Math 577 – Computational Mathematics I

Time and Location: 1:50--3:05 TR, Location E1 242

Instructor: Greg Fasshauer

Office: 208A E1 **Phone**: 567-3149

Email: fasshauer@iit.edu

WWW: http://math.iit.edu/~fass/

Office hours: TR: 1:00--2:00, also by appointment

Textbook(s): Lloyd N. Trefethen and D. Bau, *Numerical Linear Algebra*, SIAM (1997), ISBN 0-89871-361-7.

D. Kincaid and W. Cheney, *Numerical Analysis: Mathematics of Scientific Computing*, 3rd Ed, Brooks/Cole (2002), ISBN 0-534-38905-8.

Other required material: Matlab

Prerequisites: MATH 471 Numerical Methods, or consent of the instructor

Objectives:

- 1. Students will understand the basic matrix factorization methods for solving systems of linear equations and linear least squares problems and their derivations.
- 2. Students will understand basic computer arithmetic and the concepts of conditioning and stability of a numerical method.
- 3. Students will understand the basic numerical methods for computing eigenvalues and their derivation.
- 4. Students will understand the basic iterative methods for solving systems of linear equations and their derivation.
- 5. Students will learn how to implement and use these numerical methods in Matlab (or another similar software package).
- 6. Students will improve their problem solving skills in computational mathematics.
- 7. Students will improve their presentation and writing skills.

Lecture schedule: 3 50 minutes (or 2 75 minutes) lectures per week

Course Outline: 1. Fundamentals		Hours 5
t	o. Orthogonal vectors and matrices	
C	e. Norms	
C	d. Computer arithmetic	
2. Singular Value Decomposition		3
3. QR Factorization and Least Squares		8
г	a. Projectors	
t	o. QR factorization	
C	c. Gram-Schmidt orthogonalization	
Ċ	d. Householder triangularization	

	e.	Least squares problems		
4.	Condi	tioning and Stability		5
	a.	Conditioning and condition number	ers	
	b.	Stability		
5. Systems of Equations				5
	a.	Gaussian elimination		
	b.	Cholesky factorization		
6. Eigenvalues				8
	a.	Overview of eigenvalue algorithms	S	
	b.	Reduction to Hessenberg or tridiag	gonal form	
	c.	Rayleigh quotient, inverse iteration	1	
	d.	QR Algorithm without and with sh	iifts	
	e.	Computing the SVD		
7. Iterative Methods				8
	a.	Overview of iterative methods		
	b.	Arnoldi iteration		
	c.	GMRES		
	d.	Conjugate gradients		
	e.	Preconditioning		
Assess	ment:	Homework	20%	
		Computer Programs/Project	20%	
		Midterm (Oct.17)	30%	
		Final Exam	30%	