
3 Runge-Kutta Methods

In contrast to the multistep methods of the previous section, Runge-Kutta methods
are single-step methods — however, with multiple stages per step. They are motivated
by the dependence of the Taylor methods on the specific IVP. These new methods do
not require derivatives of the right-hand side function f in the code, and are therefore
general-purpose initial value problem solvers. Runge-Kutta methods are among the
most popular ODE solvers. They were first studied by Carle Runge and Martin Kutta
around 1900. Modern developments are mostly due to John Butcher in the 1960s.

3.1 Second-Order Runge-Kutta Methods

As always we consider the general first-order ODE system

y′(t) = f(t,y(t)). (42)

Since we want to construct a second-order method, we start with the Taylor expansion

y(t+ h) = y(t) + hy′(t) +
h2

2
y′′(t) +O(h3).

The first derivative can be replaced by the right-hand side of the differential equation
(42), and the second derivative is obtained by differentiating (42), i.e.,

y′′(t) = f t(t,y) + fy(t,y)y′(t)
= f t(t,y) + fy(t,y)f(t,y),

with Jacobian fy. We will from now on neglect the dependence of y on t when it
appears as an argument to f . Therefore, the Taylor expansion becomes

y(t+ h) = y(t) + hf(t,y) +
h2

2
[f t(t,y) + fy(t,y)f(t,y)] +O(h3)

= y(t) +
h

2
f(t,y) +

h

2
[f(t,y) + hf t(t,y) + hfy(t,y)f(t,y)] +O(h3).(43)

Recalling the multivariate Taylor expansion

f(t+ h,y + k) = f(t,y) + hf t(t,y) + fy(t,y)k + . . .

we see that the expression in brackets in (43) can be interpreted as

f(t+ h,y + hf(t,y)) = f(t,y) + hf t(t,y) + hfy(t,y)f(t,y) +O(h2).

Therefore, we get

y(t+ h) = y(t) +
h

2
f(t,y) +

h

2
f(t+ h,y + hf(t,y)) +O(h3)

or the numerical method

yn+1 = yn + h

(
1
2
k1 +

1
2
k2

)
, (44)

56



with

k1 = f(tn,yn),
k2 = f(tn + h,yn + hk1).

This is the classical second-order Runge-Kutta method. It is also known as Heun’s
method or the improved Euler method.

Remark 1. The k1 and k2 are known as stages of the Runge-Kutta method. They
correspond to different estimates for the slope of the solution. Note that yn +hk1

corresponds to an Euler step with stepsize h starting from (tn,yn). Therefore, k2

corresponds to the slope of the solution one would get by taking one Euler step
with stepsize h starting from (tn,yn). The numerical method (44) now consists
of a single step with the average of the slopes k1 and k2.

2. The notation used here differs slightly from that used in the Iserles book. There
the stages are defined differently. I find the interpretation in terms of slopes more
intuitive.

3. We also saw earlier that the classical second-order Runge-Kutta method can be
interpreted as a predictor-corrector method where Euler’s method is used as the
predictor for the (implicit) trapezoidal rule.

We obtain general explicit second-order Runge-Kutta methods by assuming

y(t+ h) = y(t) + h
[
b1k̃1 + b2k̃2

]
+O(h3) (45)

with

k̃1 = f(t,y)
k̃2 = f(t+ c2h,y + ha21k̃1).

Clearly, this is a generalization of the classical Runge-Kutta method since the choice
b1 = b2 = 1

2 and c2 = a21 = 1 yields that case.
It is customary to arrange the coefficients aij , bi, and ci in a so-called Runge-Kutta

or Butcher tableaux as follows:

c A

bT .

Accordingly, the Butcher tableaux for the classical second-order Runge-Kutta method
is

0 0 0
1 1 0

1
2

1
2 .

57



Explicit Runge-Kutta methods are characterized by a strictly lower triangular ma-
trix A, i.e., aij = 0 if j ≥ i. Moreover, the coefficients ci and aij are connected by the
condition

ci =
ν∑

j=1

aij , i = 1, 2, . . . , ν.

This says that ci is the row sum of the i-th row of the matrix A. This condition is
required to have a method of order one, i.e., for consistency. We limit our discussion
to such methods now.

Thus, for an explicit second-order method we necessarily have a11 = a12 = a22 =
c1 = 0. We can now study what other combinations of b1, b2, c2 and a21 in (45) give
us a second-order method. The bivariate Taylor expansion yields

f(t+ c2h,y + ha21k̃1) = f(t,y) + c2hf t(t,y) + ha21fy(t,y)k̃1 +O(h2)
= f(t,y) + c2hf t(t,y) + ha21fy(t,y)f(t,y) +O(h2).

Therefore, the general second-order Runge-Kutta assumption (45) becomes

y(t+ h) = y(t) + h [b1f(t,y) + b2 {f(t,y) + c2hf t(t,y) + ha21fy(t,y)f(t,y)}] +O(h3)
= y(t) + (b1 + b2)hf(t,y) + b2h

2 [c2f t(t,y) + a21fy(t,y)f(t,y)] +O(h3).

In order for this to match the general Taylor expansion (43) we want

b1 + b2 = 1
c2b2 = 1

2
a21b2 = 1

2 .

Thus, we have a system of three nonlinear equations for our four unknowns. One
popular solution is the choice b1 = 0, b2 = 1, and c2 = a21 = 1

2 . This leads to
the modified Euler method (sometimes also referred to as the midpoint rule, see the
discussion in Section 3.3 below)

yn+1 = yn + hk2

with

k1 = f(tn,yn)

k2 = f(tn +
h

2
,yn +

h

2
k1).

Its Butcher tableaux is of the form

0 0 0
1
2

1
2 0
0 1.

Remark The choice b1 = 1, b2 = 0 leads to Euler’s method. However, since now
c2b2 6= 1

2 and a21b2 6= 1
2 this method does not have second-order accuracy.

58



General explicit Runge-Kutta methods are of the form

yn+1 = yn + h
ν∑

j=1

bjkj

with

k1 = f(tn,yn)
k2 = f(tn + c2h,yn + a21hk1)

...

kν = f(tn + cνh,yn + h
ν−1∑
j=1

aν,jkj).

Determination of the coefficients is rather complicated. We now describe (without
derivation) the most famous Runge-Kutta method.

3.2 Fourth-Order Runge-Kutta Methods

The classical method is given by

yn+1 = yn + h

[
k1

6
+

k2

3
+

k3

3
+

k4

6

]
(46)

with

k1 = f(tn,yn)

k2 = f

(
tn +

h

2
,yn +

h

2
k1

)
k3 = f

(
tn +

h

2
,yn +

h

2
k2

)
k4 = f (tn + h,yn + hk3) .

Its Butcher tableaux is of the form

0 0 0 0 0
1
2

1
2 0 0 0

1
2 0 1

2 0 0
1 0 0 1 0

1
6

1
3

1
3

1
6 .

The local truncation error for this method is O(h5). It is also important to note
that the classical fourth-order Runge-Kutta method requires four evaluations of the
function f per time step.

Remark We saw earlier that in each time step of the second-order Runge-Kutta
method we need to perform two evaluations of f , and for a fourth-order method there
are four evaluations. More generally, one can observe the situation described in Table 4.

59



evaluations of f per time step 2 3 4 5 6 7 8 9 10 11
maximum order achievable 2 3 4 4 5 6 6 7 7 8

Table 4: Efficiency of Runge-Kutta methods.

These data imply that higher-order (> 4) Runge-Kutta methods are relatively
inefficient. Precise data for higher-order methods does not seem to be known. However,
certain higher-order methods may still be appropriate if we want to construct a Runge-
Kutta method which adaptively chooses the step size for the time step in order to keep
the local truncation error small (see Section 5).

3.3 Connection to Numerical Integration Rules

We now illustrate the connection of Runge-Kutta methods to numerical integration
rules.

As before, we consider the IVP

y′(t) = f(t,y(t))
y(t0) = y0

and integrate both sides of the differential equation from t to t+ h to obtain

y(t+ h)− y(t) =
∫ t+h

t
f(τ,y(τ))dτ. (47)

Therefore, the solution to our IVP can be obtained by solving the integral equation
(47). Of course, we can use numerical integration to do this:

1. Using the left endpoint method∫ b

a
f(x)dx ≈ b− a

n︸ ︷︷ ︸
=h

n−1∑
i=0

f(xi)

on a single interval, i.e., with n = 1, and a = t, b = t+ h we get∫ t+h

t
f(τ,y(τ))dτ ≈ t+ h− t

1
f(τ0,y(τ0))

= hf(t,y(t))

since τ0 = t, the left endpoint of the interval. Thus, as we saw earlier, (47) is
equivalent to Euler’s method.

2. Using the trapezoidal rule∫ b

a
f(x)dx ≈ b− a

2
[f(a) + f(b)]

with a = t and b = t+ h gives us∫ t+h

t
f(τ,y(τ))dτ ≈ h

2
[f(t,y(t)) + f(t+ h,y(t+ h))] .

60



The corresponding IVP solver is therefore

yn+1 = yn +
h

2
f(tn,yn) +

h

2
f(tn+1,yn+1).

Note that this is not equal to the classical second-order Runge-Kutta method
since we have a yn+1 term on the right-hand side. This means that we have an
implicit method. In order to make the method explicit we can use Euler’s method
to replace yn+1 on the right-hand side by

yn+1 = yn + hf(tn,yn).

Then we end up with the method

yn+1 = yn +
h

2
f(tn,yn) +

h

2
f(tn+1,yn + hf(tn,yn))

or

yn+1 = yn + h

[
1
2
k1 +

1
2
k2

]
with

k1 = f(tn,yn)
k2 = f(tn + h,yn + hk1),

i.e., the classical second-order Runge-Kutta method.

3. The midpoint integration rule∫ b

a
f(x)dx ≈ (b− a)f((a+ b)/2)

with a = t, b = t+ 2h gives us∫ t+2h

t
f(τ,y(τ))dτ ≈ 2hf(t+ h,y(t+ h)).

Thus, we have the explicit midpoint rule

yn+2 = yn + 2hf(tn+1,yn+1).

This is not a Runge-Kutta method. It is an explicit 2-step method. In the
context of PDEs this method reappears as the leapfrog method. As mentioned
above, sometimes the modified Euler method

yn+1 = yn + hf(tn +
h

2
,yn +

h

2
f(tn,yn)).

is called the midpoint rule. This can be explained by applying the midpoint
integration rule with a = t and b = t+ h. Then we have∫ t+h

t
f(τ,y(τ))dτ ≈ hf(t+

h

2
,y(t+

h

2
)).

If we represent y(t+ h
2 ) by its Euler approximation y(t)+ h

2f(t,y), then we arrive
at the modified Euler method stated above.

61



4. Simpson’s rule yields the fourth-order Runge-Kutta method in case there is no
dependence of f on y.

5. Gauss quadrature leads to so-called Gauss-Runge-Kutta or Gauss-Legendre meth-
ods. One such method is the implicit midpoint rule

yn+1 = yn + hf(tn +
h

2
,
1
2
(yn + yn+1))

encountered earlier. The Butcher tableaux for this one-stage order two method
is given by

1
2

1
2

1.

Note that the general implicit Runge-Kutta method is of the form

yn+1 = yn + h

ν∑
j=1

bjkj

with

kj = f(tn + cjh,yn + h

j∑
i=1

aj,iki)

for all values of j = 1, . . . , ν. Thus, the implicit midpoint rule corresponds to

yn+1 = yn + hk1

with
k1 = f(tn +

h

2
,yn +

h

2
k1)

— obviously an implicit method.

6. More general implicit Runge-Kutta methods exist. However, their construction is
more difficult, and can sometimes be linked to collocation methods. Some details
are given at the end of Chapter 3 in the Iserles book.

62


