1. TRUE or FALSE?

- (a) An overdetermined linear least squares problem $Ax \approx b$ always has a unique solution x that minimizes the Euclidean norm of the residual vector r = b Ax.
 - (b) A good algorithm will produce an accurate solution regardless of the condition of the problem being solved.
 - (c) Fitting a straight line to a set of data points is a linear least squares problem, whereas fitting a quadratic polynomial to the data is a nonlinear least squares problem.
 - (d) A problem is ill-conditioned if its solution is highly sensitive to small changes in the problem data.
 - 2. If A and B are $m \times m$ matrices, with A nonsingular, and c is an m-vector, how would you efficiently compute the product $A^{-1}Bc$?

Ux LU factoritation A=LU

and solve Ax=BC (=) x=A'BC

Thus x=A'Bc=) LUx=Bc

1) Solve Ly=B= for y (lower tray)
2) Solve Ux=y for x luppe triay)

Then x = A'Bc

3. Assume $A \in \mathbb{R}^{m \times n}$ with rank(A) = n. Show that $||A(A^TA)^{-1}A^T||_2 = 1$.

Use SVD A=UZV*, AT= VZU*

So A (ATA) AT = UZVT (VZUTUZVT) VZUT

= UEVT (V Z VT) 1 V S UT muz kbb, smy full rank

= V Z-2 VT

= UZ VTVZ-2 VTVZ UT

= UZZZZUT = UUT

So || A(ATAT) AT || = | UVT || = || UT || = || I || = 1

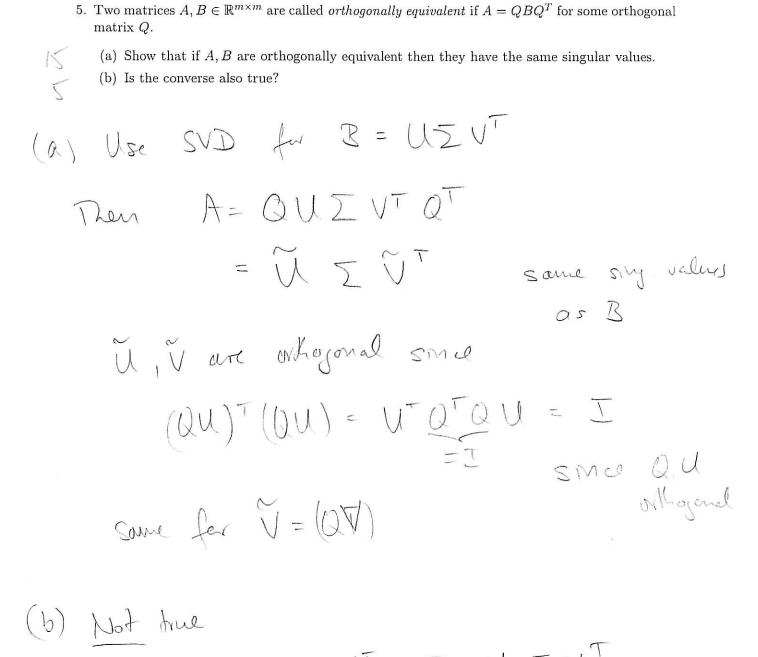
small or thousand

- 4. Let V be the subspace of \mathbb{R}^3 spanned by $v_1 = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$ and $v_2 = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix}^T$.
- (a) Find the orthogonal projection onto V.
 - (b) Find the point in V that is closest to $z = [1 \ 2 \ 1]^T$ if measured in the 2-norm.

a) Form
$$A = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$

$$ATA = \begin{bmatrix} 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \Rightarrow ATA = \begin{bmatrix} 1/3 & 0 \\ 0 & 1/2 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{3} & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & -\frac{1}{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{6} & \frac{1}{3} & \frac{1}{3} \\ -\frac{1}{6} & \frac{1}{3} & \frac{1}{3} \end{bmatrix}$$



Take
$$A = U_1 \sum V_1^T$$
, $B = U_2 \sum V_2^T$.

(=) $Z = U_2^T B^T$

then $A = U_1 U_2^T B V_2 V_1^T$

in general different (not 0, 0^T)

6. Consider the
$$2 \times 2$$
 matrix

$$A = \left[\begin{array}{cc} -2 & 11 \\ -10 & 5 \end{array} \right].$$

(a) Determine an SVD
$$A = U\Sigma V^T$$
 of A .

(b) What are the 1-, 2-, and
$$\infty$$
-norms of A ?

(c) Find
$$A^{-1}$$
 using the SVD computed in (a).

(d) What is the area of the ellipse onto which A maps the unit ball of
$$\mathbb{R}^2$$
? (Hint: The area of an ellipse given in normal form $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is πab .)

$$V_1 = \frac{1}{6}, A_{V_1} = \begin{bmatrix} -\frac{5}{2} \\ -\frac{5}{2} \end{bmatrix}, \quad U_2 = \begin{bmatrix} \frac{5}{2} \\ -\frac{5}{2} \end{bmatrix}$$

$$A = \begin{bmatrix} -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 10\sqrt{2} & 0 \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{bmatrix} \begin{bmatrix} 10\sqrt{2} & 0 \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \\ 0 & 5\sqrt$$

(C)
$$A^{-1} = V \sum_{i=1}^{n} V_{i} = V$$

(d) after Tab with
$$a = ||5_1U_1|| = 5_1$$
 =) area = $\frac{11}{100}$