
13 Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is an algorithm for the efficient implementation of
the discrete Fourier transform. We begin our discussion once more with the continuous
Fourier transform.

13.1 Continuous and Discrete Fourier Transforms Revisited

Let Ek be the complex exponential defined by

Ek(x) := eikx

and consider the complex inner product

〈f, g〉 =
1
2π

∫ π

−π
f(x)g(x)dx.

Then
〈Ek, Ek〉 =

1
2π

∫ π

−π
eikxe−ikx︸ ︷︷ ︸

=1

dx = 1,

and for k 6= ` we have

〈Ek, E`〉 =
1
2π

∫ π

−π
eikxe−i`xdx

=
1
2π

∫ π

−π
ei(k−`)xdx

=
1
2π

ei(k−`)x

i(k − `)

∣∣∣∣∣
π

−π

=
1

2πi(k − `)

[
ei(k−`)π − e−i(k−`)π

]
=

1
2πi(k − `)

ei(k−`)π

[
1− e2π(`−k)i︸ ︷︷ ︸

=1

]
= 0.

As we just saw, the complex exponentials are orthonormal on the interval [−π, π]. In
fact, they are used as the basis functions for complex Fourier series

f(x) ∼
∞∑

k=−∞
cke

ikx

with Fourier coefficients

ck =
1
2π

∫ π

−π
f(t)e−iktdt = 〈f,Ek〉 = f̂(k).

As mentioned earlier, the coefficients ck = f̂(k) are also known as the Fourier transform
of f .

Remark Note that the notation used here is a bit different from that used in Chapter
11. In particular, earlier we used the interval (−∞,∞).

135

In order to get to the discrete Fourier transform we first truncate the Fourier series
and obtain

P (x) =
n∑

k=0

ckEk(x)

— a trigonometric polynomial. This can be verified by writing

P (x) =
n∑

k=0

cke
ikx =

n∑
k=0

ck
(
eix
)k

so that P is a polynomial of degree n in the complex exponential eix.
We now also consider equally spaced data in the interval [0, 2π), i.e.,

(xj , f(xj)) with xj =
2πj
N

, j = 0, 1, . . . , N − 1, (122)

and introduce a discrete (pseudo-)inner product

〈f, g〉N =
1
N

N−1∑
j=0

f

(
2πj
N

)
g

(
2πj
N

)
. (123)

Remark This is only a pseudo-inner product since 〈f, f〉N = 0 implies f = 0 only at
the discrete nodes 2πj

N , j = 0, 1, . . . , N − 1.

Theorem 13.1 The set {Ek}N−1
k=0 of complex exponentials is orthonormal with respect

to the inner product 〈 , 〉N defined in (123).

Proof First,

〈Ek, Ek〉N =
1
N

N−1∑
j=0

Ek

(
2πj
N

)
Ek

(
2πj
N

)

=
1
N

N−1∑
j=0

eik2πj/Ne−ik2πj/N︸ ︷︷ ︸
=1

= 1.

Next, for k 6= ` we have

〈Ek, E`〉N =
1
N

N−1∑
j=0

Ek

(
2πj
N

)
E`

(
2πj
N

)

=
1
N

N−1∑
j=0

eik2πj/Ne−i`2πj/N

=
1
N

N−1∑
j=0

(
ei

2π(k−`)
N

)j
.

Now, since k 6= `,
ei

2π(k−`)
N 6= 1

136

we can apply the formula for the sum of a finite geometric series to get

〈Ek, E`〉N =
1
N

(
ei

2π(k−`)
N

)N
− 1

ei
2π(k−`)

N − 1
.

Finally, since (
ei

2π(k−`)
N

)N
= 1

the orthogonality result follows.

This gives rise to a best approximation result (just as for standard Fourier series):

Corollary 13.2 Let data be given as in (122) and consider G = span{Ek}nk=0 with
n < N . Then the best least squares approximation to the data from G (with respect to
the inner product (123)) is given by the discrete Fourier series

g(x) =
n∑

k=0

ckEk(x)

with

ck = 〈f,Ek〉N =
1
N

N−1∑
j=0

f

(
2πj
N

)
e−ik 2πj

N , k = 0, 1, . . . , n.

Remark 1. The coefficients ck of the discrete Fourier series are called the discrete
Fourier transform (DFT) of f .

2. It is our goal to compute the DFT (and also evaluate g) via the fast Fourier
transform (FFT).

3. Note that, even if the data is real, the DFT will in general be complex. If, e.g.,
N = 4, and the values f

(
2πj
N

)
, j = 0, 1, 2, 3 are 4, 0, 3, 6 respectively, then the

coefficients ck are

c0 = 13
c1 = 1 + 6i
c2 = 1
c3 = 1− 6i.

13.2 The FFT Algorithm

We start with the trigonometric polynomial

P (x) =
N−1∑
k=0

ckEk(x)

with DFT coefficients

ck =
1
N

N−1∑
j=0

f

(
2πj
N

)
e−ik 2πj

N

137

=
1
N

N−1∑
j=0

f(xj)(λk)j

where xj = 2πj
N and we set

λk = e−i 2πk
N .

Remark The values λk (or more naturally λ−k) are often referred to as the N -th roots
of unity. This is illustrated in Figure 8 for N = 5.

4l

3l

2l

1l

0l

Im

0.8

0.8

0.4

0.4

−0.4

−0.8

0.0

Re

1.0

1.0

0.6

0.2

0.6

0.0

−0.2

−0.6

0.2

−1.0

−0.2−0.4−0.6−0.8−1.0

Figure 8: Roots of unity λk, k = 0, 1, . . . , N − 1, for N = 5.

The computation of each coefficient ck corresponds to evaluation of a polynomial of
degree N − 1 in λk. Using nested multiplication (Horner’s method) this can be done in
O(N) operations. Since we have N coefficients, the polynomial P can be constructed
in O(N2) operations.

The major benefit of the fast Fourier transform is that it reduces the amount of
work to O(N log2N) operations.

The FFT was discovered by Cooley and Tukey in 1965. However, Gauss seemed to
already be aware of similar ideas. One of the most popular modern references is the
”DFT Owners Manual” by Briggs and Henson (published by SIAM in 1995). It is the
dramatic reduction in computational complexity that earned the FFT a spot on the
list of ”Top 10 Algorithms of the 20th Century” (see handout).

The FFT is based on the following observation:

Theorem 13.3 Let data (xk, f(xk)), xk = kπ
n , k = 0, 1, . . . , 2n − 1, be given, and

assume that p and q are exponential polynomials of degree at most n−1 which interpolate

138

part of the data according to

p(x2j) = f(x2j), q(x2j) = f(x2j+1), j = 0, 1, . . . , n− 1,

then the exponential polynomial of degree at most 2n−1 which interpolates all the given
data is

P (x) =
1
2
(
1 + einx

)
p(x) +

1
2
(
1− einx

)
q
(
x− π

n

)
. (124)

Proof Since einx =
(
eix
)n has degree n, and p and q have degree at most n − 1 it is

clear that P has degree at most 2n− 1.
We need to verify the interpolation claim, i.e., show that

P (xk) = f(xk), k = 0, 1, . . . , 2n− 1.

By assumption we have

P (xk) =
1
2
(
1 + einxk

)
p(xk) +

1
2
(
1− einxk

)
q
(
xk −

π

n

)
where

einxk = ein
kπ
n =

(
eiπ
)k = (−1)k.

Therefore

P (xk) =

{
p(xk) if k even,
q
(
xk − π

n

)
if k odd.

Let k be even, i.e., k = 2j. Then, by the assumption on p

P (x2j) = p(x2j) = f(x2j), j = 0, 1, . . . , n− 1.

On the other hand, for k = 2j + 1 (odd), we have (using the assumption on q)

P (x2j+1) = q
(
x2j+1 −

π

n

)
= q(x2j) = f(x2j+1), j = 0, 1, . . . , n− 1.

This is true since
x2j+1 −

π

n
=

(2j + 1)π
n

− π

n
=

2jπ
n

= x2j .

The second useful fact tells us how to obtain the coefficients of P from those of p
and q.

Theorem 13.4 Let

p =
n−1∑
j=0

αjEj , q =
n−1∑
j=0

βjEj , and P =
2n−1∑
j=0

γjEj .

Then, for j = 0, 1, . . . , n− 1,

γj =
1
2
αj +

1
2
e−ijπ/nβj

γj+n =
1
2
αj −

1
2
e−ijπ/nβj .

139

Proof In order to use (124) we need to rewrite

q
(
x− π

n

)
=

n−1∑
j=0

βjEj

(
x− π

n

)
=

n−1∑
j=0

βje
ij(x−π

n)

=
n−1∑
j=0

βje
ijxe−ijπ/n.

Therefore

P (x) =
1
2
(
1 + einx

)
p(x) +

1
2
(
1− einx

)
q
(
x− π

n

)
=

1
2

n−1∑
j=0

(
1 + einx

)
αje

ijx +
1
2

n−1∑
j=0

(
1− einx

)
βje

ijxe−ijπ/n

=
1
2

n−1∑
j=0

[(
αj + βje

−ijπ/n
)
eijx +

(
αj − βje

−ijπ/n
)
ei(n+j)x

]
.

However, the terms in parentheses (together with the factor 1/2) lead precisely to the
formulæ for the coefficients γ.

Example We consider the data

x 0 π

y f(0) f(π)
.

Now we apply the DFT to find the interpolating polynomial P . We have n = 1 and

P (x) =
1∑

j=0

γjEj(x) = γ0e
0 + γ1e

ix.

According to Theorem 13.4 the coefficients are given by

γ0 =
1
2
(
α0 + β0e

0
)
,

γ1 =
1
2
(
α0 − β0e

0
)
.

Therefore, we still need to determine α0 and β0. They are found via interpolation at
only one point (cf. Theorem 13.3):

p(x) =
0∑

j=0

αjEj(x) = α0 such that p(x0) = f(x0) =⇒ α0 = f(x0)

q(x) =
0∑

j=0

βjEj(x) = β0 such that q(x0) = f(x1) =⇒ β0 = f(x1).

With x0 = 0 and x1 = π we obtain

P (x) =
1
2

(f(0) + f(π)) +
1
2

(f(0)− f(π)) eix.

140

Example We now refine the previous example, i.e., we consider the data

x 0 π
2 π 3π

2

y f(0) f
(

π
2

)
f(π) f

(
3π
2

) .

Now n = 2, and P is of the form

P (x) =
3∑

j=0

γjEj(x).

According to Theorem 13.4 the coefficients are given by

γ0 =
1
2

(α0 + β0) ,

γ1 =
1
2

(
α1 + β1 e

−iπ/2︸ ︷︷ ︸
=−i

)
,

γ2 =
1
2

(α0 − β0) ,

γ3 =
1
2

(
α1 − β1 e

−iπ/2︸ ︷︷ ︸
=−i

)
.

This leaves the coefficients α0, β0 and α1, β1 to be determined. They are found via
interpolation at two points (cf. Theorem 13.3):

p(x) =
1∑

j=0

αjEj(x) such that p(x0) = f(x0), p(x2) = f(x2),

q(x) =
1∑

j=0

βjEj(x) such that q(x0) = f(x1), q(x2) = f(x3).

These are both problems of the form dealt with in the previous example, so a recursive
strategy is suggested.

A general recursive algorithm for the FFT is given in the Kincaid/Cheney textbook
on pages 455 and 456.

In order to figure out the computational complexity of the FFT algorithm we assume
N(= 2n) = 2m so that the recursive strategy for the FFT can be directly applied. (If
N is not a power of 2, then the data can be padded appropriately with zeros). In order
to evaluate the interpolating exponential polynomial

P (x) =
N−1∑
k=0

ckEk(x) =
2n−1∑
j=0

γjEj(x)

we can use the FFT to compute the coefficients ck (or γj).
Instead of giving an exact count of the arithmetic operations involved in this task, we

estimate the minimum number of multiplications required to compute the coefficients
of an exponential polynomial with N terms.

141

Lemma 13.5 Let R(N) be the minimum number of multiplications required to compute
the coefficients of an exponential polynomial with N = 2n terms. Then

R(N) ≤ 2R(n) + 2n.

Proof There are N coefficients γj computed recursively via the formulas

γj =
1
2
αj +

1
2
e−ijπ/nβj

γj+n =
1
2
αj −

1
2
e−ijπ/nβj

listed in Theorem 13.4. If the factors 1
2e
−ijπ/n, n = 0, 1, . . . , n − 1, are pre-computed,

then each of these formulas involves 2 multiplications for a total of 2n multiplications.
Moreover, the coefficients αj and βj are determined recursively using R(n) multiplica-
tions each.

Theorem 13.6 Under the same assumptions as in Lemma 13.5 we have

R(2m) ≤ m2m.

Proof We use induction on m. For m = 0 there are no multiplications since P (x) = c0.
Now, assume the inequality holds for m. Then, by Lemma 13.5 (with n = 2m)

R
(
2m+1

)
= R (2 · 2m) ≤ 2R (2m) + 2 · 2m.

By the induction hypothesis this is less than or equal to

2m2m + 2 · 2m = (m+ 1)2m+1.

Setting N = 2m ⇔ m = log2N in Theorem 13.6 implies

R(N) ≤ N log2N,

i.e., the fast Fourier transform reduces the amount of computation required to evaluate
an exponential polynomial fromO(N2) (if done directly) toO(N log2N). ForN = 1000
this means roughly 104 instead of 106 operations.

Remark 1. Application of the classical fast Fourier transform is limited to the
case where the data is equally spaced, periodic, and of length 2m. The often
suggested strategy of padding with zeros (to get a data vector of length 2m) or
the application of the FFT to non-periodic data may produce unwanted noise.

2. Various version of the FFT for non-equally spaced data have also been proposed
in recent years (e.g., NFFT by Daniel Potts, Gabriele Steidl and Manfred Tasche).

142

Remark Given a vector a = [a0, a1, . . . , aN−1]T of discrete data, Corollary 13.2 tells
us that the discrete Fourier transform â of a is computed componentwise as

âk =
1
N

N−1∑
j=0

aje
−ik 2πj

N , k = 0, 1, . . . , N − 1.

Of course, the FFT can be used to compute these coefficients. There is an analogous
formula for the inverse DFT, i.e.,

aj =
N−1∑
k=0

âke
ik 2πj

N , j = 0, 1, . . . , N − 1.

We close with a few applications of the FFT. Use of the FFT for many applica-
tions benefits from the fact that convolution in the function domain corresponds to
multiplication in the transform domain, i.e.,

f̂ ∗ g = f̂ ĝ

so that we have
f ∗ g =

(
f̂ ĝ
)̌
.

Some applications are now

• Filters in signal or image processing.

• Compression of audio of video signals. E.g., the MP3 file format makes use of
the discrete cosine transform.

• De-noising of data contaminated with measurement error (see, e.g., the Maple
worksheet 478578 FFT.mws).

• Multiplication with cyclic matrices. A cyclic matrix is of the form

C =


a0 a1 . . . an−1 an

an a0 a1 . . . an−1

an−1 an a0 a1 . . .
.
a1 . . . an−1 an a0


and multiplication by C corresponds to a discrete convolution, i.e.,

(Cy)i =
n∑

j=0

Cijyj =
n∑

j=0

aj−iyj , i = 0, . . . , n,

where the subscript on a is to be interpreted cyclically, i.e., an+1+i ≡ ai or
a−i ≡ an+1−i. Thus, a coupled system of linear equations with cyclic system
matrix can be decoupled (and thus trivially solved) by applying the discrete
Fourier transform.

143

• High precision integer arithmetic also makes use of the FFT.

• Numerical solution of differential equations.

Remark Another transform technique that has some similarities to (but also some
significant differences from) the FFT is the fast wavelet transform. Using so-called
scaling functions and associated wavelets as orthogonal basis functions one can also
perform best approximation of functions (or data). An advantage of wavelets over the
trigonometric basis used for the FFT is the fact that not only do we have localization
in the transform domain, but also in the function domain.

144

