
8 Boundary Value Problems for PDEs

Before we specialize to boundary value problems for PDEs — which only make sense
for elliptic equations — we need to explain the terminology “elliptic”.

8.1 Classification of Partial Differential Equations

We therefore consider general second-order partial differential equations (PDEs) of the
form

Lu = autt + buxt + cuxx + f = 0, (75)

where u is an unknown function of x and t, and a, b, c, and f are given functions. If
these functions depend only on x and t, then the PDE (75) is called linear. If a, b, c,
or f depend also on u, ux, or ut, then the PDE is called quasi-linear.

Remark 1. The notation used in (75) suggests that we think of one of the variables,
t, as time, and the other, x, as space.

2. In principle, we could also have second-order PDEs involving more than one space
dimension. However, we limit the discussion here to PDEs with a total of two
independent variables.

3. Of course, a second-order PDE can also be independent of time, and contain
two space variables only (such as Laplace’s equation). These will be the elliptic
equations we are primarily interested in.

There are three fundamentally different types of second-order quasi-linear PDEs:

• If b2 − 4ac > 0, then L is hyperbolic.

• If b2 − 4ac = 0, then L is parabolic.

• If b2 − 4ac < 0, then L is elliptic.

Example 1. The wave equation

utt = α2uxx + f(x, t)

is a second-order linear hyperbolic PDE since a ≡ 1, b ≡ 0, and c ≡ −α2, so that

b2 − 4ac = 4α2 > 0.

2. The heat or diffusion equation
ut = kuxx

is a second-order quasi-linear parabolic PDE since a = b ≡ 0, and c ≡ −k, so
that

b2 − 4ac = 0.

89

3. For Poisson’s equation (or Laplace’s equation in case f ≡ 0)

uxx + uyy = f(x, y)

we use y instead of t. This is a second-order linear elliptic PDE since a = c ≡ 1
and b ≡ 0, so that

b2 − 4ac = −4 < 0.

Remark In cases where a, b, and c depend on x, t, u, ux, and ut the classification of
the PDEs above may even vary from point to point.

8.2 Boundary Value Problems for Elliptic PDEs: Finite Differences

We now consider a boundary value problem for an elliptic partial differential equation.
The discussion here is similar to Section 7.2 in the Iserles book.

We use the following Poisson equation in the unit square as our model problem,
i.e.,

∇2u = uxx + uyy = f(x, y), (x, y) ∈ Ω = (0, 1)2,
u(x, y) = φ(x, y), (x, y) on ∂Ω. (76)

This problem arises, e.g., when we want to determine the steady-state temperature
distribution u in a square region with prescribed boundary temperature φ. Of course,
this simple problem can be solved analytically using Fourier series.

However, we are interested in numerical methods. Therefore, in this section, we use
the usual finite difference discretization of the partial derivatives, i.e.,

uxx(x, y) =
1
h2

[u(x+ h, y)− 2u(x, y) + u(x− h, y)] +O(h2) (77)

and
uyy(x, y) =

1
h2

[u(x, y + h)− 2u(x, y) + u(x, y − h)] +O(h2). (78)

The computational grid introduced in the domain Ω = [0, 1]2 is now

(xk, y`) = (kh, `h), k, ` = 0, . . . ,m+ 1,

with mesh size h = 1
m+1 .

Using the compact notation

uk,` = u(xk, y`), uk+1,` = u(xk + h, y`), etc.,

the Poisson equation (76) turns into the difference equation

1
h2

[uk−1,` − 2uk,` + uk+1,`] +
1
h2

[uk,`−1 − 2uk,` + uk,`+1] = fk,`. (79)

This equation can be rewritten as

4uk,` − uk−1,` − uk+1,` − uk,`−1 − uk,`+1 = −h2fk,`. (80)

90

Example Let’s consider a computational mesh of 5× 5 points, i.e., h = 1
4 , or m = 3.

Discretizing the boundary conditions in (76), the values of the approximate solution
around the boundary

u0,`, u4,` ` = 0, . . . , 4,
uu,0, uk,4 k = 0, . . . , 4,

are determined by the appropriate values of φ. There remain 9 points in the interior of
the domain that have to be determined using the stencil (80). Figure 6 illustrates one
instance of this task. By applying the stencil to each of the interior points, we obtain
9 conditions for the 9 undetermined values.

0.0

0.0

0.25 0.5 0.75

0.25

1.0

1.0

0.5

0.75

Figure 6: Illustration of finite difference method for Poisson equation on 5 × 5 grid.
Interior mesh points are indicated with blue ◦, green + correspond to given boundary
values, and points marked with red ♦ form a typical stencil.

Thus, we obtain the following 9 equations

4u1,1 − u2,1 − u1,2 = u0,1 + u1,0 − h2f1,1

4u2,1 − u1,1 − u3,1 − u2,2 = u2,0 − h2f2,1

4u3,1 − u2,1 − u3,2 = u4,1 + u3,0 − h2f3,1

4u1,2 − u2,2 − u1,1 − u1,3 = u0,2 − h2f1,2

4u2,2 − u1,2 − u3,2 − u2,1 − u2,3 = −h2f2,2

4u3,2 − u2,2 − u3,1 − u3,3 = u4,2 − h2f3,2

4u1,3 − u2,3 − u1,2 = u1,4 + u0,3 − h2f1,3

4u2,3 − u1,3 − u3,3 − u2,2 = u2,4 − h2f2,3

4u3,3 − u2,3 − u3,2 = u4,3 + u3,4 − h2f3,3.

The first equation corresponds to the stencil shown in Figure 6. The other equations
are obtained by moving the stencil row-by-row across the grid from left to right.

91

We can also write the above equations in matrix form. To this end we introduce
the vector

u = [u1,1, u2,1, u3,1, u1,2, u2,2, u3,2, u1,3, u2,3, u3,3]T

of unknowns. Here we have used the natural (row-by-row) ordering of the mesh points.
Then we get

Au = b

with

A =



 4 −1 0
−1 4 −1
0 −1 4

  −1 0 0
0 −1 0
0 0 −1

  0 0 0
0 0 0
0 0 0


 −1 0 0

0 −1 0
0 0 −1

  4 −1 0
−1 4 −1
0 −1 4

  −1 0 0
0 −1 0
0 0 −1


 0 0 0

0 0 0
0 0 0

  −1 0 0
0 −1 0
0 0 −1

  4 −1 0
−1 4 −1
0 −1 4




and

b =



u0,1 + u1,0 − h2f1,1

u2,0 − h2f2,1

u4,1 + u3,0 − h2f3,1

u0,2 − h2f1,2

−h2f2,2

u4,2 − h2f3,2

u1,4 + u0,3 − h2f1,3

u2,4 − h2f2,3

u4,3 + u3,4 − h2f3,3


.

We can see that A is a block-tridiagonal matrix of the form

A =

 T −I O
−I T −I
O −I T

 .
In general, for problems with m ×m interior mesh points, A will be of size m2 ×m2

(since there are m2 unknown values at interior mesh points), but contain no more than
5m2 nonzero entries (since equation (80) involves at most 5 points at one time). Thus,
A is a classical example of a sparse matrix. Moreover, A still has a block-tridiagonal
structure

A =



T −I O . . . O

−I T −I
...

O
. O

... −I T −I
O . . . O −I T



92

with m×m blocks

T =



4 −1 0 . . . 0

−1 4 −1
...

0
. 0

... −1 4 −1
0 . . . 0 −1 4


as well as m×m identity matrices I, and zero matrices O.

Remark 1. Since A is sparse (and symmetric positive definite) it lends itself to an
application of an iterative system solver such as Gauss-Seidel iteration. After
initializing the values at all mesh points (including those along the boundary) to
some appropriate value (in many cases zero will work), we can simply iterate with
formula (80), i.e., we obtain the algorithm fragment for M steps of Gauss-Seidel
iteration

for i = 1 to M do

for k = 1 to m do
for ` = 1 to m do

uk,` =
(
uk−1,` + uk+1,` + uk,`−1 + uk,`+1 − h2fk,`

)
/4

end
end

end

Note that the matrix A never has to be fully formed or stored during the com-
putation.

2. State-of-the-art algorithms for the Poisson (or homogeneous Laplace) equation are
so-called fast Poisson solvers based on the fast Fourier transform, or multigrid
methods.

While we know that at each gridpoint the Laplacian uxx + uyy is approximated by
finite differences with accuracy O(h2), one can show that (globally) the error is also of
order O(h2).

Theorem 8.1 The maximum pointwise error of the finite difference method with the
5-point stencil introduced above applied to the Poisson problem on a square, rectangular,
or L-shaped domain is given by

max
k,`=1,...,m

|u(xk, y`)− uk,`| ≤ Ch2, as h→ 0,

where u(xk, y`) is the exact solution at (xk, y`), and uk,` is the corresponding approxi-
mate solution obtained by the finite difference method.

We emphasize that this estimate holds only for the type of domains specified in the
theorem. If the stencil does not match the domain exactly, then we need to use special
boundary correction terms to maintain O(h2) accuracy (more details are given in the
Iserles book on pages 121/122).

93

