖ ≤
c

λ
h [(1 + hλ)n − 1] , n = 0, 1, . . . . (25)

Finally, one can show that
(1 + hλ)n < enhλ ≤ et∗λ (26)

so that
‖en,h‖ ≤

c

λ
h

[
et∗λ − 1

]
, n = 0, 1, . . . , N,

and
lim

h→0+
max

n=0,1,...,N
‖en,h‖ = lim

h→0+

c

λ

[
et∗λ − 1

]
︸ ︷︷ ︸

const

h = 0.

Remark The error estimate from the proof seems precise. In particular, since one
can easily see (using the Peano kernel theorem) that c = maxt∈[t0,t0+t∗] ‖y′′‖ works.
However, it grossly over-estimates the error in many cases. Thus, it is useless for
practical purposes.

Remark The order O(h) convergence of Euler’s method is demonstrated in the Matlab
script EulerDemo.m.

Example Consider the simple linear decay problem y′(t) = −100y(t), y(0) = 1 with
exact solution y(t) = e−100t.

Since f(t, y) = −100y, it is clear that f is Lipschitz continuous with λ = 100 (since
∂f
∂y = −100).

On the other hand, y′′(t) = −100y′(t) = 1002y(t), so that c = max ‖y′′‖ = 1002 =
λ2.

The error estimate from the proof is of the form

|en,h| ≤
c

λ
h

[
et∗λ − 1

]
= 100h

[
e100t∗ − 1

]
.

If we limit ourselves to the interval [0, 1] then t∗ = 1 and

|en,h| ≤ 100h
[
e100 − 1

]
≈ 2.6881× 1045h.

36



On the other hand, Euler’s method yields

y1 = y0 − h100y0 = (1− 100h)y0

y2 = y1 − h100y1 = (1− 100h)y1 = (1− 100h)2y0

...
yn = (1− 100h)ny0 = (1− 100h)n,

so that the true error is

|yn − y( tn︸︷︷︸
nh

)| =
∣∣∣(1− 100h)n − e−100nh

∣∣∣� 2.6881× 1045h.

1.7 Trapezoidal Rule

Recall the derivation of Euler’s method via integration:

y(t) = y(t0) +
∫ t

t0

f(τ,y(τ))dτ

≈ y(t0) +
∫ t

t0

f(t0,y(t0))dτ

= y(t0) + (t− t0)f(t0,y(t0)).

FIGURE
Note that this corresponds to the “left endpoint rule” for integration. A simple —

but significant — improvement over the left endpoint rule is the trapezoidal rule (for
numerical integration), where we use the average of the slopes at the endpoints of the
interval.

FIGURE
This leads to an improved method to solve the IVP (21), (22)

y(t) = y(t0) +
∫ t

t0

f(τ,y(τ))dτ

≈ y(t0) +
∫ t

t0

f(t0,y(t0)) + f(t, y(t))
2

dτ

= y(t0) +
1
2
(t− t0) [f(t0,y(t0)) + f(t, y(t))] .

This calculation motivates the trapezoidal rule (for IVPs):

yn+1 = yn +
1
2
h [f(tn,yn) + f(tn+1,yn+1)] . (27)

Remark The major difference between the trapezoidal rule and the Taylor/Euler
methods studied earlier lies in the appearance of the “new” value of the approximate
solution, yn+1, on both sides of the formula (27). This means that yn+1 is given only
implicitly by equation (27), and therefore the trapezoidal rule is referred to as an im-
plicit method. We will discuss one possible implementation of the trapezoidal rule
later. Methods for which yn+1 appears only on the left-hand side of the formula are
known as explicit methods.

37



The local truncation error for the trapezoidal rule can be derived by substituting
the exact solution into the approximation formula (27). This leads to

y(tn+1) ≈ y(tn) +
1
2
h [f(tn,y(tn)) + f(tn+1,y(tn+1))] . (28)

To determine the approximation error in this formula we first rearrange (28) and use
the ODE (21) to replace the terms involving f by first derivatives y′, i.e.,

y(tn+1)− y(tn)− 1
2h [f(tn,y(tn)) + f(tn+1,y(tn+1))]

= y(tn+1)− y(tn)− 1
2h [y′(tn) + y′(tn+1)] .

Next, we replace the terms involving tn+1 by Taylor expansions about tn. This leads
to

y(tn+1)− y(tn)− 1
2h {y′(tn) + y′(tn+1)}

=
[
y(tn) + hy′(tn) + h2

2 y′′(tn) +O(h3)
]
− y(tn)− 1

2h
{
y′(tn) +

[
y′(tn) + hy′′(tn) +O(h2)

]}
= O(h3),

so that the local truncation error of the trapezoidal rule is of order O(h3). To see
that the trapezoidal rule is globally a second-order method we need to establish its
convergence.

Theorem 1.22 The trapezoidal rule (27) is convergent.

Proof Similar to the proof of convergence for Euler’s method. See Iserles book.

As mentioned earlier, the trapezoidal rule is an implicit method, and therefore,
additional computational effort is required to determine the approximate solution yn+1

at time tn+1. There are various approaches to doing this.

1. One possibility is to use a predictor-corrector approach. Here an explicit method
(such as Euler’s method) is used to predict a preliminary value ỹn+1 for yn+1,
and the trapezoidal rule is then used in the (explicit) form

yn+1 = yn +
1
2
h

[
f(tn,yn) + f(tn+1, ỹn+1)

]
.

We will study this general approach more carefully in the context of multistep
methods later.

2. Another approach is to use fixed-point iteration to compute yn+1. Since the
trapezoidal rule is given by

yn+1 = yn +
1
2
h [f(tn,yn) + f(tn+1,yn+1)] ,

and f can be a rather general (in particular nonlinear) function, the problem of
finding yn+1 can be rephrased as a problem of finding a root of the (system of)
nonlinear equation(s)

G(z) = g(z)− z = 0.

38



In our case
g(z) = yn +

h

2
f(tn,yn) +

h

2
f(tn+1,z).

Many techniques exist for solving such nonlinear equations such as Newton or
Newton-Raphson iteration. The simplest approach is to use functional iteration

z[k+1] = g(z[k]), k = 0, 1, 2, . . .

with a good initial value z[0]. The famous Banach fixed-point theorem guarantees
convergence of this approach provided the norm of the Jacobian of g is small
enough, i.e.,

‖∂g

∂z
‖ < 1.

As a slightly weaker requirement, Lipschitz continuity of g is sufficient. Since
here

∂g

∂z
=

h

2
∂f

∂z

we see that — depending on the function f — the stepsize h has to be chosen
small enough.

Remark The specific predictor-corrector scheme suggested in 1. above (i.e., Euler’s
method as a predictor for the trapezoidal rule) is in fact a popular numerical IVP
solver in its own right. It is known under many different names such as the classical
second-order Runge-Kutta method, the improved Euler method, or Heun’s method.

Remark An implementation of the fixed-point iteration approach for the trapezoidal
rule is given in the Matlab function Trapezoid.m. As initial guess z[0] = y

[0]
n+1 we use

the most recent approximate solution from the previous time step yn. Pseudocode for
the algorithm is
Algorithm

Input t0, y0, f , h, N

t = t0, y = y0, w = y

for n = 1 to N do

f1 = f(t, w)

t = t + h

for k = 1, 2, . . . do

f2 = f(t, w)
w = y + h

2 (f1 + f2)

end

y = w

end

Remark The order O(h2) convergence of the trapezoidal rule is demonstrated in the
Matlab script TrapezoidDemo.m.

39



Example The problem

y′(t) = ln(3)
(

y(t)− by(t)c − 3
2

)
, y(0) = 0,

can be shown to have the solution

y(t) = −n +
1
2

(
1− 3t−n

)
, n ≤ t ≤ n + 1, n = 0, 1, . . . .

However, since the function f in this example is not Lipschitz continuous we cannot ex-
pect our numerical solvers to perform as usual. The Matlab scripts EulerFailDemo.m
and TrapezoidFailDemo.m show that we get about O(h0.8) convergence for both meth-
ods.

1.8 Theta Methods

Both Euler’s method and the trapezoidal rule are included as special cases of the
following formula:

yn+1 = yn + h [θf(tnyn) + (1− θ)f(tn+1,yn+1)] , n = 0, 1, . . . . (29)

Euler’s method corresponds to the choice θ = 1, and the trapezoidal rule to θ = 1/2.
In general, formula (29) for θ ∈ [0, 1] is known as theta method.

Remark The only explicit theta method is Euler’s method (θ = 1), all others are
implicit. Moreover, the only second-order method is the trapezoid rule. All others are
first-order.

To verify the order claim we determine the local truncation error for the general
theta method. As before, we insert the exact solution y into the approximate formula
(29). This yields

y(tn+1) ≈ y(tn) + h [θf(tn,y(tn)) + (1− θ)f(tn+1,y(tn+1))] . (30)

To determine the approximation error in this formula we proceed analogously to what
we did for the trapezoidal rule. First we rearrange (30) and use the ODE (21) to replace
the terms involving f by first derivatives y′, i.e.,

y(tn+1)− y(tn)− h [θf(tn,y(tn)) + (1− θ)f(tn+1,y(tn+1))]
= y(tn+1)− y(tn)− h [θy′(tn) + (1− θ)y′(tn+1)] .

Next, we replace the terms involving tn+1 by Taylor expansions about tn. This leads
to

y(tn+1)− y(tn)− h {θy′(tn) + (1− θ)y′(tn+1)}

=
[
y(tn) + hy′(tn) + h2

2 y′′(tn) + h3

6 y′′′(tn) +O(h4)
]
− y(tn)

−h
{

θy′(tn) + (1− θ)
[
y′(tn) + hy′′(tn) + h2

2 y′′′(tn) +O(h3)
]}

=
(
θ − 1

2

)
h2y′′(tn) +

(
1
2θ − 1

3

)
h3y′′′(tn) +O(h4),

40



so that the local truncation error of the general theta method is of order O(h2). How-
ever, for θ = 1/2 the first term on the right drops out, and we have a local truncation
error of order O(h3).

Convergence of the general theta method is established in the homework (see As-
signment 2).

Remark The choice θ = 0 yields the so-called backward Euler method which has
particularly nice stability properties, and is often used to solve stiff equations. Other
choices of θ are used less frequently. We will discuss the backward Euler method later.

41


