Math 577: Midterm — Tuesday, Oct. 17, 2006

1. TRUE or FALSE?

(a) An overdetermined linear least squares problem Ax = b always has a unique solution x
that minimizes the Euclidean norm of the residual vector r = b — Ax.
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b) A good algorithm will pl'O(thB an accurate solution I'BgaI’CHESS of the condition of the
\, g
pl'Obl(‘)I'Il bEiIlg solved.

F (c) Fitting a straight line to a set of data points is a linear least squares problem, whereas
fitting a quadratic polynomial to the data is a nonlinear least squares problem.

T (d) A problem is ill-conditioned if its solution is highly sensitive to small changes in the problem
data.

2. If A and B are m x m matrices, with A nonsingular, and ¢ is an m-vector, how would you
efficiently compute the product A='Be?
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3. Assume A € R™*" with rank(A4) = n. Show that ||A(ATA)"1AT |, = 1.
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4. Let V be the subspace of R? spanned by v; = [1 1 1]T and va = [1 0 — 1|7

(a) Find the orthogonal projection onto V.

(b) Find the point in V that is closest to z = [1 2 1|7 if measured in the 2-norm.
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5. Two matrices 4, B € R™*™ are called orthogonally equivalent if A = QBQ" for some orthogonal
matrix (.

{(a) Show that if A, B are orthogonally equivalent then they have the same singular values.

(b) Is the converse also true?
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6. Consider the 2 x 2 matrix
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a) Determine an SVD A = USVT of A,
b

(a)

! (b)

i (c) Find A~! using the SVD computed in (a).
)

What are the 1-, 2-, and oco-norms of A7

(d) What is the area of the ellipse onto which A maps the unit ball of B*? (Hint: The area of

Li 2

an ellipse given in normal form — +
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