
2 Multistep Methods

Up to now, all methods we studied were single step methods, i.e., the value yn+1 was
found using information only from the previous time level tn. Now we will consider
so-called multistep methods, i.e., more of the history of the solution will affect the value
yn+1.

2.1 Adams Methods

Consider the first-order ODE
y′(t) = f(t,y(t)).

If we integrate from tn+1 to tn+2 we have∫ tn+2

tn+1

y′(τ)dτ =
∫ tn+2

tn+1

f(τ,y(τ))dτ

or

y(tn+2)− y(tn+1) =
∫ tn+2

tn+1

f(τ,y(τ))dτ. (31)

As we saw earlier for Euler’s method and for the trapezoidal rule, different numer-
ical integration rules lead to different ODE solvers. In particular, the left-endpoint
rule yields Euler’s method, while the trapezoidal rule for integration gives rise to the
trapezoidal rule for IVPs. Incidentally, the right-endpoint rule provides us with the
backward Euler method.

We now use a different quadrature formula for the integral in (31).

Example Instead of viewing the slope f as a constant on the interval [tn, tn+1] we now
represent f by its linear interpolating polynomial at the points τ = tn and τ = tn+1

given in Lagrange form, i.e.,

p(τ) =
τ − tn+1

tn − tn+1
f(tn,y(tn)) +

τ − tn
tn+1 − tn

f(tn+1,y(tn+1))

=
tn+1 − τ

h
f(tn,y(tn)) +

τ − tn
h

f(tn+1,y(tn+1)),

where we have used the stepsize tn+1 − tn = h.
FIGURE
Therefore, the integral becomes∫ tn+2

tn+1

f(τ,y(τ))dτ ≈
∫ tn+2

tn+1

p(τ)dτ

=
∫ tn+2

tn+1

[
tn+1 − τ

h
f(tn,y(tn)) +

τ − tn
h

f(tn+1,y(tn+1))
]
dτ

=
[
f(tn,y(tn))

(
−1

2

)
(tn+1 − τ)2

h
+ f(tn+1,y(tn+1))

(τ − tn)2

2h

]tn+2

tn+1

=
3h
2

f(tn+1,y(tn+1))−
h

2
f(tn,y(tn)).
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Thus (31) motivates the numerical method

yn+2 = yn+1 +
h

2
[3f(tn+1,yn+1)− f(tn,yn)] . (32)

Since formula (32) involves two previously computed solution values, this method is
known as a two-step method. More precisely, is is known as the second-order Adams-
Bashforth method (or AB method) dating back to 1883.

Remark 1. We will establish later that this method is indeed of second order ac-
curacy.

2. Note that the method (32) requires two initial conditions. Since the IVP will give
us only one initial condition, in the Matlab demo script ABDemo.m we take the
second starting value from the exact solution. This is, of course, not realistic, and
in practice one often precedes the Adams-Bashforth method by one step of, e.g.,
a second-order Runge-Kutta method (see later). However, even a single Euler
step (which is also of order O(h2)) can also be used to start up (and maintain
the accuracy of) the second-order AB method. This approach can also be used
in ABDemo.m by uncommenting the corresponding line.

Example The Matlab script ABDemo.m compares the convergence of Euler’s method
(the one-step AB method) with the two-step AB method (32) for the IVP

y′(t) = −y2(t), y(0) = 1

on the interval [0, 10] with different stepsizes N = 50, 100, 200 and 400. The exact
solution of this problem is

y(t) =
1

t+ 1
.

Example If we use a linear Lagrange interpolant to the integrand f of (31) at the
points τ = tn+1 and τ = tn+2 then we obtain

y(tn+2) ≈ y(tn+1) +
h

2
[f(tn+1,y(tn+1)) + f(tn+2,y(tn+2))]

or the numerical scheme

yn+2 = yn+1 +
h

2
[f(tn+1,yn+1) + f(tn+2,yn+2)] . (33)

FIGURE
This method is known as second-order Adams-Moulton method (or AM method).

It is a one-step method, and identical to the trapezoidal rule studied earlier (modulo a
shift of the indices by one).

Remark In general, a pth-order Adams method is obtained by replacing the integrand
f in (31) by a polynomial of degree p − 1. However, the Adams-Bashforth method is
an explicit method that uses the most recent information as well as p− 1 “historical”
points to fit the polynomial to. The pth-order Adams-Moulton method is an implicit
method that fits the polynomial to the point to be determined next, the current point,
and p− 2 “historical” points. Therefore, the pth-order AB method is a p-step method,
while the pth-order AM method is a p− 1-step method.
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For a general s-step Adams method we start the derivation as usual with the first-
order ODE (42) and integrate from the current time tn+s−1 to the new time tn+s. This
gives us

y(tn+s)− y(tn+s−1) =
∫ tn+s

tn+s−1

f(τ,y(τ))dτ. (34)

As mentioned above, for the s-step AB method we now fit the slope f with a polynomial
of degree s− 1 at the s “known” points tn, tn+1, . . . , tn+s−2, tn+s−1, i.e., we replace the
integrand in (34) by the polynomial

p(τ) =
s−1∑
m=0

pm(τ)f(tn+m,ym+n),

where the pm are the Lagrange functions (cf. Section 1.0.2)

pm(τ) =
s−1∏
`=0
` 6=m

τ − tn+`

tn+m − tn+`
, m = 0, 1, . . . , s− 1.

This gives us

y(tn+s)− y(tn+s−1) ≈
∫ tn+s

tn+s−1

p(τ)dτ

=
∫ tn+s

tn+s−1

s−1∑
m=0

pm(τ)f(tn+m,ym+n)dτ

=
s−1∑
m=0

f(tn+m,ym+n)
∫ tn+s

tn+s−1

pm(τ)dτ.

The calculations just performed motivate the numerical method

yn+s = yn+s−1 + h
s−1∑
m=0

bmf(tn+m,ym+n), (35)

where the coefficients bm, m = 0, 1, . . . , s − 1, are given by (using the substitution
u = τ − tn+s−1, and the fact that tn+s − tn+s−1 = h)

bm =
1
h

∫ tn+s

tn+s−1

pm(τ)dτ

=
1
h

∫ h

0
pm(tn+s−1 + u)du. (36)

Formula (35) together with the coefficients (36) is known as the general s-step Adams-
Bashforth method.

Example The coefficients bm are independent of the specific stepsize h and timestep
n, so they can be computed once and for all. For the case s = 2 discussed earlier we
compute

p0(τ) =
τ − tn+1

tn − tn+1
,
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Order Formula LTE

1 yn+1 = yn + hfn
h2

2
y′′(η)

2 yn+2 = yn+1 + h
2

[3fn+1 − fn] 5h3

12
y′′′(η)

3 yn+3 = yn+2 + h
12

[23fn+2 − 16fn+1 + 5fn] 3h4

8
y(4)(η)

4 yn+4 = yn+3 + h
24

[55fn+3 − 59fn+2 + 37fn+1 − 9fn] 251h5

720
y(5)(η)

5 yn+5 = yn+4 + h
720

[1901fn+4 − 2774fn+3 + 2616fn+2 − 1274fn+1 + 251fn] 95h6

2888
y(6)(η)

Table 1: Adams-Bashforth formulas of different order. Notation: fn+m denotes
f(tn+m,yn+m), m = 0, 1, . . . , 5, LTE stands for local truncation error.

and

b0 =
1
h

∫ h

0

tn+1 + u− tn+1

tn − tn+1
du

=
1
h

∫ h

0

u

−h
du

= − 1
h2

[
u2

2

]h

0

= −1
2
.

Formulas for other choices of s are listed in Table 1.

Remark 1. The technique of using an interpolating polynomial p of degree s − 1
at s equally spaced nodes with spacing h to replace the integrand f leads to
so-called Newton-Cotes formulas for numerical integration. It is known that the
interpolation error in this case is of the order O(hs), and integration of this
polynomial over an interval of length h adds another factor of h to the order.
Therefore, the s-step Adams-Bashforth method has a local truncation error of
order O(hs+1), which — provided the method converges — translates into a
global method of order s.

2. General Adams-Moulton formulas can be derived similarly and are listed in Ta-
ble 2. Note that the backward Euler method does not quite fit the general de-
scription of an AM method, since it is a single step method of order 1 (while the
other AM methods are s-step methods of order s + 1). In fact, there are two
single step AM methods: the backward Euler method and the trapezoidal rule.

2.2 The Predictor-Corrector Idea

As mentioned earlier, one way to implement an implicit scheme is to couple it with a
corresponding explicit scheme of the same order. We will now explain this predictor-
corrector approach using the 2nd-order AB and AM methods.
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Order Formula LTE

1 yn+1 = yn + hfn+1 −h2

2
y′′(η)

2 yn+2 = yn+1 + h
2

[fn+2 + fn+1] −h3

12
y′′′(η)

3 yn+3 = yn+2 + h
12

[5fn+3 + 8fn+2 − fn+1] −h4

24
y(4)(η)

4 yn+4 = yn+3 + h
24

[9fn+4 + 19fn+3 − 5fn+2 + fn+1] − 19h5

720
y(5)(η)

5 yn+5 = yn+4 + h
720

[251fn+5 + 646fn+4 − 264fn+3 + 106fn+2 − 19fn+1] − 3h6

160
y(6)(η)

Table 2: Adams-Moulton formulas of different order. Notation: fn+m denotes
f(tn+m,yn+m), m = 0, 1, . . . , 5, LTE stands for local truncation error.

We start with the predictor — in our case the second-order AB method. However,
we treat its output only as a temporary answer, i.e.,

ỹn+2 = yn+1 +
h

2
[3f(tn+1,yn+1)− f(tn,yn)] .

Next we correct this value by using it on the right-hand side of the second-order AM
method, i.e.,

yn+2 = yn+1 +
h

2
[
f(tn+1,yn+1) + f(tn+2, ỹn+2)

]
.

While this approach provides a simple realization of an implicit method, it can also
be used to create a scheme that uses a variable stepsize h. The basic idea is to use the
difference |ỹn+2−yn+2| to judge the accuracy of the method. The following algorithm
describes the general idea:

Algorithm

ỹn+2 = yn+1 + h
2 [3f(tn+1,yn+1)− f(tn,yn)]

yn+2 = yn+1 + h
2

[
f(tn+1,yn+1) + f(tn+2, ỹn+2)

]
κ = 1

6 |ỹn+2 − yn+2|

if κ is relatively large, then

h← h/2 (i.e., reduce the stepsize)

repeat

else if κ is relatively small, then

h← 2h (i.e., increase the stepsize)

else

continue (i.e., keep h)

end
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The specific choice of κ in the algorithm is motivated by the following argument.
The local truncation errors for the second-order AB and AM methods, respectively, are

y(tn+2)− ỹn+2 =
5
12
h3y′′′(ηAB)

y(tn+2)− yn+2 = − 1
12
h3y′′′(ηAM ).

If we assume that y′′′ is nearly constant over the interval of interest, i.e., y′′′(ηAB) ≈
y′′′(ηAM ) ≈ y′′′(η), then we can subtract the above two equations from each other to
get

yn+2 − ỹn+2 ≈
1
2
h3y′′′(η),

and therefore the error at this time step is

|y(tn+2)− yn+2| ≈
1
12
h3y′′′(η) ≈ 1

6
|yn+2 − ỹn+2|.

Remark 1. Finding a good way to characterize “relatively large” and “relatively
small” in the algorithm can be tricky.

2. Note that it may be necessary to generate additional function values by interpo-
lation if the stepsize is reduced and the predictor has to be evaluated for this new
stepsize.

3. A variable stepsize, variable-order AB-AM predictor-corrector scheme is imple-
mented in Matlab in the routine ode113.

2.3 Order and Convergence of Multistep Methods

There are even more general multistep methods than the Adams methods. We will
write them in the form

s∑
m=0

amyn+m = h

s∑
m=0

bmf(tn+m,yn+m), n = 0, 1, . . . , (37)

where the coefficients am and bm, m = 0, 1, . . . , s are independent of h, n, and the
underlying ODE. Usually, the formula is normalized so that as = 1. The formula is a
true s-step formula if either a0 or b0 are different from zero. Different choices of the
coefficients am and bm yield different numerical methods. In particular, if bs = 0 the
method will be explicit. Otherwise it will be implicit.

Remark The general multistep formula (37) is of the same form as so-called recursive
or infinite impulse response (IIR) digital filters used in digital signal processing.

Example The second-order AB method corresponds to s = 2 with

a2 = 1, a1 = −1, a0 = 0, b2 = 0, b1 = 3/2, b0 = −1/2,

and the second-order AM method corresponds to s = 2 with

a2 = 1, a1 = −1, a0 = 0, b2 = 1/2, b1 = 1/2, b0 = 0.
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Remark The coefficients am and bm will play a crucial role in our following discussion
of order and convergence of multistep methods, as well as later on in our study of
stability.

As used many times before, a numerical IVP solver of the form

yn+1 = Yn(f , h,y0,y1, . . . ,yn)

is said to be of order p if and only if

y(tn+1)− Yn(f , h,y(t0),y(t1), . . . ,y(tn)) = O(hp+1).

For the multistep methods (37) we can alternatively consider the linear functional ψt

defined by

ψty =
s∑

m=0

amy(t+mh)− h
s∑

m=0

bmf(t+mh,y(t+mh))

=
s∑

m=0

amy(t+mh)− h
s∑

m=0

bmy′(t+mh).

Then the s-step method (37) is of order p if and only if

ψty = O(hp+1)

for all sufficiently smooth functions y.
We now characterize the order p of a multistep method in terms of the coefficients

am and bm.

Theorem 2.1 The multistep method

s∑
m=0

amyn+m = h
s∑

m=0

bmf(tn+m,yn+m)

is of order p ≥ 1 if and only if

s∑
m=0

am = 0,

s∑
m=0

mk

k!
am =

s∑
m=0

mk−1

(k − 1)!
bm, k = 1, 2, . . . , p,

s∑
m=0

mp+1

(p+ 1)!
am 6=

s∑
m=0

mp

p!
bm.

Proof We have

ψty =
s∑

m=0

amy(t+mh)− h
s∑

m=0

bmy′(t+mh).
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Using Taylor expansions for both y and y′ we obtain

ψty =
s∑

m=0

am

∞∑
k=0

1
k!

y(k)(t)(mh)k − h
s∑

m=0

bm

∞∑
k=0

1
k!

y(k+1)(t)(mh)k

=
s∑

m=0

am

∞∑
k=0

1
k!

y(k)(t)mkhk − h
s∑

m=0

bm

∞∑
k=1

1
(k − 1)!

y(k)(t)mk−1hk−1

=
∞∑

k=0

(
s∑

m=0

mk

k!
am

)
y(k)(t)hk −

∞∑
k=1

(
s∑

m=0

mk−1

(k − 1)!
bm

)
y(k)(t)hk

=

(
s∑

m=0

am

)
y(t) +

∞∑
k=1

(
s∑

m=0

mk

k!
am

)
y(k)(t)hk −

∞∑
k=1

(
s∑

m=0

mk−1

(k − 1)!
bm

)
y(k)(t)hk

=

(
s∑

m=0

am

)
y(t) +

∞∑
k=1

(
s∑

m=0

mk

k!
am −

s∑
m=0

mk−1

(k − 1)!
bm

)
y(k)(t)hk

We get ψty = O(hp+1) by satisfying the conditions as claimed.

Remark 1. We can now use the simple conditions in Theorem 2.1 to check the
order of any multistep method. This is generally much easier than the special
techniques we used earlier (see the example below).

2. A method is called consistent if it is of order p ≥ 1, i.e., if
s∑

m=0

am = 0 and
s∑

m=0

mam =
s∑

m=0

bm.

In this context consistent is short for the numerical method is consistent with the
differential equation. This means that the discrete numerical method (a differ-
ence equation) is an accurate representation of the continuous problem (given
in the form of a differential equation), i.e., the local truncation error is small.
Remember that we noted earlier that merely establishing the order of a method
does not ensure its convergence (see the second example below). With this new
terminology we can say that consistency alone does not imply convergence.

3. If we introduce the polynomials (often called characteristic polynomials or gen-
erating polynomials of the method)

ρ(w) =
s∑

m=0

amw
m, σ(w) =

s∑
m=0

bmw
m,

then one can show that the general multistep method is of order p if and only if
there exists a constant c 6= 0 such that

ρ(w)− σ(w) lnw = c(w − 1)p+1 +O(|w − 1|p+2) as w → 1. (38)

Note that this condition tells us how well the log-function is approximated by
the rational function ρ

σ near w = 1. In terms of the polynomials ρ and σ the two
consistency conditions above correspond to

ρ(1) = 0 and ρ′(1) = σ(1).
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4. The constant c in (38) (as well as the difference of the two sides of the third
condition in Theorem 2.1) is in fact the local error constant of the method (cf.
the following example and the local truncation errors listed in Tables 1 and 2).

Example We show that the Adams-Bashforth method (32) derived earlier is indeed
of second order. The iteration formula was

yn+2 − yn+1 =
h

2
[3f(tn+1,yn+1)− f(tn,yn)] ,

so that — as noted earlier — s = 2 and a2 = 1, a1 = −1, a0 = 0, b2 = 0, b1 = 3/2,
b0 = −1/2.

Now,
2∑

m=0

am = 0− 1 + 1 = 0,

and for k = 1 (note: 0! = 1! = 1)

2∑
m=0

mam =
2∑

m=0

bm

⇐⇒ 0(0) + (1)(−1) + 2(1) = −1
2

+
3
2

+ 0

⇐⇒ 1 = 1,

for k = 2

2∑
m=0

m2

2
am =

2∑
m=0

mbm

⇐⇒ 0
2
(0) +

1
2
(−1) +

4
2
(1) = (0)(−1

2
) + (1)

3
2

+ (2)0

⇐⇒ 3
2

=
3
2
,

and for k = 3

2∑
m=0

m3

3!
am =

2∑
m=0

m2

2!
bm

⇐⇒ 0
6
(0) +

1
6
(−1) +

8
6
(1) =

0
2
(−1

2
) +

1
2

3
2

+
4
2
0

⇐⇒ 7
6

=
3
4
.

Therefore, the method is indeed of order p = 2. Moreover, the difference 7
6 −

3
4 = 5

12
(the error constant listed in Table 1).

Alternatively, we can check the condition

ρ(w)− σ(w) lnw = c(w − 1)p+1 +O(|w − 1|p+2) as w → 1.
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For our example

ρ(w) =
2∑

m=0

amw
m = w2 − w,

σ(w) =
2∑

m=0

bmw
m =

3
2
w − 1

2
.

Since the right-hand side of our condition is written in terms of w − 1 we express
everything in terms of ξ = w − 1 and then take the limit as ξ → 0. Thus

ρ(ξ + 1) = (ξ + 1)2 − (ξ + 1) = ξ2 + ξ,

σ(ξ + 1) =
3
2
(ξ + 1)− 1

2
=

3
2
ξ + 1,

and therefore (using the Taylor expansion of the logarithm)

ρ(ξ + 1)− σ(ξ + 1) ln(ξ + 1) =
(
ξ2 + ξ

)
−
(

3
2
ξ + 1

)
ln(ξ + 1)

=
(
ξ2 + ξ

)
−
(

3
2
ξ + 1

) ∞∑
k=1

(−1)k−1 ξ
k

k

=
(
ξ2 + ξ

)
−
(

3
2
ξ + 1

)(
ξ − ξ2

2
+
ξ3

3
− · · ·

)
=

(
ξ2 + ξ

)
−
(
ξ + ξ2 − 5

12
ξ3 +O(ξ4)

)
=

5
12
ξ3 +O(ξ4).

Thus, c = 5
12 6= 0 (again, the error constant of Table 1), and the order is p = 2 as

before.

Example The implicit 2-step method

yn+2 − 3yn+1 + 2yn = h

[
13
12

f(tn+2,yn+2)−
5
3
f(tn+1,yn+1)−

5
12

f(tn,yn)
]

(39)

has order two. This can easily be verified using the criteria of Theorem 2.1. However,
consider the trivial IVP

y′(t) = 0, y(0) = 1,

with solution y(t) = 1. For this example the right-hand side of (39) is always zero, so
we immediately get the 3-term recurrence relation

yn+2 − 3yn+1 + 2yn = 0.

The general solution of this equation is given by

yn = c1 + c22n, n = 0, 1, . . . , (40)

with arbitrary constants c1 and c2. This can easily be verified using induction.
While the choice c1 = 1 and c2 = 0 does provide the exact solution, in practice

we will have to initialize the method with two values y0 and y1, and most likely these
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values will be different (which is equivalent to having c2 6= 0 in (40) above). In this
case, however, the numerical solution blows up (since 2n →∞ for n→∞). Thus, only
for one very special set of starting values do we have an accurate solution. In general,
the method does not converge (even though it is consistent, and is even of order 2).

We are now ready to present a necessary and sufficient condition for convergence
of a multistep method that is very easy to check. To this end we have

Definition 2.2 A (complex) polynomial p obeys the root condition if

• all its zeros, i.e., all z such that p(z) = 0, lie in the unit disk, i.e., |z| ≤ 1, and

• all zeros on the unit circle are simple, i.e., if |z| = 1 then p′(z) 6= 0.

Theorem 2.3 (Dahlquist Equivalence Theorem) Consider the general multistep method
(cf. (37))

s∑
m=0

amyn+m = h
s∑

m=0

bmf(tn+m,yn+m), n = 0, 1, . . . ,

and assume that the starting values y1,y2, . . . ,ys−1 are accurate, i.e., they are deter-
mined up to an error that tends to zero for h → 0. Then the multistep method is
convergent if and only if it is consistent and the polynomial ρ obeys the root condition.

Proof The proof is too involved to be included here.

Remark 1. An immediate — and very important — consequence of the Equiva-
lence Theorem is that a multistep method whose characteristic polynomial ρ does
not satisfy the root condition cannot be convergent. Do not use such methods!

2. We will see later that the fact that ρ satisfies the root condition is equivalent to
stability of a multistep method. Therefore, for multistep methods,

convergence ⇐⇒ consistency & stability.

Example Earlier we claimed that the implicit 2-step method

yn+2 − 3yn+1 + 2yn = h

[
13
12

f(tn+2,yn+2)−
5
3
f(tn+1,yn+1)−

5
12

f(tn,yn)
]

(41)

has order two, and gave a counterexample to show that it cannot be convergent. Now
we can use the Dahlquist Equivalence Theorem to establish this fact. The characteristic
polynomial ρ of the method is given by

ρ(w) =
2∑

m=0

amw
m = w2 − 3w + 2 = (w − 1)(w − 2),

and we see that ρ violates the root condition since one of its zeros, w = 2, lies outside
the unit disk. According to the Equivalence Theorem it cannot be convergent.

52



Example The characteristic polynomials ρ for all Adams methods (both AB and AM)
are of the same type, namely,

ρ(w) = ws − ws−1 = ws−1(w − 1),

and so they all satisfy the root condition. As a consequence, all Adams methods are
convergent (since we already established that they are consistent).

If we look at the general s-step method

s∑
m=0

amyn+m = h
s∑

m=0

bmf(tn+m,yn+m), n = 0, 1, . . . ,

then we see that this method involves 2s + 1 free parameters (after normalization).
Therefore, one might think that it is possible to construct an s-step method that is of
order 2s. Unfortunately, there is another theorem by Dahlquist that states that one
cannot have a convergent s-step method of order 2s for any s ≥ 3. More precisely,

Theorem 2.4 (Dahlquist’s First Barrier) The maximal order of a convergent s-step
method is at most

• s+ 2 for implicit schemes with s even,

• s+ 1 for implicit schemes with s odd, and

• s for explicit schemes.

Proof Also too complicated.

Remark 1. A procedure for construction of a convergent s-step method of order
s+ 1 is outlined in the Iserles book.

2. Adams-Bashforth methods are optimal in the sense that the corresponding order
is as high as possible. The same is true for Adams-Moulton formulas with odd s.
It can be shown that implicit s-step methods of order s + 2 are of questionable
stability.

2.4 Backward Differentiation Formulae

As mentioned earlier, the “extreme” choice ρ(w) = ws−1(w−1) that always satisfies the
root condition and also places as many of the zeros at the origin as possible yields the
family of Adams methods. If we, on the other hand, choose an extreme σ(w) = βws,
then we obtain the so-called backward differentiation formulae (BDFs).

These methods have their name from the way in which they can be derived. Starting
from the ODE y′(t) = f(t,y) we do not integrate as before (and fit the integrand f on
the right-hand side by a polynomial), but instead fit the derivative y′ on the left-hand
side by the derivative of the interpolating polynomial to the s + 1 data points chosen
backward from the new point, i.e., (tn+s,yn+s), (tn+s−1,yn+s−1), . . . , (tn,yn).
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Example In the simplest case, s = 1, we get the Backward Euler method. The inter-
polating polynomial to the data (tn+1,yn+1), (tn,yn) is given by

p(τ) =
tn+1 − τ
tn+1 − tn

yn +
τ − tn+1

tn+1 − tn
yn+1,

and its derivative is
p′(τ) = −1

h
yn +

1
h

yn+1,

where we have use tn+1− tn = h as usual. If we replace the right-hand side of the ODE
by f(tn+1,yn+1), then we end up with the numerical method

−1
h

yn +
1
h

yn+1 = f(tn+1,yn+1) ⇐⇒ yn+1 = yn + hf(tn+1,yn+1)

— the backward Euler method.

In general, one can show that once the form of the polynomial σ and the order s
are chosen, then the method is determined.

Lemma 2.5 For a BDF of order s with σ(w) = βws we have

β =

(
s∑

m=1

1
m

)−1

, and ρ(w) = β

s∑
m=1

1
m
ws−m(w − 1)m.

Proof Straightforward algebra using (38) and a Taylor series expansion for the loga-
rithm. See the Iserles book.

Example In the simplest case s = 1 we have σ(w) = βw with β = 1 and ρ(w) = w−1.
This gives us the backward Euler method mentioned above.

For s = 2 we have σ(w) = βw2, and

β =

(
2∑

m=1

1
m

)−1

=
1

1 + 1
2

=
2
3
.

With this value

ρ(w) = β

2∑
m=1

1
m
ws−m(w − 1)m =

2
3

[
w(w − 1) +

1
2
(w − 1)2

]
= w2 − 4

3
w +

1
3
.

This results in the BDF formula

yn+2 −
4
3
yn+1 +

1
3
yn =

2
3
hf(tn+2,yn+2).

While the Adams methods were constructed so that they satisfy the root condition,
this is no longer automatically true for the BDFs. In fact, we have

Theorem 2.6 The characteristic polynomial ρ for a BDF satisfies the root condition
and the underlying BDF method is convergent if and only if 1 ≤ s ≤ 6.
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Order Formula LTE

1 yn+1 = yn + hfn+1 −h2

2
y′′(η)

2 yn+2 − 4
3
yn+1 + 1

3
yn = 2h

3
fn+2 − 2h3

9
y′′′(η)

3 yn+3 − 18
11

yn+2 + 9
11

yn+1 − 2
11

yn = 6h
11

fn+3 − 3h4

22
y(4)(η)

4 yn+4 − 48
25

yn+3 + 36
25

yn+2 − 16
25

yn+1 + 3
25

yn = 12h
25

fn+4 − 12h5

125
y(5)(η)

5 yn+5 − 300
137

yn+4 + 300
137

yn+3 − 200
137

yn+2 + 75
137

yn+1 − 12
137

yn = 60h
137

fn+5 − 10h6

137
y(6)(η)

6 yn+6 − 360
147

yn+5 + 450
147

yn+4 − 400
147

yn+3 + 225
147

yn+2 − 72
147

yn+1 + 10
147

yn = 60h
147

fn+6 − 20h7

343
y(7)(η)

Table 3: Backward differentiation formulas of different order. Notation: fn+m denotes
f(tn+m,yn+m), m = 0, 1, . . . , 6, LTE stands for local truncation error.

Proof Too involved.

Remark 1. The root condition fails for s > 6.

2. The coefficients and local truncation errors for all 6 BDFs of practical interest
are listed in Table 3.

3. Note that all BDF methods are implicit methods, and therefore special care is
needed for their implementation. However, as the following example shows (and
as we will see in more detail later), they have better stability properties than, say
AB methods, and are therefore better suited for stiff problems.

Example The Matlab script StiffDemo.m compares the performance of the second-
order BDF method with that of the second-order AB method for the linear — but stiff
— ODE system

y′(t) =
[
−10 1
0 −1

]
y, y(0) =

[
1
1

]
.

The solution to this problem is

y(t) =
[

1
9e
−t + 8

9e
−10t

e−t

]
,

and the presence of the two different scales in the first component of the solution is
what makes this problem stiff. We will discuss stiff problems in more detail in Section
4.
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