
9 Boundary Value Problems: Collocation

We now present a different type of numerical method that will yield the approximate
solution of a boundary value problem in the form of a function, as opposed to the
set of discrete points resulting from the methods studied earlier. Just like the finite
difference method, this method applies to both one-dimensional (two-point) boundary
value problems, as well as to higher-dimensional elliptic problems (such as the Poisson
problem).

We initially limit our discussion to the one-dimensional case. Assume we are given
a general linear two-point boundary value problem of the form

Ly(t) = f(t), t ∈ [a, b],
y(a) = α, y(b) = β. (81)

To keep the discussion as general as possible, we now let

V = span{v1, . . . , vn}

denote an approximation space we wish to represent the approximate solution in. We
can think of V as being, e.g., the space of polynomials or splines of a certain degree,
or some radial basis function space (see more below).

We will express the approximate solution in the form

y(t) =
n∑

j=1

cjvj(t), t ∈ [a, b],

with unknown coefficients c1, . . . , cn. Since L is assumed to be linear we have

Ly =
n∑

j=1

cjLvj ,

and (81) becomes

n∑
j=1

cjLvj(t) = f(t), t ∈ [a, b], (82)

n∑
j=1

cjvj(a) = α,

n∑
j=1

cjvj(b) = β.

In order to determine the n unknown coefficients c1, . . . , cn in this formulation we
impose n collocation conditions to obtain an n × n system of linear equations for the
cj .

The last two equations in (82) ensure that the boundary conditions are satisfied,
and give us the first two collocation equations. To obtain the other n − 2 equations
we choose n − 2 collocation points t2, . . . , tn−1, at which we enforce the differential
equation. As in the previous numerical methods, this results in a discretization of the
differential equation.
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If we let t1 = a and tn = b, then (82) becomes

n∑
j=1

cjvj(t1) = α,

n∑
j=1

cjLvj(ti) = f(ti), i = 2, . . . , n− 1,

n∑
j=1

cjvj(tn) = β.

In matrix form we have the linear system
v1(t1) v2(t1) . . . vn(t1)
Lv1(t2) Lv2(t2) . . . Lvn(t2)

...
...

Lv1(tn−1) Lv2(tn−1) . . . Lvn(tn−1)
v1(tn) v2(tn) . . . vn(tn)



c1
c2
...
cn

 =


α

f(t2)
...

f(tn−1)
β

 . (83)

If the space V and the collocation points ti, i = 1, . . . , n, are chosen such that the
collocation matrix in (83) is nonsingular then we can represent an approximate solution
of (81) from the space V uniquely as

y(t) =
n∑

j=1

cjvj(t), t ∈ [a, b].

Remark Note that this provides the solution in the form of a function that can be
evaluated anywhere in [a, b]. No additional interpolation is required as was the case
with the earlier methods.

9.1 Radial Basis Functions for Collocation

The following discussion will apply to any sufficiently smooth admissible radial basic
function. However, other basis functions such as polynomials or splines are also fre-
quently used for collocation. In particular, the use of polynomials leads to so-called
spectral or pseudo-spectral methods (see Chapter 11).

To initially keep our discussion as specific as possible we will choose the multiquadric
basic function

φ(r) =
√
r2 + σ2, σ > 0,

with r = | ·−t| the distance from a fixed center t. If we center one multiquadric at each
of the collocation points tj , j = 1, . . . , n, then the approximation space becomes

V = span{φ(| · −tj |), j = 1, . . . , n}.
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Now the system (83) becomes
φ(|t1 − t1|) φ(|t1 − t2|) . . . φ(|t1 − tn|)
Lφ(|t2 − t1|) Lφ(|t2 − t2|) . . . Lφ(|t2 − tn|)

...
...

Lφ(|tn−1 − t1|) Lφ(|tn−1 − t2|) . . . Lφ(|tn−1 − tn|)
φ(|tn − t1|) φ(|tn − t2|) . . . φ(|tn − tn|)



c1
c2
...
cn

 =


α

f(t2)
...

f(tn−1)
β

 .
(84)

To get a better feel for this system we consider an example.

Example Let the differential operator L be given by

Ly(t) = y′′(t) + wy′(t) + vy(t),

and φ denote the multiquadric radial basic function. Then

Lφ(|t− τ |) = φ′′(|t− τ |) + wφ′(|t− τ |) + vφ(|t− τ |)

with

φ′(|t− τ |) =
d

dt
φ(|t− τ |)

=
d

dt

√
|t− τ |2 + σ2

=
t− τ√

|t− τ |2 + σ2

and

φ′′(|t− τ |) =
d

dt
φ′(|t− τ |)

=
d

dt

t− τ√
|t− τ |2 + σ2

=

√
|t− τ |2 + σ2 − (t−τ)2√

|t−τ |2+σ2

|t− τ |2 + σ2

=
σ2

(|t− τ |2 + σ2)3/2
.

Therefore, we get

Lφ(|t− τ |) =
σ2

(|t− τ |2 + σ2)3/2
+ w

t− τ√
|t− τ |2 + σ2

+ v
√
|t− τ |2 + σ2,

and the collocation matrix has entries of this type in rows 2 through n− 1 with τ = tj ,
j = 2, . . . , n− 1.

This method was suggested by Kansa (1990) and is one of the most popular ap-
proaches for solving boundary value problems with radial basis functions. The popu-
larity of this method is due to the fact that it is simple to implement and it generalizes
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in a straightforward way to boundary value problems for elliptic partial differential
equations in higher space dimensions.

For example, if we are given a domain Ω ⊂ Rs, and a linear elliptic partial differential
equation of the form

Lu(x) = f(x), x in Ω, (85)

with, e.g., Dirichlet boundary conditions

u(x) = g(x), x on ∂Ω. (86)

Then, for Kansa’s collocation method, we represent the approximate solution û by a
radial basis function expansion of the form

û(x) =
N∑

j=1

cjφ(‖x− ξj‖). (87)

As in the 1D-discussion above we formally distinguish in our notation between centers
Ξ = {ξ1, . . . , ξN} and collocation points X = {x1, . . . ,xN} ⊂ Ω even though these
point sets will frequently coincide in practice. We will illustrate an example where
Ξ 6= X at the end of this section. For the following discussion, however, we assume the
simplest possible setting, i.e., , Ξ = X .

The collocation matrix that arises when matching the differential equation (85) and
the boundary conditions (86) at the collocation points X will be of the form

A =
[
ÃL

Ã

]
, (88)

where the two blocks are generated as follows:

(ÃL)ij = Lφ(‖x− ξj‖)|x=xi , xi ∈ I, ξj ∈ Ξ,
Ãij = φ(‖xi − ξj‖), xi ∈ B, ξj ∈ Ξ.

Here the set X of collocation points is split into a set I of interior points, and a set
B of boundary points. The problem is well-posed if the linear system Ac = y, with y
a vector consisting of entries f(xi), xi ∈ I, followed by g(xi), xi ∈ B, has a unique
solution.

We note that a change in the boundary conditions (86) is as simple as making
changes to a few rows of the matrix A in (88) as well as on the right-hand side y.

Remark 1. It was not known for a long time whether the matrix for this kind of
radial basis function collocation was nonsingular for an arbitrary choice of basic
function and arbitrary collocation points. However, recently Hon and Schaback
(2001) showed that there exist configurations of collocation points (in the elliptic
PDE setting in R2) for which the matrix will be singular for many of the most
popular radial basic functions. On the other, while such configurations do exist
they seem to be very rare.

2. This collocation method is closely related to a pseudospectral method (see Chap-
ter 11) based on radial basis functions instead of polynomials.
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It is obvious that the matrix in (84) or (88) is not symmetric. This means that
many efficient linear algebra subroutines cannot be employed in its solution. Another
approach to radial basis function collocation which yields a symmetric matrix was
suggested by Fasshauer (1997).

We again begin our discussion of this method with the one-dimensional boundary
value problem (81). However, now we use a different approximation space, namely

V = span{φ(| · −t1|), φ(| · −tn|)} ∪ span{L(2)φ(| · −tj |), j = 2, . . . , n− 1}.

Here the operator L(2) is identical to L, but acts on φ as a function of the second
variable tj .

Since the approximate solution is now of the form

y(t) = c1φ(|t− t1|) +
n−1∑
j=2

cjL
(2)φ(|t− tj |) + cnφ(|t− tn|) (89)

we need to look at the collocation system one more time.
We start with (82), which — based on (89) — now becomes

c1φ(|a− t1|) +
n−1∑
j=2

cjL
(2)φ(|a− tj |) + cnφ(|a− tn|) = α,

c1Lφ(|t− t1|) +
n−1∑
j=2

cjLL
(2)φ(|t− tj |) + cnLφ(|t− tn|) = f(t), t ∈ [a, b],

c1φ(|b− t1|) +
n−1∑
j=2

cjL
(2)φ(|b− tj |) + cnφ(|b− tn|) = β.

If we enforce the collocation conditions at the interior points t2, . . . , tn−1, then we
get the system of linear equations

φ(|a− t1|) L(2)φ(|a− t2|) . . . L(2)φ(|a− tn−1|) φ(|a− tn|)
Lφ(|t2 − t1|) LL(2)φ(|t2 − t2|) . . . LL(2)φ(|t2 − tn−1|) Lφ(|t2 − tn|)

...
...

Lφ(|tn−1 − t1|) LL(2)φ(|tn−1 − t2|) . . . LL(2)φ(|tn−1 − tn−1|) Lφ(|tn−1 − tn|)
φ(|b− t1|) L(2)φ(|b− t2|) . . . L(2)φ(|b− tn−1|) φ(|b− tn|)

×

×


c1
c2
...

cn−1

cn

 =


α

f(t2)
...

f(tn−1)
β

 . (90)

Remark 1. The matrix in (90) is symmetric as claimed earlier. This is obvious
if L is a differential operator of even order. For odd-order terms one can see
that while differentiation with respect to the second variable introduces a sign
change, this sign change is canceled by an interchange of the arguments so that
Lφ(|ti − tj |) = L(2)φ(|tj − ti|) (see the example below).
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2. Depending on whether globally or locally supported radial basis functions are
being used, we can now employ efficient linear solvers, such as Cholesky factor-
ization or the conjugate gradient method, to solve this system.

3. The most important advantage of the symmetric collocation method over the
non-symmetric one proposed by Kansa is that one can prove that the collocation
matrix in the symmetric case is nonsingular for all of the standard radial basis
functions and any choice of distinct collocation points.

4. Another benefit of using the symmetric form is that it is possible to give conver-
gence order estimates for this case (see Theorem 9.1 below).

5. Since terms of the form LL(2)φ are used, the symmetric collocation method has
the disadvantage that it requires higher smoothness. Moreover, computing and
coding these terms is more complicated than for the non-symmetric collocation
method.

Example We again consider the differential operator L given by

Ly(t) = y′′(t) + wy′(t) + vy(t),

and multiquadrics. Then

L(2)φ(|t− τ |) =
d2

dτ2
φ(|t− τ |) + w

d

dτ
φ(|t− τ |) + vφ(|t− τ |)

=
σ2

(|t− τ |2 + σ2)3/2
− w t− τ√

|t− τ |2 + σ2
+ v
√
|t− τ |2 + σ2,

which is almost the same as Lφ(|t − τ |) in the earlier example except for the sign
difference in the first derivative term. The higher-order terms are rather complicated.
In the special case w = v = 0 we get

LL(2)φ(|t− τ |) =
15(t− τ)2σ2

(|t− τ |2 + σ2)7/2
− 3σ2

(|t− τ |2 + σ2)5/2
+

σ2

(|t− τ |2 + σ2)3/2
.

In order to solve the higher-dimensional Dirichlet problem (85-86) with the sym-
metric collocation approach we use the expansion

û(x) =
NI∑
j=1

cjL
(2)ϕ(‖x− ξ‖)|ξ=ξj

+
N∑

j=NI+1

cjϕ(‖x− ξj‖). (91)

Here NI denotes the number of nodes in the interior of Ω, and L(2) is the differential
operator used in the differential equation (85), but acting on ϕ viewed as a function of
the second argument, i.e., , Lϕ is equal to L(2)ϕ up to a possible difference in sign.

After enforcing the collocation conditions

Lû(xi) = f(xi), xi ∈ I,
û(xi) = g(xi), xi ∈ B,
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we end up with a collocation matrix A that is of the form

A =
[
ÂLL(2) ÂL

ÂL(2) Â

]
. (92)

Here the four blocks are generated as follows:

(ÂLL(2))ij = LL(2)ϕ(‖x− ξ‖)|x=xi,ξ=ξj
, xi, ξj ∈ I,

(ÂL)ij = Lϕ(‖x− ξj‖)|x=xi , xi ∈ I, ξj ∈ B,
(ÂL(2))ij = L(2)ϕ(‖xi − ξ‖)|ξ=ξj

, xi,∈ B, ξj ∈ I,
Âij = ϕ(‖xi − ξj‖), xi, ξj ∈ B.

Note that we have identified the two sets X = I ∪ B of collocation points and Ξ of
centers.

9.2 A Convergence Result

In the book “Scattered Data Approximation” by Holger Wendland one can find the
following convergence result for the symmetric collocation method in arbitrarily many,
s, space dimensions:

Theorem 9.1 Let Ω ⊆ Rs be a polygonal and open region. Let L 6= 0 be a second-order
linear elliptic differential operator with coefficients in C2(k−2)(Ω̄) that either vanish on
Ω̄ or have no zero there. Suppose that Φ ∈ C2k(Rs) is a strictly positive definite
function. Suppose further that the boundary value problem

Lu = f in Ω,
u = g on ∂Ω

has a unique solution u ∈ NΦ(Ω) for given f ∈ C(Ω) and g ∈ C(∂Ω). Let û be the
approximate collocation solution of the form

û(x) =
NI∑
j=1

cjL
(2)φ(‖x− ξ‖)|ξ=ξj

+
N∑

j=NI+1

cjφ(‖x− ξj‖).

based on Φ = φ(‖ · ‖). Then

‖u− û‖L∞(Ω) ≤ Chk−2‖u‖NΦ(Ω)

for all sufficiently small h, where h is the larger of the fill distances in the interior and
on the boundary of Ω, respectively.

In order to understand this theorem we need to dig a little deeper into meshfree
approximation methods. In particular, we need to understand the concepts of

• a strictly positive definite function,

• the native space NΦ(Ω) of a given strictly positive definite function Φ, and

100



• the fill distance of a set of points in Rs.

Definition 9.2 A real-valued continuous function Φ is positive definite on Rs if and
only if it is even and

N∑
j=1

N∑
k=1

cjckΦ(xj − xk) ≥ 0 (93)

for any N pairwise different points x1, . . . ,xN ∈ Rs, and c = [c1, . . . , cN ]T ∈ RN .
The function Φ is strictly positive definite on Rs if the quadratic form (93) is zero

only for c ≡ 0.

In order to introduce the concept of the native space of a strictly positive definite
function we actually consider strictly positive definite kernels K which we can think of
begin connected to the radial basic function φ by K(x,y) = Φ(x − y) = φ(‖x − y‖).
Native spaces are in fact reproducing kernel Hilbert spaces H, i.e., real Hilbert function
spaces with a reproducing kernel K : Ω×Ω→ R and inner product 〈·, ·〉H. In particular,
the reproducing kernel K satisfies

1. K(·,x) ∈ H for all x ∈ Ω,

2. f(x) = 〈f,K(·,x)〉H for all f ∈ H and all x ∈ Ω.

It is this second reproducing property that inspires the name reproducing kernel.
In order to understand the native space of a strictly positive definite function Φ(·−

·) = K(·, ·) we now consider the space HK(Ω) of all functions f of the form

f =
NK∑
j=1

cjK(·,xj)

provided xj ∈ Ω. Here NK =∞ is allowed. Next we define a bilinear form 〈·, ·〉K by

〈f, g〉K = 〈
NK∑
j=1

cjK(·,xj),
NK∑
k=1

dkK(·,yk)〉K =
NK∑
j=1

NK∑
k=1

cjdkK(xj ,yk).

which induces a norm ‖f‖2K = 〈f, f〉K . One can then show

Theorem 9.3 If K : Ω× Ω→ R is a symmetric strictly positive definite kernel, then
the bilinear form 〈·, ·〉K defines an inner product on HK(Ω). Furthermore, HK(Ω) is a
pre-Hilbert space with reproducing kernel K.

Furthermore, since we just established that HK(Ω) is a pre-Hilbert space, i.e., , need
not be complete, we now define the native space NK(Ω) of K to be the completion of
HK(Ω) with respect to the K-norm ‖ ·‖K so that ‖f‖K = ‖f‖NK(Ω) for all f ∈ HK(Ω).
The details of this construction are too involved to be discussed here.

It turns out that some radial basic functions have very “natural” native spaces,
while the native space for other radial basic functions is rather small.

Example 1. Multiquadrics φ(r) =
√
r2 + σ2, inverse multiquadrics φ(r) = 1/sqrtr2 + σ2

and Gaussians φ(r) = e−σ2r2
have very small native spaces.
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2. Matérn functions or Sobolev splines φ(r) =
Kβ− s

2
(r)rβ− s

2

2β−1Γ(β)
, β > s

2 have Sobolev
spaces as their native spaces. Here Kν is the modified Bessel function of the
second kind.

3. Polyharmonic splines φ(r) = rβ, 0 < β /∈ 2N or φ(r) = r2β log r, β ∈ N have so-
called Beppo-Levi spaces (or homogeneous Sobolev spaces) as their native spaces.

One uses the fill distance as a one way to measure the data distribution in higher-
dimensional spaces. The fill distance is usually defined as

h = hX ,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖2, (94)

and it indicates how well the data in the set X fill out the domain Ω. A geometric
interpretation of the fill distance is given by the radius of the largest possible empty
ball that can be placed among the data locations inside Ω (see Figure 7 for a 2D
illustration). Sometimes the synonym covering radiusis used. Figure 7 illustrates the
fill distance for a set of 25 Halton points. Note that in this case the largest “hole” in
the data is near the boundary.

0 0.2 0.4 0.6 0.8 1
0
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0.4
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x

y

Figure 7: The fill distance for N = 25 Halton points (hX ,Ω ≈ 0.2667).

As a consequence of the proof of the convergence theorem (Theorem 9.1) Wendland
suggests that the collocation points and centers be chosen so that the fill distance on
the boundary is smaller than in the interior since the approximation orders differ by a
factor ` (for differential operators of order `). More precisely, he suggests distributing
the points so that

hk−`
I,Ω ≈ h

k
B,∂Ω.

More on radial basis function collocation methods is discussed in my book “Meshfree
Approximation Methods with MATLAB”.

Some numerical evidence for convergence rates of the symmetric collocation method
is given by the following two-dimensional examples.
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Example In the MATLAB script KansaLaplace 2D.m we solve the PDE

∇2u(x, y) = −5
4
π2 sin(πx) cos

(πy
2

)
, (x, y) ∈ Ω = [0, 1]2,

u(x, y) = sin(πx), (x, y) ∈ Γ1,

u(x, y) = 0, (x, y) ∈ Γ2,

where Γ1 = {(x, y) : 0 ≤ x ≤ 1, y = 0} and Γ2 = ∂Ω \ Γ1. As can easily be verified,
the exact solution is given by

u(x, y) = sin(πx) cos
(πy

2

)
.

In Tables 6 and 7 we list RMS-errors and condition numbers for the non-symmetric
collocation solution of the PDE problem above. In Table 6 and the right part of
Table 7 we present results for collocation with inverse multiquadric RBFs using a shape
parameter of σ = 3, N = 289 interior, and an additional 64 boundary collocation points.
In Table 6 the interior points are irregularly spaced Halton points, while in Table 7
we use uniformly spaced interior points. The boundary centers are placed outside the
domain for the results in Table 7. In Table 6 we compare the effect of placing the
boundary centers directly on the boundary (coincident with the boundary collocation
points) as opposed to placement outside the domain.

N centers on boundary centers outside

(interior points) RMS-error cond(A) RMS-error cond(A)

9 5.642192e-002 5.276474e+002 6.029293e-002 4.399608e+002
25 1.039322e-002 3.418858e+003 4.187975e-003 2.259698e+003
81 2.386062e-003 1.726995e+006 4.895870e-004 3.650369e+005
289 4.904715e-005 1.706884e+010 2.668524e-005 5.328110e+009
1089 3.676576e-008 1.446865e+018 1.946954e-008 5.015917e+017

Table 6: Non-symmetric collocation solution with IMQs, σ = 3 and interior Halton
points.

The left part of Table 7 compares the use of Gaussians (with the same shape
parameter σ = 3) to inverse multiquadrics.

Several observations can be made by looking at Tables 6 and 7. The use of Halton
points instead of uniform points seems to be beneficial since both the errors and the
condition numbers are smaller (cf. the right part of Table 6 vs. the right part of Table 7).
Placement of the boundary centers outside the domain seems to be advantageous since
again both the errors and the condition numbers decrease (cf. Table 6). Also, the last
row of Table 7 seems to indicate that Gaussians are more prone to ill-conditioning than
inverse multiquadrics.

Of course, these are rather superficial observations based on only a few numerical
experiments. For many of these claims there is no theoretical foundation, and many
more experiments would be needed to make a more conclusive statement (for example,
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N Gaussian IMQ

(interior points) RMS-error cond(A) RMS-error cond(A)

3× 3 1.981675e-001 1.258837e+003 1.526456e-001 2.794516e+002
5× 5 7.199931e-003 4.136193e+003 6.096534e-003 2.409431e+003
9× 9 1.947108e-004 2.529708e+010 8.071271e-004 8.771630e+005

17× 17 4.174290e-008 5.335000e+019 3.219110e-005 5.981238e+010
33× 33 1.408750e-005 7.106505e+020 1.552047e-007 1.706638e+020

Table 7: Non-symmetric collocation solution with Gaussians and IMQs, σ = 3 and
uniform interior points and boundary centers outside the domain.

no attempt was made here to find the best approximations, i.e., , optimize the value
of the shape parameter). Also, one could experiment with different values of the shape
parameter on the boundary and in the interior.

Example The problem dealt with in the second script KansaLaplaceMixedBC 2D.m is

∇2u(x, y) = −5.4x, (x, y) ∈ Ω = [0, 1]2,
∂

∂n
u(x, y) = 0, (x, y) ∈ Γ1 ∪ Γ3,

u(x, y) = 0.1, (x, y) ∈ Γ2,

u(x, y) = 1, (x, y) ∈ Γ4,

where

Γ1 = {(x, y) : 0 ≤ x ≤ 1, y = 0},
Γ2 = {(x, y) : x = 1, 0 ≤ y ≤ 1},
Γ3 = {(x, y) : 0 ≤ x ≤ 1, y = 1},
Γ4 = {(x, y) : x = 0, 0 ≤ y ≤ 1}.

For this problem the exact solution is given by

u(x, y) = 1− 0.9x3.

In Table 8 we again compare the use of Gaussians and inverse multiquadrics on
a set of N = 9, 25, 81, 289 and 1089 interior Halton points (with additional boundary
centers outside the domain). As in the previous experiments the Gaussian solution is
slightly inferior in terms of stability for the same value of the shape parameter.

In the following two examples we illustrate the use of the symmetric collocation
method. The implementation is more complicated since we now also need fourth-order
derivatives of the basic function, i.e., for the Laplace problems discussed above we now
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N Gaussian IMQ

(interior points) RMS-error cond(A) RMS-error cond(A)

9 3.423330e-001 5.430073e+003 7.937403e-002 2.782348e+002
25 1.065826e-002 1.605086e+003 5.605445e-003 1.680888e+003
81 5.382387e-004 3.684159e+008 1.487160e-003 2.611650e+005
289 6.181855e-006 1.452124e+019 1.822077e-004 3.775455e+009
1089 2.060470e-006 1.628262e+021 1.822221e-007 3.155751e+017

Table 8: Non-symmetric collocation solution with Gaussians and IMQs, σ = 3 and
interior Halton points.

require also the differential operator

∇2
(2)∇

2 =
(
∂2

∂ξ2
+

∂2

∂η2

)(
∂2

∂x2
+

∂2

∂y2

)
=

(
∂2

∂ξ2
∂2

∂x2
+

∂2

∂η2

∂2

∂x2
+

∂2

∂ξ2
∂2

∂y2
+

∂2

∂η2

∂2

∂y2

)
=

(
∂4

∂x4
+ 2

∂4

∂x2y2
+

∂4

∂y4

)
,

where the simplification in the last line is justified since we are working with even-order
derivatives. For example, using the chain rule with r = ‖x−ξ‖ we get for various radial
basis functions in R2:

∇2
(2)∇

2e−(σr)2 = 16σ4
(
2− 4(σr)2 + (σr)4

)
e−(σr)2 , Gaussian

∇2
(2)∇

2 1√
1 + (σr)2

=
3σ4

(
3(σr)4 − 24(σr)2 + 8

)
(1 + (σr)2)9/2

, IMQ,

∇2
(2)∇

2
√

1 + (σr)2 =
σ4
(
(σr)4 + 8(σr)2 − 8

)
(1 + (σr)2)7/2

, MQ.

Example In the MATLAB script HermiteLaplace 2D.m we solve the same problem
as in KansaLaplace 2D.m. The same set of experiments as for the non-symmetric
Kansa method (see Tables 6 and 7) are displayed in Tables 9 and 10 for the symmetric
Hermite-based method.

We note that, as for the non-symmetric collocation method, inverse multiquadrics
with interior Halton points and exterior boundary centers seems to perform overall
slightly better than the other choices (i.e., , Gaussians, interior uniform points, or
boundary centers on the boundary).

It is remarkable how small the difference in performance between the symmetric
and non-symmetric approach is.

This example shows very high convergence rates as predicted by the estimate in
Theorem 9.1 when using infinitely smooth inverse multiquadrics on a problem that has
a smooth solution.
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N centers on boundary centers outside

(interior points) RMS-error cond(A) RMS-error cond(A)

9 1.869505e-001 9.055720e+003 2.438041e-001 3.549895e+004
25 7.698471e-002 8.506782e+004 9.429580e-002 1.162027e+005
81 4.839682e-003 1.338599e+007 5.070833e-003 1.017388e+007
289 4.480250e-005 9.991615e+010 3.448546e-005 7.180249e+010
1089 2.481407e-008 2.820823e+018 1.907000e-008 2.262777e+018

Table 9: Symmetric collocation solution with IMQs, σ = 3 and Halton points.

N Gaussian IMQ

(interior points) RMS-error cond(A) RMS-error cond(A)

3× 3 4.088188e-001 1.196486e+005 2.806897e-001 3.105155e+004
5× 5 7.704584e-003 1.359899e+005 1.583948e-001 1.216534e+005
9× 9 2.272289e-004 2.453107e+010 8.650782e-004 2.016503e+007

17× 17 5.271776e-008 4.338406e+021 3.962654e-005 6.051588e+011
33× 33 5.805757e-007 1.438258e+022 1.870210e-007 2.324115e+020

Table 10: Symmetric collocation solution with Gaussians and IMQs, ε = 3 and uniform
points with boundary centers outside the domain.

Example Instead of repeating the calculations for Example ??, we present a different
problem with piecewise defined boundary conditions.

∇2u(x, y) = 0, (x, y) ∈ Ω = (−1, 1)2,
u(x, y) = 0, (x, y) ∈ Γ1 ∪ Γ3 ∪ Γ5,

u(x, y) =
1
5

sin(3πy), (x, y) ∈ Γ2,

u(x, y) = sin4(πx), (x, y) ∈ Γ4,

where

Γ1 = {(x, y) : −1 ≤ x ≤ 1, y = −1},
Γ2 = {(x, y) : x = 1, −1 ≤ y ≤ 1},
Γ3 = {(x, y) : 0 ≤ x ≤ 1, y = 1},
Γ4 = {(x, y) : −1 ≤ x ≤ 0, y = 1},
Γ5 = {(x, y) : x = −1, 0 ≤ y ≤ 1}.

For this problem we do not have an exact solution available. However, this problem is
taken from [?] and we use the pseudospectral solution from there for comparison. We
will revisit this problem later when we discuss RBF-PS methods in Chapter ??.
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The definition of the boundary conditions in the MATLAB code for HermiteLaplaceMixedBCTref 2D.m
is similar to that for KansaLaplaceMixedBC 2D.m. However, now we are working on
the square [−1, 1]2 instead of [0, 1]2, and therefore slight adjustments are required. For
example, the collocation points have to be transformed, and the boundary centers have
to be offset from a different boundary.

9.3 Summarizing Remarks on the Symmetric and Non-Symmetric
RBF Collocation Methods

All in all, the non-symmetric (Kansa) method seems to perform just a little bit better
than the symmetric (Hermite) method (compare Tables 6 and 7 with Tables 9 and
10). For the same value of the shape parameter σ the errors as well as the condition
numbers are slightly smaller.

An advantage of the Hermite approach over Kansa’s method is that the collocation
matrices resulting from the Hermite approach are symmetric if all of the centers coincide
with the collocation points. Therefore the amount of computation can be reduced
considerably by using a solver for symmetric systems. Since Kansa’s method requires
fewer derivatives of the basic function it has the added advantages of being simpler
to implement and applicable to problems with less smooth solutions. Moreover, the
non-symmetric method is much simpler for problems with non-constant coefficients.
Furthermore, it is not clear how to deal with non-linear problems using the symmetric
method.

Another contraposition of the two methods appears in the context of pseudospectral
methods which we will discuss in a later chapter.
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