
Chapter 1

Introduction

1.1 History and Outline

Originally, the motivation for the basic meshfree approximation methods (radial basis
functions and moving least squares methods) came from applications in geodesy, geo-
physics, mapping, or meteorology. Later, applications were found in many areas such
as in the numerical solution of PDEs, artificial intelligence, learning theory, neural
networks, signal processing, sampling theory, statistics (kriging), finance, and opti-
mization. It should be pointed out that (meshfree) local regression methods have been
used (independently) in statistics for more than 100 years (see, e.g., [146]).

”Standard” multivariate approximation methods (splines or finite elements) require
an underlying mesh (e.g. triangulation) for the definition of basis functions or elements.
This is very difficult in space dimensions > 2.

Some historical landmarks for meshfree methods in approximation theory:

• D. Shepard, Shepard functions, late 1960s (application, surface modelling)

• Rolland Hardy (Iowa State Univ.), multiquadrics (MQs), early 1970s (application,
geodesy)

• Jean Duchon (Université Joseph Fourier, Grenoble, France), variational approach
(in IR2 minimize integral of ∇2s), leads to thin plate splines (TPSs), mid 1970s
(mathematics)

• Jean Meinguet (Université Catholique de Louvain, Louvain, Belgium), surface
splines, late 1970s (mathematics)

• Peter Lancaster and Kes Šalkauskas (Univ. of Calgary, Canada): Surfaces gen-
erated by moving least squares methods, 1981, generalizes Shepard functions.

• Richard Franke (NPG, Montery), in 1982 compared scattered data interpolation
methods, and concluded MQs and TPs were best. Franke conjectured interpola-
tion matrix for MQs is invertible.

• Wally Madych (Univ. Connecticut), and S. A. Nelson (Iowa State Univ.), Multi-
variate interpolation: A variational theory, unpublished manuscript, 1983 (proved
Franke’s conjecture).
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• Charles Micchelli (IBM), Interpolation of scattered data: Distance matrices and
conditionally positive definite functions, 1986.

Topics to be covered:

• radial basis functions (multiquadrics, thin plate splines, Gaussians

• moving least squares methods (element-free Galerkin (EFG), hp-clouds, meshless
local Petrov-Galerkin (MLPG), radial point interpolation method (RPIM), repro-
ducing kernel particle method (RKPM), smooth particle hydrodynamics (SPH))

• partition of unity methods

• quasi-interpolation methods

• dual reciprocity method (DRM)

Applications discussed:

• scattered data fitting

• solution of PDEs (collocation, Galerkin; elliptic, parabolic, hyperbolic)

• surface reconstruction

• machine learning

• optimization

1.2 Motivation: Scattered Data Interpolation

In this section we will describe the general process of scattered data fitting, which is one
of the fundamental problems in approximation theory and data modelling in general.
Our desire to have a well-posed problem formulation will naturally lead to the concepts
of positive definite matrices, and strictly positive definite functions.

1.2.1 Scattered Data Interpolation.

In many scientific disciplines one faces the following problem. We have a set of data
(measurements, and locations at which these measurements were obtained), and we
want to find a rule which allows us to deduce information about the process we are
studying also at locations different from those at which we obtained our measurements.
Thus, we are trying to find a function s which is a “good” fit to the given data. There are
many ways to decide what we mean by “good”, and the only criterion we will consider
now is that we want the function s to exactly match the given measurements at the
corresponding locations. This approach is called interpolation, and if the locations
at which the measurements are taken are not on a uniform or regular grid, then the
process is called scattered data interpolation. More precisely, we are considering the
following
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Problem 1.2.1 Given data (xj , yj), j = 1, . . . , N with xj ∈ IRs, yj ∈ IR find a (con-
tinuous) function Pf such that Pf(xj) = yj, j = 1, . . . , N .

Here the xj are the measurement locations (or data sites), and the yj are the
corresponding measurements (or data values). We will often assume that these values
are obtained by sampling a data function f at the data sites, i.e., yj = f(xj), j =
1, . . . , N . The fact that we allow xj to lie in s-dimensional space IRs means that the
formulation of Problem 1.2.1 allows us to cover many different types of problems. If
s = 1 the data could be a series of measurements taken over a certain time period,
thus the “data sites” xj would correspond to certain time instances. For s = 2 we can
think of the data being obtained over a planar region, and so xj corresponds to the two
coordinates in the plane. For instance, we might want to produce a map which shows
the rainfall in the state we live in based on the data collected at weather station located
throughout the state. For s = 3 we might think of a similar situation in space. One
possibility is that we could be interested in the temperature distribution inside some
solid body. Higher-dimensional examples might not be that intuitive, but a multitude
of them exist, e.g., in finance, economics or statistics, but also in artificial intelligence
or learning.

A convenient and common approach to solving the scattered data problem is to
make the assumption that the function Pf is a linear combination of certain basis
functions Bk, i.e.,

Pf(x) =
N∑

k=1

ckBk(x), x ∈ IRs . (1.1)

Solving the interpolation problem under this assumption leads to a system of linear
equations of the form

Ac = y,

where the entries of the interpolation matrix A are given by Ajk = Bk(xj), j, k =
1, . . . , N , c = [c1, . . . , cN ]T , and y = [y1, . . . , yN ]T .

Problem 1.2.1 will be well-posed, i.e., a solution to the problem will exist and be
unique, if and only if the matrix A is non-singular.

In the univariate setting it is well known that one can interpolate to arbitrary data
at N distinct data sites using a polynomial of degree N − 1. For the multivariate
setting, however, there is the following negative result due to Mairhuber and Curtis in
1956 [425].

Theorem 1.2.2 If Ω ⊂ IRs, s ≥ 2, contains an interior point, then there exist no
Haar spaces of continuous functions except for one-dimensional ones.

In order to understand this theorem we need

Definition 1.2.3 Let the linear finite-dimensional function space B ⊆ C(Ω) have a
basis {B1, . . . , BN}. Then B is a Haar space on Ω if

det (Bk(xj)) 6= 0

for any set of distinct x1, . . . ,xN in Ω.
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Remarks:

1. Note that existence of a Haar space guarantees invertibility of the interpolation
matrix (Bk(xj)), i.e., existence and uniqueness of an interpolant to data specified
at x1, . . . ,xN , from the space B.

2. As mentioned above, univariate polynomials of degreeN−1 form anN -dimensional
Haar space for data given at x1, . . . , xN .

3. The Mairhuber-Curtis Theorem implies that in the multivariate setting we can no
longer expect this to be the case. E.g., it is not possible to perform unique inter-
polation with (multivariate) polynomials of degree N to data given at arbitrary
locations in IR2.

4. The Mairhuber-Curtis Theorem tells us that if we want to have a well-posed
multivariate scattered data interpolation problem, then the basis needs to depend
on the data locations.

Proof of Theorem 1.2.2: Let s ≥ 2 and suppose B is a Haar space with basis
{B1, . . . , BN} with N ≥ 2. Then, by the definition of a Haar space

det (Bk(xj)) 6= 0 (1.2)

for any distinct x1, . . . ,xN .
Now consider a closed path P in Ω connecting only x1 and x2. This is possible

since – by assumption – Ω contains an interior point. We can exchange the positions
of x1 and x2 by moving them continuously along the path P (without interfering with
any of the other xj). This means, however, that rows 1 and 2 of the determinant (1.2)
have been exchanged, and so the determinant has changed sign.

Since the determinant is a continuous function of x1 and x2 we must have had
det = 0 at some point along P . This is a contradiction. �

In order to obtain such data dependent approximation spaces we now consider
positive definite matrices and functions.

1.2.2 Positive Definite Matrices and Functions

A common concept in linear algebra is that of a positive definite matrix.

Definition 1.2.4 A real symmetric matrix A is called positive semi-definite if its as-
sociated quadratic form is non-negative, i.e.,

N∑

j=1

N∑

k=1

cjckAjk ≥ 0 (1.3)

for c = [c1, . . . , cN ]T ∈ IRN . If the only vector c that turns (1.3) into an equality is the
zero vector, then A is called positive definite.
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An important property of positive definite matrices is that all their eigenvalues are
positive, and therefore a positive definite matrix is non-singular (but certainly not vice
versa).

If we therefore had basis functions Bk in the expansion (1.1) above which generate a
positive definite interpolation matrix, we would always have a well-posed interpolation
problem. To this end we introduce the concept of a positive definite function from
classical analysis.

Historically, in the 1920s and 30s, only positive definite functions were introduced.
However, in order to meet our goal of having a well-posed interpolation problem it is
necessary to sharpen the classical notion of a positive definite function to that of a
strictly positive definite one. This leads to an unfortunate difference in terminology
used in the context of matrices and functions. Unfortunately, in the course of history
it has turned out that a positive definite function is associated with a positive semi-
definite matrix.

Definition 1.2.5 A complex-valued continuous function Φ is called positive definite
on IRs if

N∑

j=1

N∑

k=1

cjckΦ(xj − xk) ≥ 0 (1.4)

for any N pairwise different points x1, . . . ,xN ∈ IRs, and c = [c1, . . . , cN ]T ∈ C|| N .
The function Φ is called strictly positive definite on IRs if the only vector c that turns
(1.4) into an equality is the zero vector.

We note that an extension of the notion of positive definiteness to cover complex
coefficients c and complex-valued functions Φ as done in Definition 1.2.5 will be helpful
when deriving some properties of (strictly) positive definite functions later on. More-
over, the celebrated Bochner’s Theorem (see the next chapter) characterizes exactly the
positive definite functions of Definition 1.2.5. In all practical circumstances, however,
we will be concerned with real-valued functions only, and a characterization of such
functions appears below as Theorem 1.2.7.

Definition 1.2.5 and the discussion preceding it suggest that we should use strictly
positive definite functions as basis functions in (1.1), i.e., Bk(x) = Φ(x− xk), or

Pf(x) =
N∑

k=1

ckΦ(x− xk), x ∈ IRs . (1.5)

Remarks:

1. The function Pf of (1.5) will yield an interpolant that is translation invariant,
i.e., the interpolant to translated data is the same as the translated interpolant
to the original data.

2. Definition 1.2.5 can be generalized to the notion of strictly positive definite kernels
of the form Φ(x,y).
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3. Positive definite functions were first considered in classical analysis early in the
20th century. In the 1920s Mathias [432] seems to have been the first to define and
study positive definite functions. An overview of the development up to the mid
1970s can be found in [590]. There seems to have been no need to study strictly
positive functions until Micchelli [456] made the connection between scattered
data interpolation and positive definite functions. We will discuss some of the
most important properties and characterizations of (strictly) positive definite
functions in the next chapter.

4. We would like to point out that when reading recent articles (especially in the
radial basis function literature) dealing with (strictly) positive definite functions
one has to be aware of the fact that some authors have tried to “correct” history,
and now refer to strictly positive definite functions as positive definite functions.

We close this section with a list of some basic properties of (strictly) positive definite
functions and some examples.

Theorem 1.2.6 Some basic properties of positive definite functions are

(1) If Φ1, . . . ,Φn are positive definite on IRs and ci ≥ 0, i = 1, . . . , n, then

Φ(x) =
n∑

i=1

ciΦi(x), x ∈ IRs,

is also positive definite. Moreover, if one of the Φi is strictly positive definite and
the corresponding ci > 0, then Φ is strictly positive definite.

(2) Φ(−x) = Φ(x).

(3) Φ(0) ≥ 0.

(4) Any positive definite function is bounded, in fact,

|Φ(x)| ≤ Φ(0).

(5) If Φ is positive definite with Φ(0) = 0 then Φ ≡ 0.

(6) The product of (strictly) positive definite functions is (strictly) positive definite.

Proof: Properties (1) and (3) follow immediately from Definition 1.2.5.
To show (2) we let N = 2, x1 = 0, x2 = x, and choose c1 = 1 and c2 = c. Then

the quadratic form in Definition 1.2.5 becomes

2∑

j=1

2∑

k=1

cjckΦ(xj − xk) = (1 + |c|2)Φ(0) + cΦ(x) + cΦ(−x) ≥ 0

for every c ∈ C|| . Taking c = 1 and c = i (where i =
√
−1), respectively, we can see

that both Φ(x) + Φ(−x) and i (Φ(x)− Φ(−x)) must be real. This, however, is only
possible if Φ(−x) = Φ(x).
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For the proof of (4) we let N = 2, x1 = 0, x2 = x, and choose c1 = |Φ(x)| and
c2 = −Φ(x). Then the quadratic form in Definition 1.2.5 is

2∑

j=1

2∑

k=1

cjckΦ(xj − xk) = 2Φ(0)|Φ(x)|2 − Φ(−x)Φ(x)|Φ(x)| − Φ2(x)|Φ(x)| ≥ 0.

Since Φ(−x) = Φ(x) by Property 2, this gives

2Φ(0)|Φ(x)|2 − 2|Φ(x)|3 ≥ 0.

If |Φ(x)| > 0, we divide by |Φ(x)|2 and the statement follows immediately. In case
|Φ(x)| ≡ 0 the statement holds trivially.

Property (5) follows immediately from (4), and Property (6) is a consequence of a
theorem by Schur, which states that the elementwise (or Hadamard) product of positive
(semi-)definite matrices is positive (semi-)definite (see [132] or [634] for details). �

Remarks:

1. Property (1) states that in particular the sum of two (strictly) positive definite
functions is (strictly) positive definite.

2. Property (2) shows that any real-valued (strictly) positive definite function has to
be even. However, it is also possible to characterize real-valued (strictly) positive
definite functions using only real coefficients (see [634] for details), i.e.,

Theorem 1.2.7 A real-valued continuous function Φ is positive definite on IRs if and
only if it is even and

N∑

j=1

N∑

k=1

cjckΦ(xj − xk) ≥ 0 (1.6)

for any N pairwise different points x1, . . . ,xN ∈ IRs, and c = [c1, . . . , cN ]T ∈ IRN .
The function Φ is strictly positive definite on IRs if the only vector c that turns (1.6)
into an equality is the zero vector.

Examples:

1. The function Φ(x) = eix·y, y ∈ IRs, is positive definite on IRs since the quadratic
form in Definition 1.2.5 becomes

N∑

j=1

N∑

k=1

cjckΦ(xj − xk) =
N∑

j=1

N∑

k=1

cjcke
i(xj−xk)·y

=
N∑

j=1

cje
ixj ·y

N∑

k=1

cke
−ixk·y

=

∣∣∣∣∣∣

N∑

j=1

cje
ixj ·y

∣∣∣∣∣∣

2

≥ 0.

2. The cosine function is positive definite on IR since, for x ∈ IR, we have cosx =
1
2

(
eix + e−ix

)
, and Property (1) and the previous example can be invoked.

7



1.2.3 Radial Functions

Of particular interest in applications are positive definite functions which are also
radial. Radial functions have the nice property that they are invariant under all Eu-
clidean transformations (i.e., translations, rotations, and reflections). This is an im-
mediate consequence of the fact that Euclidean transformations are characterized by
orthogonal transformation matrices and are therefore norm-invariant. Invariance un-
der translation, rotation and reflection is often desirable in applications. We therefore
define

Definition 1.2.8 A function Φ : IRs → IR is called radial provided there exists a
univariate function ϕ : [0,∞)→ IR such that

Φ(x) = ϕ(r), where r = ‖x‖,

and ‖ · ‖ is some norm on IRs – usually the Euclidean norm.

Definition 1.2.8 says that for a radial function Φ

‖x1‖ = ‖x2‖ =⇒ Φ(x1) = Φ(x2), x1, x2 ∈ IRd .

However, what makes radial functions most useful for applications is the fact that
the interpolation problem becomes insensitive to the dimension s of the space in which
the data sites lie. Instead of having to deal with a multivariate function Φ (whose
complexity will increase with increasing space dimension s) we can work with the same
univariate function ϕ for all choices of s.

We call the univariate function ϕ a (strictly) positive definite radial function on IRs

if and only if the associated multivariate function Φ is (strictly) positive definite on IRs

in the sense of Definition 1.2.5 and radial in the sense of Definition 1.2.8.
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Chapter 2

Positive Definite and Completely

Monotone Functions

Below we will first summarize facts about positive definite functions, and closely related
completely and multiply monotone functions. Most of these facts are integral charac-
terizations and were established in the 1930s by Bochner and Schoenberg. In the second
part of this chapter we will mention the more recent extensions to strictly positive def-
inite and strictly completely/multiply monotone functions. Integral characterizations
are an essential ingredient in the theoretical analysis of radial basis functions.

2.1 A Brief Summary of Integral Transforms

Before we get into the details of the integral representations we summarize some for-
mulas for various integral transforms to be used later.

The Fourier transform conventions we will adhere to are laid out in

Definition 2.1.1 The Fourier transform of f ∈ L1(IR
s) is given by

f̂(ω) =
1√

(2π)s

∫

IRs

f(x)e−iω·xdx, ω ∈ IRs, (2.1)

and its inverse Fourier transform is given by

f̌(x) =
1√

(2π)s

∫

IRs

f(ω)eix·ωdω, x ∈ IRs .

Remark: This definition of the Fourier transform can be found in Rudin [537]. An-
other, just as common, definition uses

f̂(ω) =

∫

IRs

f(x)e−2πiω·xdx, (2.2)

and can be found in Stein and Weiss [589]. The form we use can also be found in
Wendland’s book [634], whereas (2.2) is used in the book by Cheney and Light [132].
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Similarly, we can define the Fourier transform of a finite (signed) measure µ on IRs

by

µ̂(ω) =
1√

(2π)s

∫

IRs

e−iω·xdµ(x), ω ∈ IRs .

Since we will be interested in positive definite radial functions, we note that the
Fourier transform of a radial function is again radial. Indeed,

Theorem 2.1.2 Let Φ ∈ L1(IR
s) be continuous and radial, i.e., Φ(x) = ϕ(‖x‖). Then

its Fourier transform Φ̂ is also radial, i.e., Φ̂(ω) = Fsϕ(‖ω‖) with

Fsϕ(r) =
1√
rs−2

∫ ∞

0
ϕ(t)t

s
2J(s−2)/2(rt)dt,

where J(s−2)/2 is the classical Bessel function of the first kind of order (s− 2)/2.

Remark: The integral transform appearing in Theorem 2.1.2 is also referred to as a
Bessel transform.

A third integral transform to play an important role in the following is the Laplace
transform. We have

Definition 2.1.3 The Laplace transform of a piecewise continuous function f that
satisfies |f(t)| ≤Meat for some constants a and M is given by

Lf(s) =

∫ ∞

0
f(t)e−stdt, s > a.

Similarly, the Laplace transform of a Borel measure µ on [0,∞) is given by

Lµ(s) =

∫ ∞

0
e−stdµ(t).

The Laplace transform is continuous at the origin if and only if µ is finite.

2.2 Bochner’s Theorem

One of the most celebrated results on positive definite functions is their characterization
in terms of Fourier transforms established by Bochner in 1932 (for s = 1) and 1933 (for
general s).

Theorem 2.2.1 (Bochner’s Theorem) A (complex-valued) function Φ ∈ C(IRs) is pos-
itive definite on IRs if and only if it is the Fourier transform of a finite non-negative
Borel measure µ on IRs, i.e.,

Φ(x) = µ̂(x) =
1√

(2π)s

∫

IRs

e−ix·ydµ(y), x ∈ IRs .
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Proof: There are many proofs of this theorem. Bochner’s original proof can be found
in [58], p. 407. Other proofs can be found, e.g., in the books by Cuppens ([147], p. 41)
or Gelfand and Vilenkin ([250], p. 155). A nice proof using the Riesz Representation
Theorem to interpret the Borel measure as a distribution, and then taking advantage
of distributional Fourier transforms can be found in the book by Wendland [634].

We will prove only the one (easy) direction which is important for the application
to scattered data interpolation. We assume Φ is the Fourier transform of a finite
non-negative Borel measure and show Φ is positive definite. Thus,

N∑

j=1

N∑

k=1

cjckΦ(xj − xk) =
1√

(2π)s

N∑

j=1

N∑

k=1

[
cjck

∫

IRs

e−i(xj−xk)·ydµ(y)

]

=
1√

(2π)s

∫

IRs




N∑

j=1

cje
−ixj ·y

N∑

k=1

cke
ixk·y


 dµ(y)

=
1√

(2π)s

∫

IRs

∣∣∣∣∣∣

N∑

j=1

cje
−ixj ·y

∣∣∣∣∣∣

2

dµ(y) ≥ 0.

The last inequality holds because of the conditions imposed on the measure µ. �

2.3 Strictly Positive Definite Functions

In order to accomplish our goal of guaranteeing a well-posed interpolation problem,
we have to extend (if possible) Bochner’s characterization to strictly positive definite
functions.

We begin with a sufficient condition for a function to be strictly positive definite
on IRs.

For this result we require the notion of the carrier of a (non-negative) Borel measure
defined on some topological space X. This set is given by

X \
⋃
{O : O is open and µ(O) = 0}.

Theorem 2.3.1 Let µ be a non-negative finite Borel measure on IRs whose carrier is
not a set of Lebesgue measure zero. Then the Fourier transform of µ is strictly positive
definite on IRs.

Proof: As in the proof of Bochner’s Theorem we have

N∑

j=1

N∑

k=1

cjckµ̂(xj − xk) =
1√

(2π)s

N∑

j=1

N∑

k=1

cjck

[∫

IRs

e−i(xj−xk)·ydµ(y)

]

=
1√

(2π)s

∫

IRs




N∑

j=1

cje
−ixj ·y

N∑

k=1

cke
ixk·y


 dµ(y)
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=
1√

(2π)s

∫

IRs

∣∣∣∣∣∣

N∑

j=1

cje
−ixj ·y

∣∣∣∣∣∣

2

dµ(y) ≥ 0.

Now let

g(y) =

N∑

j=1

cje
−ixj ·y,

and assume that the points xj are all distinct and c 6= 0. In this case the functions
y 7→ e−ixj ·y are linearly independent, and thus the zero set of g, i.e., {y ∈ IRs : g(y) =
0} has Lebesgue measure zero. Therefore, the only remaining way to make the above
inequality an equality is if the carrier of µ is contained in the zero set of g, i.e., has
Lebesgue measure zero. �

The following corollary gives us a way to construct strictly positive definite func-
tions.

Corollary 2.3.2 Let f be a continuous non-negative function in L1(IR
s) which is not

identically zero. Then the Fourier transform of f is strictly positive definite on IRs.

Proof: We use the measure µ defined for any Borel set B by

µ(B) =

∫

B
f(x)dx.

Then the carrier of µ is equal to the closed support of f . However, since f is non-
negative and not identically equal to zero, its support has positive Lebesgue measure,
and hence the Fourier transform of f is strictly positive definite by the preceding
theorem. �

Remark: Work toward an analog of Bochner’s Theorem, i.e., an integral character-
ization for functions which are strictly positive definite on IRs, is given in [112] for
s = 1.

Example: The Gaussian
Φ(x) = e−α‖x‖2

, α > 0, (2.3)

is strictly positive definite on IRs for any s. This is essentially due to the fact that
the Fourier transform of a Gaussian is again a Gaussian. In particular, for α = 1

2

we have Φ̂ = Φ which can be verified by direct calculation. The general statement
follows from the properties of the Fourier transform (complete details are given in the
book by Wendland on pp. 50 and 69). An easier argument (using completely monotone
functions) will become available later.

Remark: Since Gaussians play a central role in statistics, this is a good place to
mention that positive definite functions are – up to a normalization Φ(0) = 1 – identical
with characteristic functions of distribution functions in statistics.

Finally, a criterion to check whether a given function is strictly positive definite is
given in [634].
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Theorem 2.3.3 Let Φ be a continuous function in L1(IR
s). Φ is strictly positive def-

inite if and only if Φ is bounded and its Fourier transform is non-negative and not
identically equal to zero.

Remark: The proof of Theorem 2.3.3 shows that – if Φ 6≡ 0 (which implies that Φ̂ 6≡ 0)
– we need to ensure only that Φ̂ be non-negative in order for Φ to be strictly positive
definite.

Example: Theorem 2.3.3 can be used to show that the so-called inverse multiquadrics

Φ(x) =
(
‖x‖2 + α2

)−β
, α > 0, β >

s

2
, (2.4)

are strictly positive definite on IRs (complete details are given in [634]). By using
another argument based on completely monotone functions we will be able to show
that in fact we need to require only β > 0, and therefore the inverse multiquadrics are
strictly positive definite on any IRs.

2.4 Positive Definite Radial Functions

We now turn our attention to positive definite radial functions. Theorem 2.1.2 can be
used to prove the following characterization due to Schoenberg (see [569], p.816).

Theorem 2.4.1 A continuous function ϕ : [0,∞) → IR is positive definite and radial
on IRs if and only if it is the Bessel transform of a finite non-negative Borel measure
µ on [0,∞), i.e.,

ϕ(r) =

∫ ∞

0
Ωs(rt)dµ(t),

where

Ωs(r) =

{
cos r for s = 1,

Γ
(

s
2

) (
2
r

)(s−2)/2
J(s−2)/2(r) for s ≥ 2,

and J(s−2)/2 is the classical Bessel function of the first kind of order (s− 2)/2.

Since any function which is positive definite and radial on IRs1 is also positive
definite and radial on IRs2 as long as s2 ≤ s1, those functions which are positive definite
and radial on IRs for all s are of particular interest. This latter class of functions
was also characterized by Schoenberg ([569], pp. 817–821.). We saw above that the
Gaussians and inverse multiquadrics provide examples of such functions.

Theorem 2.4.2 A continuous function ϕ : [0,∞) → IR is positive definite and radial
on IRs for all s if and only if it is of the form

ϕ(r) =

∫ ∞

0
e−r2t2dµ(t),

where µ is a finite non-negative Borel measure on [0,∞).
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Remark: Schoenberg referred to the functions which are positive definite and radial
on IRs for all s as positive definite radial functions on `2.

We end this section with examples of functions that are strictly positive definite
and radial on IRs with restrictions on the space dimension s. Moreover, the following
functions differ from the previous ones in that they have compact support.
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Examples:

1. The truncated power function

ϕ`(r) = (1− r)`
+ (2.5)

is strictly positive definite and radial on IRs provided ` satisfies ` ≥ b s
2c+ 1. For

details see [634]. Here we have used the cutoff function (·)+ which is defined by

(x)+ =

{
x, for x ≥ 0,

0, for x < 0.

2. Let f ∈ C[0,∞) be non-negative and not identically equal to zero, and define the
function ϕ by

ϕ(r) =

∫ ∞

0
(1− rt)k−1

+ f(t)dt. (2.6)

Then ϕ is strictly positive definite and radial on IRs provided k ≥ b s
2c+ 2. This

can been verified by considering the quadratic form

N∑

j=1

N∑

k=1

cjckϕ(‖xj − xk‖) =

∫ ∞

0

N∑

j=1

N∑

k=1

cjckϕk−1(t‖xj − xk‖)f(t)dt

which is non-negative since ϕk−1 is strictly positive definite by the first example,
and f is non-negative. Since f is also assumed to be not identically equal to zero,
the only way for the quadratic form to equal zero is if c = 0.
Note that (2.6) amounts to another integral transform of f with the compactly
supported truncated power function as integration kernel. We will take another
look at these functions in the context of multiply monotone functions below.

The Schoenberg characterization of positive definite radial functions on IRs for all
s implies that we have a finite non-negative Borel measure µ on [0,∞) such that

ϕ(r) =

∫ ∞

0
e−r2t2dµ(t).

If we want to find a zero r0 of ϕ then we have

ϕ(r0) =

∫ ∞

0
e−r2

0t2dµ(t) = 0.

Since the exponential function is positive and the measure is non-negative, it follows
that µ must be the zero measure. However, then φ is identically equal to zero. There-
fore, a non-trivial function ϕ that is positive definite and radial on IRs for all s can have
no zeros. This implies in particular that there are no compactly supported univariate
continuous functions that are positive definite and radial on IRs for all s.
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2.5 Completely Monotone Functions

We now introduce a class of functions which is very closely related to positive definite
radial functions and leads to a simple characterization of such functions.

Definition 2.5.1 A function ϕ : [0,∞) → IR which is in C[0,∞) ∩ C∞(0,∞) and
which satisfies

(−1)`ϕ(`)(r) ≥ 0, r > 0, ` = 0, 1, 2, . . . ,

is called completely monotone on [0,∞).

Example: Some examples of completely monotone functions are

1. ϕ(r) = α, α ≥ 0,

2. ϕ(r) = e−αr, α ≥ 0,

3. ϕ(r) =
α

r1−α
, α ≤ 1,

4. ϕ(r) =
1

(r + α2)β
, α > 0, β ≥ 0.

The following theorem gives an integral characterization of completely monotone
functions.

Theorem 2.5.2 (Hausdorff-Bernstein-Widder Theorem) A function ϕ : [0,∞) → IR
is completely monotone on [0,∞) if and only if it is the Laplace transform of a finite
non-negative Borel measure µ on [0,∞), i.e., ϕ is of the form

ϕ(r) = Lµ(r) =

∫ ∞

0
e−rtdµ(t).

Remark: Widder’s proof of this theorem can be found in [644], p. 160, where he reduces
the proof of this theorem to another theorem by Hausdorff on completely monotone
sequences. A detailed proof can also be found in the books by Cheney and Light [132]
and Wendland [634]. �

Remark: Some properties of completely monotone functions are:

1. A non-negative finite linear combination of completely monotone functions is
completely monotone.

2. The product of two completely monotone functions is completely monotone.

The following connection between positive definite radial and completely monotone
functions was first pointed out by Schoenberg in 1938.

Theorem 2.5.3 A function ϕ is completely monotone on [0,∞) if and only if Φ =
ϕ(‖ · ‖2) is positive definite and radial on IRs for all s.
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Remark: Note that the function Φ is now defined via the square of the norm. This is
different from our earlier definition of radial functions (see Definition 1.2.8).

Proof: One possibility is to use a change of variables to combine Schoenberg’s charac-
terization of functions that are positive definite and radial on any IRs, Theorem 2.4.2,
with the Hausdorff-Bernstein-Widder characterization of completely monotone func-
tions. To get more insight we present an alternative proof of the claim that the com-
pletely monotone function ϕ gives rise to a Φ that is positive definite and radial on any
IRs. Details for the other direction can be found, e.g., in [634].

The Hausdorff-Bernstein-Widder Theorem implies that we can write ϕ as

ϕ(r) =

∫ ∞

0
e−rtdµ(t)

with a finite non-negative Borel measure µ. Therefore, Φ(x) = ϕ(‖x‖2) has the repre-
sentation

Φ(x) =

∫ ∞

0
e−‖x‖2tdµ(t).

To see that this function is positive definite on any IRs we consider the quadratic form

N∑

j=1

N∑

k=1

cjckΦ(xj − xk) =

∫ ∞

0

N∑

j=1

N∑

k=1

cjcke
−t‖xj−xk‖2

dµ(t).

Since we saw earlier that the Gaussians are strictly positive definite and radial on any
IRs it follows that the quadratic form is non-negative. �.

We can see from the previous proof that if the measure µ is not concentrated in the
origin, then Φ is even strictly positive definite and radial on any IRs. This condition on
the measure is equivalent with φ not being constant. With this additional restriction
on ϕ we can apply the notion of a completely monotone function to the scattered
data interpolation problem. The following interpolation theorem was already proved
by Schoenberg in 1938 ([569], p. 823).

Theorem 2.5.4 If the function ϕ : [0,∞) → IR is completely monotone but not con-
stant, then ϕ(‖ · ‖2) is strictly positive definite and radial on IRs for any s.

Proof: Very similar to earlier proofs. We obtain strictness by using the measure
condition, i.e., the property that ϕ is not constant. �

Example: The following functions are completely monotone and not constant. There-
fore, they lead to strictly positive definite radial functions on any IRs, and can be used
as basic functions to generate bases for (1.5).

1. The functions ϕ(r) = (r + α2)−β , α, β > 0, are completely monotone and not
constant since

(−1)`ϕ(`)(r) = (−1)2`β(β+ 1) · · · (β+ `− 1)(r+α2)−β−` ≥ 0, ` = 0, 1, 2, . . . .

Thus

Pf(x) =
N∑

j=1

cj
(
‖x− xj‖2 + α2

)−β
, x ∈ IRs,
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can be used to solve the scattered data interpolation problem. The associated
interpolation matrix is guaranteed to be positive definite. These functions are
the inverse multiquadrics encountered earlier. Now it is clear that the earlier
restriction β > s

2 is no longer required.

2. The functions ϕ(r) = e−αr, α > 0, are completely monotone and not constant
since

(−1)`ϕ(`)(r) = α`e−αr ≥ 0, ` = 0, 1, 2, . . . .

Thus

Pf(x) =

N∑

j=1

cje
−α‖x−xj‖2

, x ∈ IRs,

corresponds to interpolation with Gaussian radial basis functions.

Remarks:

1. A complete characterization of strictly positive definite functions in terms of
completely monotone functions, i.e., the converse of Schoenberg’s Theorem 2.5.4,
is given in Wendland’s book [634].

2. We just saw (for the second time) that Gaussians are strictly positive definite and
radial on all IRs. Also, Theorem 1.2.6 stating basic properties of positive definite
functions shows us that (positive) linear combinations of (strictly) positive defi-
nite functions are (strictly) positive definite. The Schoenberg characterization of
functions that are (strictly) positive definite and radial on any IRs, Theorem 2.4.2,
shows that all such functions are given as linear combinations of Gaussians.

2.6 Multiply Monotone Functions

As we will see below, another interesting class of functions is given by

Definition 2.6.1 A function ϕ : (0,∞)→ IR which is in Ck−2(0,∞) (k ≥ 2), and for
which (−1)lϕ(l)(r) is non-negative, non-increasing, and convex for l = 0, 1, 2, . . . , k− 2
is called k-times monotone on (0,∞). In case k = 1 we only require ϕ ∈ C(0,∞) to be
non-negative and non-increasing.

Since convexity of ϕ means that ϕ( r1+r2
2 ) ≤ ϕ(r1)+ϕ(r2)

2 , or simply ϕ′′(r) ≥ 0 if ϕ′′

exists, a multiply monotone function is in essence just a completely monotone function
whose monotonicity is “truncated”.
Examples:

1. The truncated power function

ϕ`(r) = (1− r)`
+

is `-times monotone for any `.
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2. If we define the integral operator I by

(If)(r) =

∫ ∞

r
f(s)ds, r ≥ 0,

and f is `-times monotone, then If is `+ 1-times monotone.

Remark: The operator I plays an important role in the construction of compactly
supported radial basis functions (more later).

An integral representation for the class of multiply monotone functions was given
by Williamson [645] but apparently already known to Schoenberg in 1940.

Theorem 2.6.2 A continuous function ϕ : (0,∞)→ IR is k-times monotone on (0,∞)
if and only if it is of the form

ϕ(r) =

∫ ∞

0
(1− rt)k−1

+ dµ(t), (2.7)

where µ is a non-negative Borel measure on (0,∞).

Proof: To see that a function of the form 2.7 is indeed multiply monotone we just need
to differentiate under the integral (since derivatives up to order k− 2 of (1− rt)k−1

+ are
continuous and bounded). The other direction can be found in [645]. �

For k → ∞ this characterization is equivalent to the Hausdorff-Bernstein-Widder
characterization Theorem 2.5.2. Williamson also shows that the product of multiply
monotone functions is multiply monotone.

We can see from the Examples 1 and 2 of Section 2.4 that certain multiply monotone
functions give rise to positive definite radial functions. Such a connection was first noted
by Askey [10] using the truncated power functions of Example 1 in Section 2.4 (and in
the one-dimensional case by Pólya). In the RBF literature the following theorem was
stated in Micchelli’s paper [456], and then refined by Buhmann [79]:

Theorem 2.6.3 Let k = bs/2c+ 2 be a positive integer. If ϕ : (0,∞)→ IR is k-times
monotone on (0,∞) but not constant, then ϕ(‖ · ‖2) is strictly positive definite and
radial on IRs.

Remark: Most versions of Theorem 2.6.3 contain misprints in the literature. The
correct form should be as stated above.

Wu [655] states

Theorem 2.6.4 A function ϕ : [0,∞) → IR is strictly positive definite and radial on
IRs for s ≤ 2k + 1 if and only if ϕ(r)r2k ∈ L1(0,∞) ∩ C[0,∞) and F1ϕ(‖ · ‖2/2) is
k-times monotone.

Using this theorem he starts with the truncated power function fk(r) = (1− 2r)k
+

(which is k-times monotone) and obtains functions of the form

ϕk(r) = F1fk(·2/2)(r) =

√
2

π

∫ ∞

0
(1− t2)k

+ cos(rt)dt
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which are strictly positive definite and radial in IR2k+1 and for which F1ϕk(‖ · ‖2/2) is
multiply monotone, i.e.,

(−1)` d
`

dr`

(
F1ϕk(·2/2)

)
(r) =

2k−`k!

(k − `)!fk−`(r) ≥ 0, 0 ≤ ` ≤ k.

The special case k = 0 yields

ϕ0(r) =

√
2

π
sinc(r),

and the family of functions {ϕk} generalizes the sinc function used in sampling theory.
These functions have a compactly supported Fourier transform.

However, if we start with the truncated power function ϕ(r) = (1 − 2r)k+1
+ , which

we know to be strictly positive definite and radial in IRs for s ≤ 2k+1, then (as above)

F1ϕ(·2/2)(r) =

√
2

π

∫ ∞

0
(1− t2)k+1

+ cos(rt)dt.

In fact, Wu gives the explicit formula

√
2

π

∫ ∞

0
(1− t2)k+1

+ cos(rt)dt = 2k+1Γ(k + 2)r−k−3/2Jk+3/2(r).

Clearly, these functions are not monotone. This seems to present a contradict the
statement of Theorem 2.6.4.

Remark: As a final remark in this chapter we mention we are a long way from having
a complete characterization of (radial) functions for which the scattered data interpo-
lation problem has a unique solution. As we will see later, such a characterization will
involve also functions which are not strictly positive definite. For example, we will men-
tion a result of Micchelli’s according to which conditionally positive definite functions
of order one can be used for the scattered data interpolation problem. Furthermore,
all of the results dealt with so far involve radial basis functions which are centered at
the given data sites. There are only limited results addressing the situation in which
the centers for the basis functions and the data sites may differ.
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Chapter 3

Scattered Data Interpolation

with Polynomial Precision and

Conditionally Positive Definite

Functions

3.1 Scattered Data Interpolation with Polynomial Preci-

sion

Sometimes the assumption on the form (1.1) of the solution to the scattered data
interpolation Problem 1.2.1 is extended by adding certain polynomials to the expansion,
i.e., Pf is now assumed to be of the form

Pf(x) =
N∑

k=1

ckBk(x) +
M∑

l=1

dlpl(x), x ∈ IRs, (3.1)

where p1, . . . , pM form a basis for the M =
(
s+m−1
m−1

)
-dimensional linear space Πs

m−1 of
polynomials of total degree less than or equal to m− 1 in s variables.

Since enforcing the interpolation conditions Pf(xi) = f(xi), i = 1, . . . , N , leads to
a system of N linear equations in the N +M unknowns ck and dl one usually adds the
M additional conditions

N∑

k=1

ckpl(xk) = 0, l = 1, . . . ,M,

to ensure a unique solution.

Example: For m = s = 2 we add the space of bivariate linear polynomials, i.e.,
Π2

1 = span{1, x, y}. Using the notation x = (x, y) we get the expansion

Pf(x, y) =
N∑

k=1

ckBk(x, y) + d1 + d2x+ d3y, x = (x, y) ∈ IR2,
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which we use to solve

Pf(xi, yi) = f(xi, yi), i = 1, . . . , N,

together with the three additional conditions

N∑

k=1

ck = 0,

N∑

k=1

ckxk = 0,

N∑

k=1

ckyk = 0.

Remark: While the use of polynomials is somewhat arbitrary (any other set of M
linearly independent functions could be used), it is obvious that the addition of poly-
nomials of total degree at most m− 1 guarantees polynomial precision, i.e., if the data
come from a polynomial of total degree less than or equal to m− 1 they are fitted by
that polynomial.

In general, solving the interpolation problem based on the extended expansion (3.1)
now amounts to solving a system of linear equations of the form

[
A P
P T 0

] [
c

d

]
=

[
y

0

]
, (3.2)

where the pieces are given by Ajk = Bk(xj), j, k = 1, . . . , N , Pjl = pl(xj), j = 1, . . . , N ,
l = 1, . . . ,M , c = [c1, . . . , cN ]T , d = [d1, . . . , dM ]T , y = [y1, . . . , yN ]T , and 0 is a zero
vector of length M .

It is possible to formulate a theorem concerning the well-posedness of this inter-
polation problem. As in the previous chapter we begin with an appropriate definition
from the linear algebra literature. This, however, covers only the case m = 1.

Definition 3.1.1 A real symmetric matrix A is called conditionally positive semi-
definite of order one if its associated quadratic form is non-negative, i.e.,

N∑

j=1

N∑

k=1

cjckAjk ≥ 0 (3.3)

for all c = [c1, . . . , cN ]T ∈ IRN which satisfy

N∑

j=1

cj = 0.

If c 6= 0 implies strict inequality in (3.3) then A is called conditionally positive definite
of order m.
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Remarks:

1. In the linear algebra literature the definition usually uses “≤”, and then A is
referred to as (conditionally or almost) negative definite.

2. Obviously, conditionally positive definite matrices of order one exist only for
N > 1.

3. Conditional positive definiteness of order one of a matrix A can also be interpreted
as A being positive definite on the space of vectors c such that

N∑

j=1

cj = 0.

Thus, in this sense, A is positive definite on the space of vectors c “perpendicular”
to constant functions.

Since anN×N matrix which is conditionally positive definite of order one is positive
definite on a subspace of dimension N − 1 it has the interesting property that at least
N−1 of its eigenvalues are positive. This follows immediately from the Courant-Fischer
Theorem of linear algebra (see e.g., [431], Thm. 5.8(a)):

Theorem 3.1.2 Let A be a symmetric N ×N matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λN .

Let 1 ≤ k ≤ N and for each subspace W with dimW = N − k + 1 set

ck(W ) = max
x∈W,‖x‖=1

xTAx

and
dk(W ) = min

x∈W,‖x‖=1
xTAx.

Then
ck(W ) ≥ λk, dk(W ) ≤ λN−k+1, k = 1, . . . , N.

With an additional hypothesis on A we can make an even stronger statement.

Theorem 3.1.3 An N ×N matrix A which is conditionally positive definite of order
one and has a non-positive trace has 1 negative and N − 1 positive eigenvalues.

Proof: From the Courant-Fischer Theorem we get that A has at least N − 1 positive
eigenvalues. But since tr(A) =

∑N
i=1 λi ≤ 0, where the λi denote the eigenvalues of A,

A also must have at least one negative eigenvalue. �
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3.2 Conditionally Positive Definite Functions

In analogy to the earlier discussion of interpolation with positive definite functions
we will now introduce conditionally positive definite and strictly conditionally positive
definite functions of order m.

Definition 3.2.1 A complex-valued continuous function Φ is called conditionally pos-
itive definite of order m on IRs if

N∑

j=1

N∑

k=1

cjckΦ(xj − xk) ≥ 0 (3.4)

for any N points x1, . . . ,xN ∈ IRs, and c = [c1, . . . , cN ]T ∈ C|| N satisfying

N∑

j=1

cjp(xj) = 0,

for any complex-valued polynomial p of degree at most m− 1. The function Φ is called
strictly conditionally positive definite of order m on IRs if the points x1, . . . ,xN ∈ IRs

are distinct, and c 6= 0 implies strict inequality in (3.4).

An immediate observation is that a function which is conditionally positive definite
of orderm on IRs also is conditionally positive definite of any higher order. In particular,
this definition is more general than that for positive definite functions since the casem =
0 yields that class of functions, i.e., (strictly) conditionally positive definite functions
of order zero are (strictly) positive definite, and therefore a (strictly) positive definite
function is always (strictly) conditionally positive definite of any order.

As for positive definite functions earlier, we can restrict ourselves to real-valued,
even functions Φ and real coefficients. A detailed discussion is presented in [634].

Theorem 3.2.2 A real-valued continuous even function Φ is called conditionally pos-
itive definite of order m on IRs if

N∑

j=1

N∑

k=1

cjckΦ(xj − xk) ≥ 0 (3.5)

for any N points x1, . . . ,xN ∈ IRs, and c = [c1, . . . , cN ]T ∈ IRN satisfying

N∑

j=1

cjx
α
j = 0, |α| < m, α ∈ INs

0 .

The function Φ is called strictly conditionally positive definite of order m on IRs if the
points x1, . . . ,xN ∈ IRs are distinct, and c 6= 0 implies strict inequality in (3.5).
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Here we have used the usual multi-integer notation, i.e.,

α ∈ INs
0, |α| =

s∑

i=1

αi, and xα = xα1
1 xα2

2 · · ·xαs
s .

Remarks:

1. The matrix A with entries Ajk = Φ(xj − xk) corresponding to a real and even
strictly conditionally positive definite function of order m can also be interpreted
as being positive definite on the space of vectors c such that

N∑

j=1

cjx
α = 0, |α| < m.

Thus, in this sense, A is positive definite on the space of vectors c “perpendicular”
to polynomials of degree at most m− 1.

2. The Courant-Fischer Theorem now implies that A has at least N −m positive
eigenvalues.

Using Theorem 3.1.3 we can see that interpolation with strictly conditionally posi-
tive definite functions of order one is possible even without adding a polynomial term.
This was first observed by Micchelli [456].

Theorem 3.2.3 Suppose Φ is strictly conditionally positive definite of order one and
that Φ(0) ≤ 0. Then for any distinct points x1, . . . ,xN ∈ IRs the matrix A with entries
Ajk = Φ(xj − xk) has N − 1 positive and 1 negative eigenvalue, and is therefore non-
singular.

Proof: Clearly, the matrix A is conditionally positive definite. Moreover, the trace of
A is given by tr(A) = NΦ(0) ≤ 0. Therefore, Theorem 3.1.3 applies. �

As we will see below, this theorem covers the multiquadrics Φ(x) = −(‖x‖2 +α2)β ,
α ≥ 0, 0 < β < 1.

Another special property of a conditionally positive definite function of order one
is

Lemma 3.2.4 If C is an arbitrary real constant and the real even function Φ is
(strictly) conditionally positive definite of order one, then Φ +C is also (strictly) con-
ditionally positive definite of order one.

Proof: Simply consider

N∑

j=1

N∑

k=1

cjck[Φ(xj − xk) + C] =
N∑

j=1

N∑

k=1

cjckΦ(xj − xk) +
N∑

j=1

N∑

k=1

cjckC.

The second term on the right is zero since Φ is conditionally positive definite of order
one, i.e.,

∑N
j=1 cj = 0, and thus the statement follows. �

Before we formulate the theorem about the uniqueness of the solution to the inter-
polation problem based on expansion (3.1), we define a property which forms a very
mild restriction on the location of the data sites.
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Definition 3.2.5 We call a set of points X = {x1, . . . ,xN} ⊂ IRs m-unisolvent if
the only polynomial of total degree at most m interpolating zero data on X is the zero
polynomial.

This definition comes from polynomial interpolation, in which case it guarantees a
unique solution for interpolation to given data at a subset of the points x1, . . . ,xN by
a polynomial of degree m. A sufficient condition (to be found in [140], Ch. 9) on the
points x1, . . . ,xN to form an m-unisolvent set in IR2 is

Theorem 3.2.6 Suppose {L0, . . . , Lm} is a set of m+1 distinct lines in IR2, and that
U = {u1, . . . ,uM} is a set of M = (m+ 1)(m+ 2)/2 distinct points such that the first
point lies on L0, the next two points lie on L1 but not on L0, and so on, so that the
last m + 1 points lie on Lm but not on any of the previous lines L0, . . . , Lm−1. Then
there exists a unique interpolation polynomial of total degree at most m to arbitrary
data given at the points in U . Furthermore, if the data sites {x1, . . . ,xN} contain U
as a subset then they form an m-unisolvent set on IR2.

Proof: We use induction on m. For m = 0 the result is trivial. Take R to be the
matrix arising from polynomial interpolation at the points in U , i.e.,

Rjk = pk(uj), j, k = 1, . . . ,M,

where the pk form a basis of Π2
m. We want to show that the only possible solution to

Rc = 0 is c = 0. This is equivalent to showing that if p ∈ Π2
m satisfies

p(ui) = 0, i = 1, . . . ,M,

then p is the zero polynomial.
For each i = 1, . . . ,m, let the equation of the line Li be given by

αix1 + βix2 = γi.

Suppose now that p interpolates zero data at all the points ui as stated above.
Since p reduces to a univariate polynomial of degree m on Lm which vanishes at m+ 1
distinct points on Lm, it follows that p vanishes identically on Lm, and so

p(x1, x2) = (αmx1 + βmx2 − γm)q(x1, x2),

where q is a polynomial of degree m−1. But now q satisfies the hypothesis of the theo-
rem with m replaced by m− 1 and U replaced by Ũ consisting of the first

(
m+1

2

)
points

of U . By induction, therefore q ≡ 0, and thus p ≡ 0. This establishes the uniqueness
of the interpolation polynomial. The last statement of the theorem is obvious. �

Remarks:

1. This theorem can be generalized to IRs by using hyperplanes in IRs, and induction
on s. Chui also gives an explicit expression for the determinant of the interpola-
tion matrix associated with polynomial interpolation at the set of points U .
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2. A theorem similar to Theorem 3.2.6 is already proved by Chung and Yao [143].

3. (m − 1)-unisolvency of the points x1, . . . ,xN is equivalent to the fact that the
matrix P with

Pjl = pl(xj), j = 1, . . . , N, l = 1, . . . ,M,

where M and N are chosen as in (3.1), has full (column-)rank.

Example: As can easily be verified, three collinear points in IR2 are not 1-unisolvent,
since a linear interpolant, i.e., a plane through three arbitrary heights at these 3
collinear points is not uniquely determined. On the other hand, if a set of points
in IR2 contains 3 non-collinear points, then it is 1-unisolvent.

Now we are ready to formulate and prove

Theorem 3.2.7 If the real-valued even function Φ is strictly conditionally positive
definite of order m on IRs and the points x1, . . . ,xN form an (m − 1)-unisolvent set,
then the system of linear equations (3.2) is uniquely solvable.

Proof: Assume [c,d]T is a solution of the homogeneous linear system, i.e., y = 0. We
show that [c,d]T = 0 is the only possible solution.

Multiplication of the top block by cT yields

cTAc + cTPd = 0.

From the bottom block of (3.2) we know cTP = 0, and therefore

cTAc = 0.

Since the matrix A is conditionally positive definite by assumption we get that c = 0.
The unisolvency of the data sites, i.e., the linear independence of the columns of P ,
and the fact that c = 0 guarantee d = 0 from the top block

Ac + Pd = 0

of (3.2). �

3.3 An Analog of Bochner’s Theorem

In order to give an analog of Bochner’s theorem for conditionally positive definite
functions we have to introduce a few concepts from distribution theory. The approach
described in this section is essentially due to Madych and Nelson [417].

For the definition of generalized Fourier transforms required below we have to define
the Schwartz space of rapidly decreasing test functions

S = {γ ∈ C∞(IRs) : lim
‖x‖→∞

xα(Dβγ)(x) = 0, α,β ∈ INs
0},

where

Dβ =
∂|β|

∂xβ1
1 · · · ∂xβs

s

, |β| =
s∑

i=1

βi.
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Remarks:

1. The space S consists of all those functions γ ∈ C∞(IRs) which, together with all
their derivatives, decay faster than any power of 1/‖x‖.

2. The space S contains the space C∞
0 (IRs), the space of all infinitely differentiable

functions on IRs with compact support. We also note that C∞
0 (IRs) is a true

subspace of S since, e.g., the function γ(x) = e−‖x‖2
belongs to S but not to

C∞
0 (IRs).

3. A remarkable fact about the Schwartz space is that γ ∈ S has a classical Fourier
transform γ̂ which is also in S.

Of particular importance will be the following subspace Sm of S

Sm = {γ ∈ S : γ(x) = O(‖x‖m) for ‖x‖ → 0, m ∈ IN0}.

Furthermore, the set B of slowly increasing functions is given by

B = {f ∈ C(IRs) : |f(x)| ≤ |p(x)| for some polynomial p ∈ Πs}.

The generalized Fourier transform is now given by

Definition 3.3.1 Let Φ ∈ B be complex-valued. A continuous function Φ̂ : IRs \{0} →
C|| is called the generalized Fourier transform of Φ if there exists an integer m ∈ IN0

such that ∫

IRs

Φ(x)γ̂(x)dx =

∫

IRs

Φ̂(x)γ(x)dx

is satisfied for all γ ∈ S2m. The smallest such integer m is called the order of Φ̂.

Remarks:

1. Since one can show that the generalized Fourier transform of an s-variate polyno-
mial of degree at most 2m is zero, it follows that the inverse generalized Fourier
transform is only unique up to addition of such a polynomial.

2. Various definitions of the generalized Fourier transform exist in the literature. A
classical reference is the book by Gelfand and Vilenkin [250].

3. The order of the generalized Fourier transform is nothing but the order of the
singularity at the origin of the generalized Fourier transform.

4. For functions in L1(IR
s) the generalized Fourier transform coincides with the

classical Fourier transform, and for functions in L2(IR
s) it coincides with the

distributional Fourier transform.

We now immediately give a characterization of strictly conditionally positive definite
functions on IRs due to Iske (see [314] or [634] for details).
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Theorem 3.3.2 Suppose the complex-valued function Φ ∈ B possesses a generalized
Fourier transform Φ̂ of order m which is continuous on IRs \{0}. Then Φ is strictly
conditionally positive definite of order m if and only if Φ̂ is non-negative and non-
vanishing.

Remarks:

1. Theorem 3.3.2 states that strictly conditionally positive definite functions on
IRs are characterized by the order of the singularity of their generalized Fourier
transform at the origin, provided that this generalized Fourier transform is non-
negative and non-zero.

2. An integral characterization of conditionally positive definite functions of order
m also exists. It can be found in a paper by Sun [597] (see also [634]).

Examples: Wendland [634] explicitly computes the generalized Fourier transforms for
various popular basis functions.

1. The multiquadrics

Φ(x) = (‖x‖2 + α2)β , x ∈ IRs, α > 0, β ∈ IR \ IN0,

have generalized Fourier transforms

Φ̂(ω) =
21+β

Γ(−β)

(‖ω‖
α

)−β−s/2

Kβ+s/2(α‖ω‖), ω 6= 0,

of order m = max(0, dβe). Here Kν is the modified Bessel function of the sec-
ond kind (sometimes also called modified Bessel function of the third kind, or
MacDonald’s function) of order ν. Therefore, the functions

Φ(x) = (−1)dβe(‖x‖2 + α2)β , β > 0, β /∈ IN,

are strictly conditionally positive definite of order m = dβe (and higher). In
particular, we can use

Pf(x) =
N∑

k=1

ck
√
‖x− xk‖2 + α2 + d, x ∈ IRs, α > 0,

together will the constraint
N∑

k=1

ck = 0

to solve the scattered data interpolation problem. The resulting interpolant will
be exact for constant data. By Theorem 3.2.3 we can also use

Pf(x) =

N∑

k=1

ck
√
‖x− xk‖2 + α2, x ∈ IRs, α > 0.
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Also, the inverse multiquadrics

Φ(x) = (‖x‖2 + α2)β , β < 0,

are again shown to be strictly conditionally positive definite of order m = 0, i.e.,
strictly positive definite.

2. The powers
Φ(x) = ‖x‖β , x ∈ IRs, β > 0, β /∈ 2 IN,

have generalized Fourier transforms

Φ̂(ω) =
2β+s/2Γ( s+β

2 )

Γ(−β/2) ‖ω‖−β−s, ω 6= 0,

of order m = dβ/2e. Therefore, the functions

Φ(x) = (−1)dβ/2e‖x‖β , β > 0, β /∈ 2 IN,

are strictly conditionally positive definite of order m = dβ/2e (and higher).

3. The thin plate splines (or surface splines)

Φ(x) = ‖x‖2k log ‖x‖, x ∈ IRs, k ∈ IN,

have generalized Fourier transforms

Φ̂(ω) = (−1)k+122k−1+s/2Γ(k + s/2)k!‖ω‖−s−2k

of order m = k + 1. Therefore, the functions

Φ(x) = (−1)k+1‖x‖2k log ‖x‖, k ∈ IN,

are strictly conditionally positive definite of order m = k + 1. In particular, we
can use

Pf(x) =
N∑

k=1

ck‖x− xk‖2 log ‖x− xk‖+ d1 + d2x+ d3y, x = (x, y) ∈ IR2,

together will the constraints

N∑

k=1

ck = 0,

N∑

k=1

ckxk = 0,

N∑

k=1

ckyk = 0,

to solve the scattered data interpolation problem provided the data sites are not
all collinear. The resulting interpolant will be exact for data coming from a linear
function.

Remark: As for strictly positive definite radial functions, we will be able to connect
strictly conditionally positive definite radial functions to completely monotone func-
tions, and thus be able to obtain a simpler criterion for checking conditional positive
definiteness.
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3.4 Conditionally Positive Definite Radial Functions

In analogy to the discussion in Chapter 2 we now focus on conditionally positive definite
functions which are radial on IRs for all s. The paper [273] by Guo, Hu and Sun contains
an integral characterization for such functions. This characterization is too technical
to be included here.

The main result in [273] is a characterization of conditionally positive definite radial
functions on IRs for all s in terms of completely monotone functions.

Theorem 3.4.1 Let ϕ ∈ C[0,∞) ∩ C∞(0,∞). Then the function Φ = ϕ(‖ · ‖2) is
conditionally positive definite of order m and radial on IRs for all s if and only if
(−1)mϕ(m) is completely monotone on (0,∞).

Proof: Micchelli [456] proved that complete monotonicity implies conditional positive
definiteness. He also conjectured that the converse holds, and gave a simple proof for
this in the case m = 1. For m = 0 this is Schoenberg’s characterization of positive
definite radial functions on IRs for all s in terms of completely monotone functions
(Theorem 2.5.3). The remaining part of the theorem is shown in [273]. �

In order to get strict conditional positive definiteness we need to generalize Theo-
rem 2.5.4, i.e., the fact that ϕ not be constant.

Theorem 3.4.2 If ϕ is as in Theorem 3.4.1 and not a polynomial of degree at most
m, then Φ is strictly conditionally positive definite of order m and radial on IRs for all
s.

Examples: We can now more easily verify the conditional positive definiteness of the
functions listed in the previous example.

1. The functions

ϕ(r) = (−1)dβe(r + α2)β , α > 0, β > 0, β /∈ IN

imply
ϕ(k)(r) = (−1)dβeβ(β − 1) · · · (β − k + 1)(r + α2)β−k

so that

(−1)dβeϕ(dβe)(r) = β(β − 1) · · · (β − dβe+ 1)(r + α2)β−dβe

is completely monotone. Moreover, m = dβe is the smallest possible m such that
(−1)mϕ(m) is completely monotone. Therefore, the multiquadrics

Φ(r) = (−1)dβe(r2 + α2)β , α > 0, β > 0,

are strictly conditionally positive definite of order m ≥ dβe and radial on IRs for
all s.
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2. The functions
ϕ(r) = (−1)dβ/2erβ/2, β > 0, β /∈ 2 IN,

imply

ϕ(k)(r) = (−1)dβ/2eβ
2

(
β

2
− 1

)
· · ·
(
β

2
− k + 1

)
rβ/2−k

so that (−1)dβ/2eϕ(dβ/2e) is completely monotone and m = dβ/2e is the smallest
possible m such that (−1)mϕ(m) is completely monotone. Therefore, the powers

Φ(r) = (−1)dβ/2erβ, β > 0, β /∈ 2 IN,

are strictly conditionally positive definite of order m ≥ dβ/2e and radial on IRs

for all s.

3. The thin plate splines

Φ(‖x‖) = (−1)k+1‖x‖2k log ‖x‖, k ∈ IN,

are strictly conditionally positive definite of order m ≥ k + 1 and radial on IRs

for all s. To see this we observe that

2Φ(‖x‖) = (−1)k+1‖x‖2k log(‖x‖2).

Therefore, we let
ϕ(r) = (−1)k+1rk log r, k ∈ IN,

and get

ϕ(`)(r) = (−1)k+1k(k − 1) · · · (k − `+ 1)rk−` log r + p`(r), 1 ≤ ` ≤ k,

with p` a polynomial of degree k − `. Therefore,

ϕ(k)(r) = (−1)k+1k! log r + C

and

ϕ(k+1)(r) = (−1)k+1 k!

r
,

which is completely monotone on (0,∞).

We can also apply the integral representation of completely monotone functions
from the Hausdorff-Bernstein-Widder Theorem to the previous result. Then we get

Theorem 3.4.3 A necessary and sufficient condition that the function Φ = ϕ(‖ · ‖2)
be conditionally positive definite of order m and radial on IRs for all s is that its ϕ(m)

satisfy

(−1)mϕ(m)(r) =

∫ ∞

0
e−rtdµ(t), r > 0,

where µ is a non-negative Borel measure on (0,∞) such that

∫ 1

0
dµ(t) <∞ and

∫ ∞

1

dµ(t)

tm
<∞.
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The following examples of functions which are conditionally positive definite of
order m = 0 or m = 1 and radial on IRs for all s are taken from [521]. They are listed
with the associated measures corresponding to the formulation of Theorem 3.4.3.

Example:

1. Φ(r) = −r: m = 1, dµ(t) = − 1

2
√
πt
dt,

2. Φ(r) = −
√

1 + r2: m = 1, dµ(t) = − e−t

2
√
πt
dt,

3. Φ(r) =
1√

1 + r2
: m = 0, dµ(t) =

e−t

√
πt
dt,

4. Φ(r) = e−αr2
, α > 0: m = 0, dµ(t) = δ(t− ρ)dt, i.e., point evaluation at ρ.

Finally, Micchelli proved a more general version of Theorem 2.6.3 theorem relating
conditionally positive definite radial functions of order m on IRs and multiply mono-
tone functions. We state a stronger version due to Buhmann [79] which ensures strict
conditional positive definiteness.

Theorem 3.4.4 Let k = bs/2c−m+2 be a positive integer, and suppose ϕ ∈ Cm−1[0,∞)
is not a polynomial of degree at most m. If (−1)mϕ(m) is k-times monotone on (0,∞)
but not constant, then Φ = ϕ(‖ · ‖2) is strictly conditionally positive definite of order
m and radial on IRs.

Remark: The converse of the above result is open.

Just as we showed earlier that compactly supported radial function cannot be
strictly positive definite on IRs for all s, it is important to note that there are no
truly conditionally positive definite functions with compact support. More precisely,

Theorem 3.4.5 Assume that the complex-valued function Φ ∈ C(IRs) has compact
support. If Φ is strictly conditionally positive definite of (minimal) order m, then m is
necessarily zero, i.e., Φ is already strictly positive definite.

Proof: The hypotheses on Φ ensure that it is integrable, and therefore it possesses a
classical Fourier transform Φ̂ which is continuous. For integrable functions the gener-
alized Fourier transform coincides with the classical Fourier transform. Theorem 3.3.2
ensures that Φ̂ is non-negative in IRs \ {0} and not identically equal to zero. By conti-
nuity we also get Φ̂(0) ≥ 0, and Theorem 2.3.3 shows that Φ is strictly positive definite.
�.

Remark: Theorem 3.4.4 together with Theorem 3.4.5 implies that if we perform m-
fold anti-differentiation on a non-constant k-times monotone function, then we obtain
a function that is strictly positive definite and radial on IRs for s ≤ 2(k +m)− 3.
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Example: The function ϕk(r) = (1−r)k
+ is k-times monotone. To avoid the integration

constant for the compactly supported truncated power function we compute the anti-
derivative via

Iϕk(r) =

∫ ∞

r
ϕk(s)ds =

∫ ∞

r
(1− s)k

+ds =
(−1)k

k + 1
(1− r)k+1

+ .

m-fold anti-differentiation yields

Imϕk(r) = IIm−1ϕk(r) =
(−1)mk

(k + 1)(k + 2) · · · (k +m)
(1− r)k+m

+ .

Therefore, by the Buhmann-Micchelli Theorem, the function

ϕ(r) = (1− r)k+m
+

is strictly conditionally positive definite of orderm and radial on IRs for s ≤ 2(k+m)−3,
and by Theorem 3.4.5 it is even strictly positive definite and radial on IRs. This was
also observed in Example 1 at the end of Section 2.4. In fact, we saw there that ϕ is
strictly positive definite and radial on IRs for s ≤ 2(k +m)− 1.

We see that we can construct strictly positive definite compactly supported radial
functions by anti-differentiating the truncated power function. This is essentially the
approach taken by Wendland to construct his popular compactly supported radial basis
functions. We describe this construction in the next chapter.

3.5 Composition of Conditionally Positive Definite Func-

tions

When Schoenberg first studied conditionally positive definite matrices of order one it
was in connection with isometric embeddings. Based on earlier work by Karl Menger
[453] he had the following result characterizing a conditionally positive definite matrix
as a certain distance matrix (see [568]).

Theorem 3.5.1 Let A be a real symmetric N × N matrix with all diagonal entries
zero and all other elements positive. Then −A is conditionally positive semi-definite if
and only if there exist N points y1, . . . ,yN ∈ IRN for which

Ajk = ‖yj − yk‖2.

These points are the vertices of a simplex in IRN .

There is also a close connection between conditionally positive semi-definite matrices
and those which are positive semi-definite. This is a classical result from linear algebra
called Schur’s theorem. We state a stronger version due to Micchelli [456] that also
covers the strict case.
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Theorem 3.5.2 A symmetric matrix −A is conditionally positive semi-definite if and
only if the Schur exponential (e−αAjk)N

j,k=1 is positive semi-definite for all α > 0. More-
over, it is positive definite if and only if

Ajk >
Ajj +Akk

2
, j 6= k.

A proof of the classical (non-strict) Schur Theorem can be found, e.g., in the book
by Horn and Johnson [308].

As an immediate corollary we get an earlier result by Schoenberg (see [569], Thm. 5).
We have translated Schoenberg’s embedding language into that of conditionally positive
definite and completely monotone functions.

Corollary 3.5.3 A function ϕ(·) is conditionally positive definite of order one and
radial on IRs for all s if and only if the functions e−αϕ(·2) are positive definite and
radial on IRs for all s and for all α > 0, i.e., e−αϕ(·) is completely monotone for all
α > 0.

Example: The matrix B defined by

Bjk = e−‖xj−xk‖α

, 0 < α ≤ 2, j, k = 1, . . . , N,

is positive semi-definite, and if the points x1, . . . ,xN are distinct B is positive definite.
This is true since Schoenberg [569] showed that the matrix A defined by

Ajk = −‖xj − xk‖α, 0 < α ≤ 2, j, k = 1, . . . , n,

is conditionally positive semi-definite, and conditionally positive definite for distinct
points.

A more general result regarding the composition of conditionally positive definite
functions is given by Baxter [26].

Theorem 3.5.4 Suppose ϕ and ψ are functions that are conditionally positive definite
of order one are radial on IRs with ϕ(0) = 0. Then ψ ◦ ϕ is also conditionally positive
definite of order one and radial on IRs. Indeed, if ψ is strictly conditionally positive
definite of order one and radial and ϕ vanishes only at zero, then ψ ◦ ϕ is strictly
conditionally positive definite of order one and radial.

We close with some remarks.

Remarks:

1. More results with a similar flavor can be found in [26], [456], and [445].

2. Many of the results given in the previous sections can be generalized to vector-
valued or even matrix-valued functions. Some work is done in [407, 408], [474],
[484], and [548].
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3. Another possible generalization is to consider (strictly) (conditionally) positive
definite kernels on X × X, where X is some abstract point set and k1, . . . , km

are given real-valued functions governing the order m of conditional positive def-
initeness.

4. We point out that the approach to solving the interpolation problems taken in the
previous section always assumes that the knots, i.e., the points xk, k = 1, . . . , N ,
at which the basis functions are centered, coincide with the data sites. This is
a fairly severe restriction, and it has been shown in examples in the context of
least squares approximation of scattered data (see e.g., [237, 238], or [192]) that
better results can be achieved if the knots are chosen different from the data sites.
Theoretical results in this direction are very limited, and are reported in [521]
and in [596].
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Chapter 4

Compactly Supported Radial

Basis Functions

As we saw earlier, compactly supported functions Φ that are truly strictly condition-
ally positive definite of order m > 0 do not exist. The compact support automatically
ensures that Φ is strictly positive definite. Another observation was that compactly
supported radial functions can be strictly positive definite on IRs only for a fixed max-
imal s-value. It is not possible for a function to be strictly positive definite and radial
on IRs for all s and also have a compact support. Therefore we focus our attention
on the characterization and construction of functions that are compactly supported,
strictly positive definite and radial on IRs for some fixed s.

According to our earlier work (Bochner’s Theorem and generalizations thereof), a
function is strictly positive definite and radial on IRs if its s-variate Fourier transform
is non-negative. Theorem 2.1.2 gives the Fourier transform of Φ = ϕ(‖ · ‖) as

Φ̂(x) = Fsϕ(r) = r−(s−2)/2

∫ ∞

0
ϕ(t)ts/2J(s−2)/2(rt)dt.

4.1 Operators for Radial Functions and Dimension Walks

Schaback and Wu [564] defined an integral operator and its inverse differential operator,
and discussed an entire calculus for how these operators act on radial functions. These
operators will facilitate the construction of compactly supported radial functions.

Definition 4.1.1 1. Let ϕ be such that t 7→ tϕ(t) ∈ L1[0,∞), then we define

(Iϕ)(r) =

∫ ∞

r
tϕ(t)dt, r ≥ 0.

2. For even ϕ ∈ C2(IR) we define

(Dϕ)(r) = −1

r
ϕ′(r), r ≥ 0.

In both cases the resulting functions are to be interpreted as even functions using
even extension.
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Remark: Note that the operator I differs from the operator I introduced earlier by
a factor t in the integrand. However, the two operators are related. In fact, we have
Iϕ(·2/2) = Iϕ(·), i.e., ∫ ∞

r
tϕ(t2/2)dt =

∫ ∞

r2/2
ϕ(t)dt.

The most important properties of these operators are (see, e.g., [564] or [627]):

Theorem 4.1.2 1. Both D and I preserve compact support, i.e., if ϕ has compact
support, then so do Dϕ and Iϕ.

2. If ϕ ∈ C( IR) and t 7→ tφ(t) ∈ L1[0,∞), then DIϕ = ϕ.

3. If ϕ ∈ C2(IR) is even and ϕ′ ∈ L1[0,∞), then IDϕ = ϕ.

4. If t 7→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then Fs(ϕ) = Fs−2(Iϕ).

5. If ϕ ∈ C2(IR) is even and t 7→ tsϕ′(t) ∈ L1[0,∞), then Fs(ϕ) = Fs+2(Dϕ).

The operators I and D allow us to express s-variate Fourier transforms as (s− 2)-
or (s+ 2)-variate Fourier transforms, respectively. In particular, a direct consequence
of the above properties and the characterization of strictly positive definite radial func-
tions (Theorem 2.4.1) is

Theorem 4.1.3 1. Suppose ϕ ∈ C(IR). If t 7→ ts−1ϕ(t) ∈ L1[0,∞) and s ≥ 3, then
ϕ is strictly positive definite and radial on IRs if and only if Iϕ is strictly positive
definite and radial on IRs−2.

2. If ϕ ∈ C2(IR) is even and t 7→ tsϕ′(t) ∈ L1[0,∞), then ϕ is strictly positive
definite and radial on IRs if and only if Dϕ is strictly positive definite and radial
on IRs+2.

This allows us to construct new strictly positive definite radial functions from given
ones by a “dimension-walk” technique that steps through multivariate Euclidean space
in even increments.

4.2 Wendland’s Compactly Supported Functions

In [627] Wendland constructed a popular family of compactly supported radial functions
by starting with the truncated power function (which we know to be strictly positive
definite and radial on IRs for s ≤ 2` − 1), and then walking through dimensions by
repeatedly applying the operator I.

Definition 4.2.1 With ϕ`(r) = (1− r)`
+ we define

ϕs,k = Ikϕbs/2c+k+1.

It turns out that the functions ϕs,k are all supported on [0, 1] and have a polynomial
representation there. More precisely,
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Theorem 4.2.2 The functions ϕs,k are strictly positive definite and radial on IRs and
are of the form

ϕs,k(r) =

{
ps,k(r), r ∈ [0, 1],
0, r > 1,

with a univariate polynomial ps,k of degree bs/2c+3k+1. Moreover, ϕs,k ∈ C2k(IR) are
unique up to a constant factor, and the polynomial degree is minimal for given space
dimension s and smoothness 2k.

Wendland gave recursive formulas for the functions ϕs,k for all s, k. We instead list
the explicit formulas of [195]

Theorem 4.2.3 The functions ϕs,k, k = 0, 1, 2, 3, have the form

ϕs,0(r) = (1− r)`
+,

ϕs,1(r)
.
= (1− r)`+1

+ [(`+ 1)r + 1] ,

ϕs,2(r)
.
= (1− r)`+2

+

[
(`2 + 4`+ 3)r2 + (3`+ 6)r + 3

]
,

ϕs,3(r)
.
= (1− r)`+3

+

[
(`3 + 9`2 + 23`+ 15)r3 + (6`2 + 36`+ 45)r2 + (15`+ 45)r + 15

]
,

where ` = bs/2c + k + 1, and the symbol
.
= denotes equality up to a multiplicative

positive constant.

Proof: The case k = 0 follows directly from the definition. Application of the definition
for the case k = 1 yields

ϕs,1(r) = (Iϕ`)(r) =

∫ ∞

r
tϕ`(t)dt

=

∫ ∞

r
t(1− t)`

+dt

=

∫ 1

r
t(1− t)`dt

=
1

(`+ 1)(`+ 2)
(1− r)`+1 [(`+ 1)r + 1] ,

where the compact support of ϕ` reduces the improper integral to a definite integral
which can be evaluated using integration by parts. The other two cases are obtained
similarly by repeated application of I. �

Examples: For s = 3 we get some of the most commonly used functions as

ϕ3,0(r) = (1− r)2+, ∈ C0 ∩ SPD(IR3)
ϕ3,1(r)

.
= (1− r)4+ (4r + 1) , ∈ C2 ∩ SPD(IR3)

ϕ3,2(r)
.
= (1− r)6+

(
35r2 + 18r + 3

)
, ∈ C4 ∩ SPD(IR3)

ϕ3,3(r)
.
= (1− r)8+

(
32r3 + 25r2 + 8r + 1

)
, ∈ C6 ∩ SPD(IR3).

39



4.3 Wu’s Compactly Supported Functions

In [656] Wu presents another way to construct strictly positive definite radial functions
with compact support. He starts with the function

ψ(r) = (1− r2)`
+, ` ∈ IN,

which is strictly positive definite and radial since we know that the truncated power
function ψ(

√·) is multiply monotone. Wu then constructs another function that is
strictly positive definite and radial on IR by convolution, i.e.,

ψ`(r) = (ψ ∗ ψ)(2r)

=

∫ ∞

−∞
(1− t2)`

+(1− (2r − t)2)`
+dt

=

∫ 1

−1
(1− t2)`(1− (2r − t)2)`dt.

This function is strictly positive definite since its Fourier transform is essentially the
square of the Fourier transform of ψ. Just like the Wendland functions, this function
is a polynomial on its support. In fact, the degree of the polynomial is 4` + 1, and
ψ` ∈ C2`(IR).

Now, a family of strictly positive definite radial functions is constructed by a di-
mension walk using the D operator, i.e.,

ψk,` = Dkψ`.

The functions ψk,` are strictly positive definite and radial in IRs for s ≤ 2k + 1, are
polynomials of degree 4`− 2k+ 1 on their support and in C2(`−k) in the interior of the
support. On the boundary the smoothness increases to C2`−k.

Example: For ` = 3 we can compute the three functions

ψk,3(r) = Dkψ3(r) = Dk((1− ·2)3+ ∗ (1− ·2)3+)(2r), k = 0, 1, 2, 3.

This results in

ψ0,3(r)
.
=

(
5− 39r2 + 143r4 − 429r6 + 429r7 − 143r9 + 39r11 − 5r13

)
+.

= (1− r)7+(5 + 35r + 101r2 + 147r3 + 101r4 + 35r5 + 5r6) ∈ C6 ∩ SPD(IR)
ψ1,3(r)

.
=

(
6− 44r2 + 198r4 − 231r5 + 99r7 − 33r9 + 5r11

)
+.

= (1− r)6+(6 + 36r + 82r2 + 72r3 + 30r4 + 5r5) ∈ C4 ∩ SPD(IR3)
ψ2,3(r)

.
=

(
8− 72r2 + 105r3 − 63r5 + 27r7 − 5r9

)
+.

= (1− r)5+(8 + 40r + 48r2 + 25r3 + 5r4) ∈ C2 ∩ SPD(IR5)
ψ3,3(r)

.
=

(
16− 35r + 35r3 − 21r5 + 5r7

)
+.

= (1− r)4+(16 + 29r + 20r2 + 5r3) ∈ C0 ∩ SPD(IR7).

Remarks:

1. For a prescribed smoothness the polynomial degree of Wendland’s functions is
lower than that of Wu’s functions. For example, both Wendland’s function ϕ3,2

and Wu’s function ψ1,3 are C4 smooth and strictly positive definite and radial in
IR3. However, the polynomial degree of Wendland’s function is 8, whereas that
of Wu’s function is 11.

40



1

0.4

0.8

0.6

0.2

r

0.5 1-1 -0.5
0
0

1

0.6

0.8

0.4

0

r

10-1

0.2

0.5-0.5

1

0.8

0.4

0.6

0

0.2

r

10.50-1 -0.5

Figure 4.1: Plot of Wendland’s functions (left), Wu’s functions (center), and Buhmann’s
function (right) listed as examples.

2. While both families of strictly positive definite compactly supported functions are
constructed via dimension walk, Wendland uses integration (and thus obtains
a family of increasingly smoother functions), whereas Wu needs to start with
a function of sufficient smoothness, and then obtains successively less smooth
functions (via differentiation).

4.4 Buhmann’s Compactly Supported Functions

A third family of compactly supported strictly positive definite radial functions that
has appeared in the literature is due to Buhmann (see [84]). Buhmann’s functions
contain a logarithmic term in addition to a polynomial. His functions have the general
form

φ(r) =

∫ ∞

0
(1− r2/t)λ

+t
α(1− tδ)ρ

+dt.

Here 0 < δ ≤ 1
2 , ρ ≥ 1, and in order to obtain functions that are strictly positive

definite and radial on IRs for s ≤ 3 the constraints for the remaining parameters are
λ ≥ 0, and −1 < α ≤ λ−1

2 .

Example: An example with α = δ = 1
2 , ρ = 1 and λ = 2 is listed in [85]:

φ(r)
.
= 12r4 log r − 21r4 + 32r3 − 12r2 + 1, 0 ≤ r ≤ 1, ∈ C2 ∩ SPD(IR3).

Remarks:

1. While Buhmann [85] claims that his construction encompasses both Wendland’s
and Wu’s functions, Wendland [634] gives an even more general theorem that
shows that integration of a positive function f ∈ L1[0,∞) against a strictly posi-
tive definite (compactly supported) kernel K results in a (compactly supported)
strictly positive definite function, i.e.,

ϕ(r) =

∫ ∞

0
K(t, r)f(t)dt
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is strictly positive definite. Buhmann’s construction then corresponds to choosing
f(t) = tα(1− tδ)ρ

+ and K(t, r) = (1− r2/t)λ
+.

2. Multiply monotone functions are covered by this general theorem by taking
K(t, r) = (1− rt)k−1

+ and f an arbitrary positive function in L1 so that dµ(t) =
f(t)dt in Williamson’s characterization Theorem 2.6.2. Also, functions that are
strictly positive definite and radial in IRs for all s (or equivalently completely
monotone functions) are covered by choosing K(t, r) = e−rt.
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Chapter 5

Error Bounds and the

Variational Approach

In order to estimate the approximation properties of the functions studied thus far we
will introduce the variational approach to scattered data interpolation. This approach
was used first for radial basis function interpolation by Madych and Nelson [417], and
later adopted by many others (see, e.g., [393, 394], [518], [545], [628, 629], [658]). We
will see that for every strictly positive definite radial function there is an associated
Hilbert space in which the radial basis function interpolant provides the best approx-
imation to a given function. This optimality of interpolants in Hilbert space is the
subject of the theory of optimal recovery described in the late 1950s by Golomb and
Weinberger in their paper [264]. The following discussion follows mostly the presenta-
tion in Wendland’s book [634].

5.1 Reproducing Kernel Hilbert Spaces

We begin with

Definition 5.1.1 Let H be a real Hilbert space of functions f : Ω → IR. A function
K : Ω× Ω→ IR is called reproducing kernel for H if

1. K(x, ·) ∈ H for all x ∈ Ω,

2. f(x) = 〈f,K(·,x)〉H for all f ∈ H and all x ∈ Ω.

It is known that the reproducing kernel of a Hilbert space is unique, and that
existence of a reproducing kernel is equivalent to the fact that the point evaluation
functionals δx are bounded linear functionals, i.e., there exists a positive constant
M = Mx such that

|δxf | = |f(x)| ≤M‖f‖H
for all f ∈ H. This latter fact is due to the Riesz Representation Theorem.

Other properties of reproducing kernels are

Theorem 5.1.2 Suppose H is a Hilbert space of functions f : Ω→ IR with reproducing
kernel K and H∗ its dual space, i.e., the space of linear functionals on H. Then we
have
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1. K(x,y) = 〈K(x, ·),K(·,y)〉H for x,y ∈ Ω.

2. K(x,y) = K(y,x) for x,y ∈ Ω.

3. Convergence in Hilbert space norm implies pointwise convergence.

Proof: Since by (1) of Definition 5.1.1 K(x, ·) ∈ H for every x ∈ Ω, the reproducing
property (2) of the definition gives us

K(x,y) = 〈K(x, ·),K(·,y)〉H
for all x,y ∈ Ω. (2) follows from (1) by the symmetry of the Hilbert space inner
product. For (3) we use the reproducing property of K along with the Cauchy-Schwarz
inequality:

|f(x)− fn(x)| = |〈f − fn,K(·,x)〉H| ≤ ‖f − fn‖H‖K(·,x)‖H.

�

Moreover, the reproducing kernelK is known to be positive definite. In the following
we use a slight generalization of the notion of a positive definite function to a positive
definite kernel. Essentially, we replace Φ(xj − xk) in Definition 1.2.5 by K(xj ,xk).

Theorem 5.1.3 Suppose H is a reproducing kernel Hilbert function space with repro-
ducing kernel K : Ω × Ω → IR. Then K is positive definite. Moreover, K is strictly
positive definite if and only if the point evaluation functionals are linearly independent
in H∗.

Proof: Since the kernel is real-valued we can restrict ourselves to a quadratic form
with real coefficients. For distinct points x1, . . . ,xN and nonzero c ∈ IRN we have

N∑

j=1

N∑

k=1

cjckK(xj ,xk) =
N∑

j=1

N∑

k=1

cjck〈K(xj , ·),K(·,xk)〉H

= 〈
N∑

j=1

cjK(xj , ·),
n∑

k=1

ckK(·,xk)〉H

= ‖
N∑

j=1

cjK(xj , ·)‖2H ≥ 0.

To establish the second claim we assume K is not strictly positive definite and show
that the point evaluation functionals must be linearly dependent. If K is not strictly
positive definite then there exist distinct points x1, . . . ,xN and nonzero coefficients
such that

N∑

j=1

N∑

k=1

cjckK(xj ,xk) = 0.

The first part of the proof therefore implies

N∑

j=1

cjK(xj , ·) =
N∑

j=1

cjK(·,xj) = 0.
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Taking the Hilbert space inner product with an arbitrary f ∈ H and using the repro-
ducing property of K we get that

0 = 〈f,
N∑

j=1

cjK(·,xj)〉H

=
N∑

j=1

cj〈f,K(·,xj)〉H

=
N∑

j=1

cjf(xj)

=

N∑

j=1

cjδxj
(f).

This, however, shows the linear dependence of the point evaluation functionals δx(f) =
f(x). An analogous argument can be used to show the converse. �

This theorem provides a connection between strictly positive definite functions and
reproducing kernels. Our interest, however, lies in the other direction. Since we are
starting with strictly positive definite functions, we need to show how to construct an
associated reproducing kernel Hilbert space.

5.2 Native Spaces for Strictly Positive Definite Functions

First, we note that Definition 5.1.1 tells us that H contains all functions of the form

f =
N∑

j=1

cjK(xj , ·)

provided xj ∈ Ω. In Theorem 5.1.2 we showed that

‖f‖2H = 〈f, f〉H = 〈
N∑

j=1

cjK(xj , ·),
N∑

k=1

ckK(·,xk)〉H

=
N∑

j=1

N∑

k=1

cjck〈K(xj , ·),K(·,xk)〉H

=
N∑

j=1

N∑

k=1

cjckK(xj ,xk).

Therefore, we define the space

HK(Ω) = span{K(·,y) : y ∈ Ω}

with an associated bilinear form

〈
N∑

j=1

cjK(·,xj),
N∑

k=1

dkK(·,yk)〉K =
N∑

j=1

N∑

k=1

cjdkK(xj ,yk).
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Theorem 5.2.1 If K : Ω × Ω → IR is a symmetric strictly positive definite kernel,
then the bilinear form 〈·, ·〉K defines an inner product on HK(Ω). Furthermore, HK(Ω)
is a pre-Hilbert space with reproducing kernel K.

Proof: 〈·, ·〉K is obviously bilinear and symmetric. We just need to show that 〈f, f〉K >
0 for nonzero f ∈ HK(Ω). Any such f can be written in the form

f =
N∑

j=1

cjK(·,xj), xj ∈ Ω.

Then

〈f, f〉K =
N∑

j=1

N∑

k=1

cjckK(xj ,xk) > 0

since K is strictly positive definite. The reproducing property follows from

〈f,K(·,x)〉K =
N∑

j=1

cjK(xj ,x) = f(x).

�

The native space NK(Ω) of K is now defined to be the completion of HK(Ω) with
respect to the K-norm ‖ · ‖K so that ‖f‖K = ‖f‖NK(Ω) for all f ∈ HK(Ω). The
technical details concerned with this construction are discussed in [634].

In the special case when we are dealing with strictly positive definite (translation
invariant) functions Φ(x − y) = K(x,y) and when Ω = IRs we get a characterization
of native spaces in terms of Fourier transforms.

Theorem 5.2.2 Suppose Φ ∈ C(IRs)∩L1(IR
s) is a real-valued strictly positive definite

function. Define

G = {f ∈ L2(IR
s) ∩ C(IRs) :

f̂√
Φ̂
∈ L2(IR

s)}

and equip this space with the bilinear form

〈f, g〉G =
1√

(2π)s
〈 f̂√

Φ̂
,
ĝ√
Φ̂
〉L2(IRs) =

1√
(2π)s

∫

IRs

f̂(ω)ĝ(ω)

Φ̂(ω)
dω.

Then G is a real Hilbert space with inner product 〈·, ·〉G and reproducing kernel Φ(·− ·).
Hence, G is the native space of Φ on IRs, i.e., G = NΦ(IRs) and both inner product
coincide. In particular, every f ∈ NΦ(IRs) can be recovered from its Fourier transform
f̂ ∈ L1(IR

s) ∩ L2(IR
s).

Remarks:

1. This theorem shows that the native spaces can be viewed as a generalization of
the standard Sobolev spaces. Indeed, for m > s/2 the Sobolev space Wm

2 can be
defined as

Wm
2 (IRs) = {f ∈ L2(IR

s) ∩ C(IRs) : f̂(·)(1 + ‖ · ‖22)m/2 ∈ L2(IR
s)}.
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Therefore, any strictly positive definite function Φ whose Fourier transform decays
only algebraically has a Sobolev space as its native space. In particular, the
compactly supported Wendland functions Φs,k = ϕs,k(‖ · ‖2) of Chapter 4 can be

shown to have native spaces NΦs,k
(IRs) = W

s/2+k+1/2
2 (IRs) (where the restriction

s ≥ 3 is required for the special case k = 0).

2. Native spaces for strictly conditionally positive definite functions can also be
constructed. However, since this is more technical, we limit the discussion here
to strictly positive definite functions, and refer the interested reader to the book
by Wendland [634] or the papers [554, 555] by Schaback.

3. The native spaces of the powers and thin plate (or surface) splines of Examples 2
and 3 of Sections 3.3 and 3.4 can be shown to be the so-called Beppo-Levi spaces
of order k

BLk(IR
s) = {f ∈ C(IRs) : Dαf ∈ L2(IR

s) for all |α| = k, α ∈ INs},

where Dα denotes a generalized derivative of order α (defined in the same spirit
as the generalized Fourier transform). In fact, the intersection of all Beppo-Levi
spaces BLk(IR

s) of order k ≤ m yields the Sobolev space Wm
2 (IRs). For more

details see [634]. These spaces were already studied in the early papers by Duchon
[168, 169, 170, 171].

4. The native spaces for Gaussians and (inverse) multiquadrics are rather small.
For example, according to Theorem 5.2.2, for Gaussians the Fourier transform of
f ∈ NΦ(Ω) must decay faster than the Fourier transform of the Gaussian (which
is itself a Gaussian). It is known that, however, even though the native space
of Gaussians is small, it does contain the so-called band-limited functions, i.e.,
functions whose Fourier transform is compactly supported. These functions play
an important role in sampling theory where Shannon’s famous Sampling Theorem
[575] states that any band-limited function can be completely recovered from its
discrete samples provided the function is sampled at a sampling rate at least twice
its bandwidth. The content of this theorem was already known to Whitaker [640]
in 1915.

Theorem 5.2.3 Suppose f ∈ C(IRs) ∩ L1(IR
s) such that its Fourier

transform vanishes outside the cube Q =
[
−1

2 ,
1
2

]s
. Then f can be

uniquely reconstructed from its values on ZZs, i.e.,

f(x) =
∑

ξ∈ZZs

f(ξ)sinc(x− ξ), x ∈ IRs .

Here the sinc function is defined for any x = (x1, . . . , xs) ∈ IRs as sinc x =∏s
i=1

sin(πxi)
πxi

. For more details on Shannon’s Sampling Theorem see, e.g., Chap-
ter 29 in the book [132] by Cheney and Light or the paper [610] by Unser.
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5.3 The Power Function and Error Estimates for Func-

tions in NΦ(Ω)

Our goal in this section is to provide error estimates for scattered data interpolation
with strictly (conditionally) positive definite functions. In their final form these esti-
mates will need to involve some kind of measure of the data distribution. The measure
that is usually used is the so-called fill distance

h = hX ,Ω = sup
x∈Ω

min
xj∈X

‖x− xj‖2

which indicates how well the data fill out the domain Ω. The fill distance denotes the
radius of the largest possible empty ball that can be placed among the data locations.
We will be interested in whether the error

‖f − Phf‖∞
tends to zero as h → 0, and if so, how fast. Here {Ph}h presents a sequence of
interpolation (or, more generally, projection) operators that vary with the fill distance
h. For example, Ph could denote interpolation to data given at (2n + 1)s, n = 1, 2, . . .,
equally spaced points in the unit cube in IRs (with h = 2−n). Of course, the definition
of the fill distance allows for scattered data as well.

Since we want to use the machinery of reproducing kernel Hilbert spaces we will
concentrate on error estimates for functions f ∈ NΦ. In the next section we will also
mention some more general estimates.

The term that is often used to measure the speed of convergence to zero is approxi-
mation order. We say that the approximation operator Ph has Lp-approximation order
k if

‖f − Phf‖p = O(hk) for h→ 0.

Moreover, if we can also show that ‖f − Phf‖p 6= o(hk), then Ph has exact Lp-
approximation order k. We will concentrate mostly on the case p = ∞, but approxi-
mation order in other norms can also be studied.

In order to keep the following discussion as transparent as possible we will restrict
ourselves to strictly positive definite functions. With (considerably) more technical
details the following can also be formulated for strictly conditionally positive definite
functions (see [634] for details).

The key idea for the following discussion is to express the interpolant in Lagrange
form, i.e., using cardinal basis functions. This idea is due to Schaback and Wu [658].
In the previous chapters we have established that, for any strictly positive definite
function Φ, the linear system

Ac = y

with Aij = Φ(xi − xj), i, j = 1, . . . , N , c = [c1, . . . , cN ]T , and y = [f(x1), . . . , f(xN )]T

has a unique solution. In the following we will consider the more general situation where
Φ is a strictly positive definite kernel, i.e., the entries of A are given by Aij = Φ(xi,xj).

In order to obtain the cardinal basis functions u∗j , j = 1, . . . , N , with the property
u∗j (xi) = δij we consider the linear system

Au∗(x) = b(x),
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where the matrix A is as above (and therefore invertible), u∗ = [u∗1, . . . , u
∗
N ]T , and

b = [Φ(·,x1), . . . ,Φ(·,xN )]T . Thus,

Theorem 5.3.1 Suppose Φ is a strictly positive definite kernel on IRs. Then, for any
distinct points x1, . . . ,xN , there exist functions u∗j ∈ span{Φ(·,xj), j = 1, . . . , N} such
that u∗j (xi) = δij.

Therefore, we can write Pf in the cardinal form

Pf(x) =
N∑

j=1

f(xj)u
∗
j (x), x ∈ IRs .

Another important ingredient in our estimates is the so-called power function. To
this end, we consider a domain Ω ⊆ IRs. Then for any strictly positive definite kernel
Φ ∈ C(Ω × Ω), any set of distinct points X = {x1, . . . ,xN} ⊆ Ω, and any vector
u ∈ IRN , we define the quadratic form

Q(u) = Φ(x,x)− 2
N∑

j=1

ujΦ(x,xj) +
N∑

i=1

N∑

j=1

uiujΦ(xi,xj)

= 〈Φ(·,x),Φ(·,x)〉NΦ(Ω) − 2

N∑

j=1

uj〈Φ(·,x),Φ(·,xj)〉NΦ(Ω)

+
N∑

i=1

N∑

j=1

uiuj〈Φ(·,xi),Φ(·,xj)〉NΦ(Ω)

= 〈Φ(·,x)−
N∑

j=1

ujΦ(·,xj),Φ(·,x)−
N∑

j=1

ujΦ(·,xj)〉NΦ(Ω)

=

∥∥∥∥∥∥
Φ(·,x)−

N∑

j=1

ujΦ(·,xj)

∥∥∥∥∥∥

2

NΦ(Ω)

. (5.1)

Here we have used the definition of the native space norm from the previous section.
Then

Definition 5.3.2 Suppose Ω ⊆ IRs and Φ ∈ C(Ω × Ω) is strictly positive definite on
IRs. For any distinct points X = {x1, . . . ,xN} ⊆ Ω the power function is defined by

[PΦ,X (x)]2 = Q(u∗(x)),

where u∗ is the vector of cardinal functions from Theorem 5.3.1.

Remarks:

1. The name power function was chosen by Schaback based on its connection to the
power function of a statistical decision function [622].
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2. In the paper [658] by Wu and Schaback the power function was referred to as
kriging function. This terminology comes from geostatistics (see, e.g., [474]).

Now we can give a first generic error estimate.

Theorem 5.3.3 Let Ω ⊆ IRs, Φ ∈ C(Ω × Ω) be strictly positive definite on IRs, and
suppose that the points X = {x1, . . . ,xN} are distinct. Denote the interpolant to
f ∈ NΦ(Ω) on X by Pf . Then for every x ∈ Ω

|f(x)− Pf(x)| ≤ PΦ,X (x)‖f‖NΦ(Ω).

Proof: We express the interpolant in its cardinal form and apply the reproducing
property of Φ. This gives us

Pf(x) =

N∑

j=1

f(xj)u
∗
j (x)

=
N∑

j=1

u∗j (x)〈f,Φ(·,xj)〉NΦ(Ω)

= 〈f,
N∑

j=1

u∗j (x)Φ(·,xj)〉NΦ(Ω).

For f the reproducing property of Φ yields

f(x) = 〈f,Φ(·,x)〉NΦ(Ω).

Now we combine these two formulas and apply the Cauchy-Schwarz inequality

|f(x)− Pf(x)| =

∣∣∣∣∣∣
〈f,Φ(·,x)−

N∑

j=1

u∗j (x)Φ(·,xj)〉NΦ(Ω)

∣∣∣∣∣∣

≤ ‖f‖NΦ(Ω)

∥∥∥∥∥∥
Φ(·,x)−

N∑

j=1

u∗j (x)Φ(·,xj)

∥∥∥∥∥∥
NΦ(Ω)

= ‖f‖NΦ(Ω)PΦ,X (x),

where we have applied (5.1) and the definition of the power function. �

Remark: One of the main benefits of Theorem 5.3.3 is that we are now able to estimate
the interpolation error by considering two independent phenomena:

• the smoothness of the data (measured in terms of the native space norm of f –
which is independent of the data locations),

• and the contribution due to the use of the basic function Φ and the distribution
of the data (measured in terms of the power function – independent of the actual
data values).
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This is analogous to the standard error estimate for polynomial interpolation cited in
most numerical analysis texts.

The next step is to refine this error bound by expressing the influence of the data
locations in terms of the fill distance. And then, of course, the bound needs to be
specialized to various choices of basic functions Φ.

The strategy to obtaining most error bounds in numerical analysis is to take ad-
vantage of the polynomial precision of a method (at least locally), and then to apply a
Taylor expansion. With this in mind we observe

Theorem 5.3.4 Let Ω ⊆ IRs, and suppose Φ ∈ C(Ω×Ω) is strictly positive definite on
IRs. Let X = {x1, . . . ,xN} be a set of distinct points in Ω, and define the quadratic form
Q as in (5.1). The minimum of Q is given by the vector u∗(x) from Theorem 5.3.1,
i.e.,

Q(u∗(x)) ≤ Q(u) for all u ∈ IRN .

Proof: Using the linear system notation employed earlier, we note that

Q(u) = Φ(x,x)− 2uT b(x) + uTAu.

The minimum of this quadratic form is given by the solution of the linear system

Au = b(x).

This, however, yields the cardinal functions u = u∗(x). �

Remark: The arguments used in the previous proof suggest two alternative represen-
tations of the power function. Using the matrix-vector notation, the power function is
given as

PΦ,X (x) =
√
Q(u∗(x)) =

√
Φ(x,x)− 2(u∗(x))T b(x) + (u∗(x))TAu∗(x).

However, by the definition of the cardinal functions Au∗(x) = b(x), and therefore we
have the two new variants

PΦ,X (x) =
√

Φ(x,x)− (u∗(x))T b(x)

=
√

Φ(x,x)− (u∗(x))TAu∗(x).

In the proof below we will use a special coefficient vector ũ which provides the
polynomial precision desired for the proof of the refined error estimate. Its existence
is guaranteed by the following theorem on local polynomial reproduction proved by
Wendland in [634]. This theorem requires the notion of a domain which satisfies an
interior cone condition.

Definition 5.3.5 A region Ω ⊆ IRs satisfies an interior cone condition if there exists
an angle θ ∈ (0, π/2) and a radius r > 0 such that for every x ∈ Ω there exists a unit
vector ξ(x) such that the cone

C = {x + λy : y ∈ IRs, ‖y‖2 = 1, yT ξ(x) ≥ cos θ, λ ∈ [0, r]}

is contained in Ω.
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Remark: A consequence of the interior cone condition is the fact that a domain that
satisfies this condition contains balls of a controllable radius. In particular, this will
be important when bounding the remainder of the Taylor expansions below. For more
details see [634].

Existence of an approximation scheme with local polynomial precision is guaranteed
by

Theorem 5.3.6 Suppose Ω ⊆ IRs is bounded and satisfies an interior cone condition,
and let ` be a non-negative integer. Then there exist positive constants h0, sc1, and c2
such that for all X = {x1, . . . ,xN} ⊆ Ω with hX ,Ω ≤ h0 and every x ∈ Ω there exist
numbers ũ1(x), . . . ũN (x) with

1.

N∑

j=1

ũj(x)p(xj) = p(x) for all p ∈ Πs
`,

2.

N∑

j=1

|ũj(x)| ≤ c1,

3. ũj(x) = 0 if ‖x− xj‖2 ≥ c2hX ,Ω.

Remark: Property (1) yields the polynomial precision, and property (3) shows that
the scheme is local. The bound in property (2) is essential for controlling the growth of
error estimates and the quantity on the left-hand side of (2) is known as the Lebesgue
constant at x.

The error estimate can now be formulated in terms of the fill distance.

Theorem 5.3.7 Suppose Ω ⊆ IRs is bounded and satisfies an interior cone condition.
Suppose Φ ∈ C2k(Ω× Ω) is symmetric and strictly positive definite. Denote the inter-
polant to f ∈ NΦ(Ω) on the set X by Pf . Then there exist positive constant h0 and C
(independent of x, f and Φ) such that

|f(x)− Pf(x)| ≤ CCΦ(x)1/2hk
X ,Ω‖f‖NΦ(Ω),

provided hX ,Ω ≤ h0. Here

CΦ(x) = max
w,z∈Ω∩B(x,c2hX ,Ω)

|Φ(w, z)|.

Proof: By Theorem 5.3.3 we know

|f(x)− Pf(x)| ≤ PΦ,X (x)‖f‖NΦ(Ω).

Therefore, we now bound the power function in terms of the fill distance. We know
that the power function is defined by

[PΦ,X (x)]2 = Q(u∗(x)).
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Moreover, we know by Theorem 5.3.4 that the quadratic form Q(u) is minimized by
u = u∗(x). Therefore, any other coefficient vector u will yield an upper bound on the
power function. We take u = ũ(x) from Theorem 5.3.6 with polynomial precision of
degree ` ≥ 2k − 1.

We will make repeated use of the multivariate Taylor expansion

Φ(w, z) =
∑

|β|<2k

Dβ
2 Φ(w,w)

β!
(z −w)β +R(w, z)

with remainder

R(w, z) =
∑

|β|=2k

Dβ
2 Φ(w, ξw,z)

β!
(z −w)β,

where ξw,z lies somewhere on the line segment connecting w and z.
Following the argumentation above we have

[PΦ,X (x)]2 ≤ Q(u) = Φ(x,x)− 2
∑

j

ujΦ(x,xj) +
∑

i

∑

j

uiujΦ(xi,xj),

where the sums are over those indices j with uj 6= 0. Now we apply the Taylor expansion
to both Φ(x,xj) and Φ(xi,xj). This yields

Q(u) = Φ(x,x)− 2
∑

j

uj



∑

|β|<2k

Dβ
2 Φ(x,x)

β!
(xj − x)β +R(x,xj)




+
∑

i

∑

j

uiuj



∑

|β|<2k

Dβ
2 Φ(xi,xi)

β!
(xj − xi)

β +R(xi,xj)


 .

Next, the polynomial precision property of the coefficient vector u simplifies this ex-
pression to

Q(u) = Φ(x,x)− 2Φ(x,x)− 2
∑

j

ujR(x,xj)

+
∑

i

ui

∑

|β|<2k

Dβ
2 Φ(xi,xi)

β!
(x− xi)

β

︸ ︷︷ ︸
=Φ(xi,x)−R(xi,x)

+
∑

i

∑

j

uiujR(xi,xj).

Rearranging the terms and another application of the Taylor expansion results in

Q(u) = −Φ(x,x)−
∑

j

uj

[
2R(x,xj)−

∑

i

uiR(xi,xj)

]

+
∑

i

ui [Φ(xi,x)−R(xi,x)] .

Theorem 5.3.6 allows us to bound
∑

j |uj | ≤ c1. Moreover, since ‖x − xj‖2 ≤ c2hX ,Ω

and ‖xi − xj‖2 ≤ 2c2hX ,Ω the remainder terms can be bounded as stated. �

53



Remarks:

1. For infinitely smooth strictly positive definite functions such as the Gaussians
and the inverse multiquadrics we see that the approximation order k is arbitrarily
high.

2. For strictly positive definite functions with limited smoothness such as the Wend-
land functions ϕs,k the approximation order is limited by the smoothness of the
basic function.

3. The estimate in Theorem 5.3.7 is still generic, since it does not account for the
particular basic function Φ being used for the interpolation.

4. We point out that the factor CΦ may still depend on hX ,Ω. For most basic
functions it will be possible to use CΦ to “squeeze out” additional powers of h.
This is the reason for splitting the constant in front of the h-power into a generic
C and a CΦ.

The statement of Theorem 5.3.7 can be generalized for strictly conditionally positive
definite functions and also to cover the error for approximating the derivatives of f by
derivatives of Pf . We state this general theorem without comment.

Theorem 5.3.8 Suppose Ω ⊆ IRs is open and bounded and satisfies an interior cone
condition. Suppose Φ ∈ C2k(Ω × Ω) is symmetric and strictly conditionally positive
definite of order m on IRs. Denote the interpolant to f ∈ NΦ(Ω) on the (m − 1)-
unisolvent set X by Pf . Fix α ∈ INs

0 with |α| ≤ k. Then there exist positive constant
h0 and C (independent of x, f and Φ) such that

|Dαf(x)−DαPf(x)| ≤ CCΦ(x)1/2h
k−|α|
X ,Ω |f |NΦ(Ω),

provided hX ,Ω ≤ h0. Here

CΦ(x) = max
β,γ∈INs

0
|β|+|γ|=2k

max
w,z∈Ω∩B(x,c2hX ,Ω)

|Dβ
1D

γ
2 Φ(w, z)|.

5.4 More on Error Estimates

The additional refinement of the error estimate of Theorem 5.3.8 for specific functions
Φ is rather technical (for details see, e.g., the book by Wendland [634]). We only list
the final bounds for various functions Φ.

Application of Theorem 5.3.8 to infinitely smooth functions such as Gaussians or
(inverse) multiquadrics immediately yields arbitrarily high algebraic convergence rates,
i.e., for every ` ∈ IN and |α| ≤ ` we have

|Dαf(x)−DαPf(x)| ≤ C`h
`−|α||f |NΦ(Ω).

whenever f ∈ NΦ(Ω). Considerable amount of work has gone into investigating the
dependence of the constant C` on `. Using different proof techniques it is possible to

54



show that for Gaussians Φ(x) = e−α‖x‖2
, α > 0, we get for some positive constant c

that

‖f − Pf‖L∞(Ω) ≤ e
−c| log hX ,Ω|

hX ,Ω ‖f‖NΦ(Ω) (5.2)

provided hX ,Ω is sufficiently small and f ∈ NΦ(Ω). The corresponding result for (in-
verse) multiquadrics Φ(x) = (‖x‖2 + α2)β , α > 0, β < 0, or β > 0 and β /∈ IN,
is

‖f − Pf‖L∞(Ω) ≤ e
−c

hX ,Ω |f |NΦ(Ω) (5.3)

For functions with finite smoothness (such as powers, thin plate splines, and Wend-
land’s compactly supported functions) it is possible to bound the constant CΦ(x) and
thereby to improve the order predicted by Theorem 5.3.8 by some additional powers
of h. This results in the following error estimates.

For the powers Φ(x) = (−1)dβ/2e‖x‖β , β > 0, β /∈ 2 IN, we get

|Dαf(x)−DαPf(x)| ≤ Chβ

2
−|α||f |NΦ(Ω). (5.4)

provided |α| ≤ dβe−1
2 and f ∈ NΦ(Ω).

For thin plate splines Φ(x) = (−1)k+1‖x‖2k log ‖x‖, we get

|Dαf(x)−DαPf(x)| ≤ Chk−|α||f |NΦ(Ω). (5.5)

provided |α| ≤ k − 1 and f ∈ NΦ(Ω).
For Wendland’s compactly supported functions Φs,k(x) = ϕs,k(‖x‖) this first re-

finement leads to

|Dαf(x)−DαPf(x)| ≤ Chk+ 1
2
−|α|‖f‖NΦ(Ω). (5.6)

provided |α| ≤ k and f ∈ NΦ(Ω).

Remark: The convergence result for the compactly supported functions assumes that
the support radius is kept fixed, and that only the domain Ω is filled out by adding
more points to X , and thus decreasing the fill distance hX ,Ω. However, this means
that for small fill distances (with fixed support radius) the system matrices of the
interpolation problem become more and more dense – and thus the advantage of the
compact support is lost. This point of view is referred to in the literature as the
non-stationary approach. We are guaranteed convergence, but at the cost of increased
computational complexity. Another possibility is presented by the stationary approach,
for which we scale the support radius proportional to the fill distance. In this case the
sparsity of the interpolation matrix remains fixed, however, convergence is lost. We
will revisit this phenomenon later.

The powers and thin plate splines can be interpreted as a generalization of univariate
natural splines. Therefore, one can see that the approximation order estimates obtained
via the native space approach are not optimal. For example, for interpolation with thin
plate splines Φ(x) = ‖x‖2 log ‖x‖ one would expect orderO(h2), but the above estimate
yields only O(h).

One can improve the estimates for functions with finite smoothness (i.e., powers,
thin plate splines, Wendland’s functions) by either (or both) of the following two ideas:
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• by requiring the data function f to be even smoother than what the native space
prescribes, i.e., by building certain boundary conditions into the native space;

• by using weaker norms to measure the error.

The idea to localize the data by adding boundary conditions was introduced in a
paper by Light and Wayne [394]. This “trick” allows us to double the approximation
order. The second idea can already be found in the early work by Duchon [170]. After
applying both improvements the final approximation order estimate for interpolation
with the compactly supported functions Φs,k is (see [629])

‖f − Pf‖L2(Ω) ≤ Ch2k+1+s‖f‖W 2k+1+s
2 (IRs), (5.7)

where f is assumed to lie in the subspace W 2k+1+s
2 (IRs) of NΦ(IRs). For powers and

thin plate splines one obtains L2-error estimates of order O(hβ+s) and O(h2k+s), re-
spectively. These estimates are optimal, i.e., exact approximation orders, as shown by
Bejancu [48].

Work on improved error bounds is also due to others such as Bejancu, Johnson,
Powell, Ron, Schaback, and Yoon. In particular, recent work by Yoon provides Lp

error estimates for so-called shifted surface splines for functions f is standard Sobolev
spaces. These functions include all of the (inverse) multiquadrics, powers and thin
plate splines. They are of the form

Φ(x) =

{
(−1)dβ−s/2e(‖x‖2 + α2)β−s/2, s odd,

(−1)β−s/2+1(‖x‖2 + α2)β−s/2 log(‖x‖2 + α2)1/2, s even,

where β ∈ IN, β > s/2.
Yoon [668] has the following theorem that is formulated in the stationary setting.

Theorem 5.4.1 Let Φ be a shifted surface spline with parameter α proportional to the
fill distance hX ,Ω. Then there exists a positive constant C (independent of X ) such that
for every f ∈Wm

2 (Ω) ∩Wm
∞(Ω) we have

‖f − Pf‖Lp(Ω) ≤ Chγp |f |W m
2 (IRs), 1 ≤ p ≤ ∞,

with
γp = min{m,m− s/2 + s/p}.

Furthermore, if f ∈W k
2 (Ω) ∩W k

∞(Ω) with max{0, s/2− s/p} < k < m, then

‖f − Pf‖Lp(Ω) = o(hγp−m+k).

Remarks:

1. Using the localization idea mentioned above Yoon’s estimates can be “doubled”
to O(hm+γp).
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2. Yoon’s estimates address the question of how well the infinitely smooth (inverse)
multiquadrics approximate functions that are less smooth than those in their
native space. For example, Theorem 5.4.1 states that approximation to functions
in W 2

2 (Ω), Ω ⊆ IR3, by multiquadrics Φ(x) =
√
‖x‖2 + α2 is of the order O(h2).

However, it needs to be emphasized that this refers to stationary approximation,
i.e., α is scaled proportional to the fill distance, whereas the spectral order given
in (5.3) corresponds to the non-stationary case with fixed α. Similar numerical
evidence was also provided much earlier by Schaback [545].

3. Moreover, the second part of Yoon’s result is a step toward exact approximation
orders.

4. In order to obtain the estimates for the infinitely smooth functions, Yoon localizes
the data function f by preconditioning it via convolution with a Hörmander
smoothing kernel.

5.5 The Connection to Optimal Recovery

In the paper [264] by Michael Golomb and Hans Weinberger the following general prob-
lem is studied: Given the values f1 = λ1(f), . . . , fN = λN (f) ∈ IR, where {λ1, . . . , λN}
is a linearly independent set of linear functionals (called information functionals yield-
ing the information about f), how does one “best” approximate the value λ(f) where
λ is a given linear functional and f is unknown? The value λ(f) is also referred to as
a feature of f . Moreover, what is the total range of values for λ(f)?

Remarks:

1. This is a very general problem formulation that allows not only for interpolation
of function values, but also for other types of data (such as values of derivatives,
integrals of f , moments of f , etc.), as well as other types of approximation.

2. Optimal recovery was also studied in detail by Micchelli, Rivlin and Winograd
[457, 458, 459, 460].

In a Hilbert space setting the solution to this “optimal recovery problem” is shown
to be the minimum-norm interpolant. More precisely, given f1 = λ1(f), . . . , fN =
λN (f) ∈ IR with {λ1, . . . , λN} ⊆ H∗, the minimum-norm interpolant is that function
s∗ ∈ H that satisfies

λj(s
∗) = fj , j = 1, . . . , N,

and for which
‖s∗‖H = min

s∈H
λj(s)=fj ,j=1,...,N

‖s‖H.

It turns out that the radial basis function interpolant satisfies these criteria ifH is taken
as the associated native space NΦ(Ω). The proofs of the two “optimality theorems”
below require the following two lemmas.
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Lemma 5.5.1 Assume Φ is a symmetric strictly positive definite kernel on IRs and let
Pf be the interpolant to f ∈ NΦ(Ω) on X = {x1, . . . ,xN} ⊆ Ω. Then

〈Pf,Pf − s〉NΦ(Ω) = 0

for all interpolants s ∈ NΦ(X ), i.e., with s(xj) = f(xj), j = 1, . . . , N .

Proof: The interpolant Pf is of the form

Pf =
N∑

j=1

cjΦ(·,xj).

Using this representation, the symmetry of the kernel Φ and its reproducing property
we have

〈Pf,Pf − s〉NΦ(Ω) = 〈
N∑

j=1

cjΦ(·,xj),Pf − s〉NΦ(Ω)

=

N∑

j=1

cj〈Φ(·,xj),Pf − s〉NΦ(Ω)

=
N∑

j=1

cj〈Pf − s,Φ(·,xj)〉NΦ(Ω)

=
N∑

j=1

cj(Pf − s)(xj)

= 0

since both Pf and s interpolate f on X . �

For the next result, remember the definition of the space HΦ(X ) as the linear span

HΦ(X ) = {s =

N∑

j=1

cjΦ(·,xj),xj ∈ X}

given at the beginning of this chapter.

Lemma 5.5.2 Assume Φ is a strictly positive definite kernel on IRs and let Pf be the
interpolant to f ∈ NΦ(Ω) on X = {x1, . . . ,xN} ⊆ Ω. Then

〈f − Pf, s〉NΦ(Ω) = 0

for all s ∈ HΦ(X ).

Proof: Any s ∈ HΦ(X ) can be written in the form

s =
N∑

j=1

cjΦ(·,xj).
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Using this representation of s as well as the reproducing property of Φ we have

〈f − Pf, s〉NΦ(Ω) = 〈f − Pf,
N∑

j=1

cjΦ(·,xj)〉NΦ(Ω)

=
N∑

j=1

cj〈f − Pf,Φ(·,xj)〉NΦ(Ω)

=
N∑

j=1

cj(f − Pf)(xj).

This last expression, however, is zero since Pf interpolates f on X , i.e., (f−Pf)(xj) =
0, j = 1, . . . , N . �

The following “energy splitting” theorem is an immediate consequence of Lemma 5.5.2.
It says that the native space energy of f can be split into the energy of the interpolant
Pf and that of the residual f − Pf .

Corollary 5.5.3 The orthogonality property of Lemma 5.5.2 implies the energy split

‖f‖2NΦ(Ω) = ‖f − Pf‖2NΦ(Ω) + ‖Pf‖2NΦ(Ω).

Proof: The statement follows from

‖f‖2NΦ(Ω) = ‖f − Pf + Pf‖2NΦ(Ω)

= 〈(f − Pf) + Pf, (f − Pf) + Pf〉NΦ(Ω)

= ‖f − Pf‖2NΦ(Ω) + 2〈f − Pf,Pf〉NΦ(Ω) + ‖Pf‖2NΦ(Ω)

and the fact that 〈f − Pf,Pf〉NΦ(Ω) = 0 by Lemma 5.5.2. �

Remark: The above energy split is the fundamental idea behind a number of Krylov-
type iterative algorithms for approximately solving the interpolation problem when
very large data sets are involved (see, e.g., the papers [212] and [213] by Faul and
Powell or [562] by Schaback and Wendland).

The following theorem shows the first optimality property of strictly conditionally
positive definite kernels. It is taken from [634].

Theorem 5.5.4 Suppose Φ ∈ C(Ω×Ω) is a strictly conditionally positive definite ker-
nel with respect to the finite-dimensional space P ⊆ C(Ω) and that X is P -unisolvent.
If the values f1, . . . , fN are given, then the interpolant Pf is the minimum-norm inter-
polant to {fj}Nj=1, i.e.,

|Pf |NΦ(Ω) = min
s∈NΦ(Ω)

s(xj)=fj ,j=1,...,N

|s|NΦ(Ω).

Proof: We consider only the strictly positive definite case. Consider an arbitrary
interpolant s ∈ NΦ(Ω) to f1, . . . , fN . Since Pf ∈ NΦ(Ω) we can apply Lemma 5.5.1
and get

〈Pf,Pf − s〉NΦ(Ω) = 0.
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Now

|Pf |2NΦ(Ω) = 〈Pf,Pf − s+ s〉NΦ(Ω)

= 〈Pf,Pf − s〉NΦ(Ω) + 〈Pf, s〉NΦ(Ω)

= 〈Pf, s〉NΦ(Ω)

≤ |Pf |NΦ(Ω)|s|NΦ(Ω)

so that the statement follows. �

Remarks:

1. The space P mentioned in Theorem 5.5.4 is usually taken as a space of multi-
variate polynomials.

2. For thin plate splines φ(r) = r2 log r, r = ‖x‖2 with x = (x, y) ∈ IR2, the
corresponding semi-norm in the Beppo-Levi space BL2(IR

2) is

|f |2
BL2(IR2)

=

∫

IR2

∣∣∣∣
∂2f

∂x2
(x)

∣∣∣∣
2

+ 2

∣∣∣∣
∂2f

∂x∂y
(x)

∣∣∣∣
2

+

∣∣∣∣
∂2f

∂y2
(x)

∣∣∣∣
2

dx,

which is the bending energy of a thin plate, and thus explains the name of these
functions.

Another nice property of the radial basis function interpolant is that it is at the
same time the best Hilbert-space approximation to the given data, and thus not just
any projection of f but the orthogonal projection. More precisely,

Theorem 5.5.5 Let

HΦ(X ) = {s =
N∑

j=1

cjΦ(·,xj)+p | p ∈ P and
N∑

j=1

cjq(xj) = 0 for all q ∈ P and xj ∈ X},

where Φ ∈ C(Ω × Ω) is a strictly conditionally positive definite kernel with respect to
the finite-dimensional space P ⊆ C(Ω) and X is P -unisolvent. If only the values f1 =
f(x1), . . . , fN = f(xN ) are given, then the interpolant Pf is the best approximation to
f from HΦ(X ) in NΦ(Ω), i.e.,

|f − Pf |NΦ(Ω) ≤ |f − s|NΦ(Ω)

for all s ∈ HΦ(X ).

Proof: We consider only the strictly positive definite case. As explained in Section 5.2,
the native space NΦ(Ω) is the completion of HΦ(Ω) with respect to the ‖ · ‖Φ-norm so
that ‖f‖Φ = ‖f‖NΦ(Ω) for all f ∈ HΦ(Ω). Also, X ⊆ Ω. Therefore, we can express best
approximation from HΦ(X ) by

〈f − s∗, s〉NΦ(Ω) = 0 for all s ∈ HΦ(X ).

However, Lemma 5.5.2 shows that s∗ = Pf satisfies this relation. �
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Remarks:

1. The connection between radial basis function interpolation and the optimal re-
covery theory by Golomb and Weinberger was pointed out by various people (e.g.,
Schaback [545, 551], or Light and Wayne [394]).

2. These optimality properties of radial basis function interpolants play an impor-
tant role in applications such as in the design of support vector machines in
artificial intelligence or the numerical solutions of partial differential equations.

3. The optimality results above imply that one could also start with some Hilbert
space H with norm ‖ · ‖H and ask to find the minimum norm interpolant (i.e.,
Hilbert space best approximation) to some given data. In this way any given space
defines a set of optimal basis functions, generated by the reproducing kernel of
H. This is how Duchon approached the subject in his papers [168, 169, 170, 171].
More recently, Kybic, Blu and Unser [356, 357] take this point of view and explain
very nicely from a sampling theory point of view how the thin plate splines can
be interpreted a fundamental solutions of the differential operator defining the
semi-norm in the Beppo-Levi space BL2(IR

2), and thus radial basis functions can
be viewed as Green’s functions.

A third optimality result is in the context of quasi-interpolation, i.e.,

Theorem 5.5.6 Suppose Φ ∈ C(Ω×Ω) is a strictly conditionally positive definite ker-
nel with respect to the finite-dimensional space P ⊆ C(Ω). Suppose X is P -unisolvent
and x ∈ Ω is fixed. Let u∗j (x), j = 1, . . . , N , be the cardinal basis functions for inter-
polation with Φ. Then

∣∣∣∣∣∣
f(x)−

N∑

j=1

f(xj)u
∗
j (x)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
f(x)−

N∑

j=1

f(xj)uj

∣∣∣∣∣∣

for all choices of u1, . . . , uN ∈ IR with
∑N

j=1 ujp(xj) = p(x) for any p ∈ P .

Theorem 5.5.6 is proved in [634]. It says in particular that the minimum norm in-
terpolant Pf is also more accurate (in the pointwise sense) than any linear combination
of the given data values.
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Chapter 6

Least Squares Approximation

As we saw in Chapter 5 we can interpret radial basis function interpolation as a con-
strained optimization problem. We now take this point of view again, but start with a
more general formulation. Let’s assume we are seeking a function Pf of the form

Pf(x) =
M∑

j=1

cjΦ(x,xj), x ∈ IRs,

such that the quadratic form
1

2
cTQc (6.1)

with c = [c1, . . . , cM ]T and some symmetric positive definite matrix Q is minimized
subject to the linear constraints

Ac = f (6.2)

where A is an N ×M matrix, and the right-hand side f = [f1, . . . , fN ]T is given. Such
a constrained quadratic minimization problem can be converted to a system of linear
equations by introducing Lagrange multipliers, i.e., we consider finding the minimum
of

1

2
cTQc− λT [Ac− f ] (6.3)

with respect to c and λ = [λ1, . . . , λN ]T . Since Q is a positive definite matrix, it is well
known that the functional to be minimized is convex, and thus has a unique minimum.
Therefore, the standard necessary condition for such a minimum (which is obtained by
differentiating with respect to c and λ and finding the zeros of those derivatives) is
also sufficient. This leads to

Qc−AT λ = 0

Ac− f = 0

or, in matrix form, [
Q −AT

A 0

] [
c

λ

]
=

[
0

f

]
.
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By applying Gaussian elimination to this block matrix (Q is invertible since it is as-
sumed to be positive definite) we get

λ =
(
AQ−1AT

)−1
f (6.4)

c = Q−1AT
(
AQ−1AT

)−1
f . (6.5)

In particular, if the quadratic form represents the native space norm of the inter-
polant Pf =

∑M
j=1 cjΦ(·,xj), i.e.,

‖Pf‖2NΦ(Ω) =
M∑

i=1

M∑

j=1

cicjΦ(xi,xj) = cTQc

with Qij = Φ(xi,xj) and c = [c1, . . . , cM ]T , and the linear side conditions are the
interpolation conditions

Ac = f ⇐⇒ Pf(xi) = fi, i = 1, . . . ,M,

with A = Q (symmetric) and the same c as above and data vector f = [f1, . . . , fM ]T ,
then we see that the Lagrange multipliers (6.4) become

λ = A−T f = A−1f

and the coefficients are given by
c = λ

via (6.5). Therefore, as we saw earlier, the minimum norm interpolant is obtained by
solving the interpolation equations alone.

Since we took the more general point of view that P is generated by M basis
functions, and N linear constraints are specified, the above formulation also covers
both over- and under-determined least squares fitting where the quadratic form cTQc

represents an added smoothing (or regularization) term. This term is not required to
obtain a unique solution of the system Ac = f in the over-determined case (M ≤ N),
but in the under-determined case such a constraint is needed (cf. the solution of under-
determined linear systems via singular value decomposition in the numerical linear
algebra literature (e.g., [608])).

Usually the regularized least squares approximation problem is formulated as min-
imization of

1

2
cTQc + ω

N∑

j=1

(Pf(xj)− fj)
2 . (6.6)

The quadratic form controls the smoothness of the fitting function and the least squares
term measures the closeness to the data. The parameter ω controls the tradeoff between
these two terms. The formulation (6.6) is used in regularization theory (see, e.g., [185,
252]). The same formulation is also used in penalized least squares fitting (see, e.g.,
[263]), the literature on smoothing splines [528, 572], and in papers by Wahba on thin
plate splines (e.g., [615, 621]). In fact, the idea of smoothing a data fitting process
by this kind of formulation seems to go back to at least Whittaker [641] in 1923. In
practice a penalized least squares formulation is especially useful if the data fi cannot
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be completely trusted, i.e., it is contaminated by noise. In this case, a (penalized) least
squares fit is advisable. The problem of minimizing (6.6) is known as ridge regression
in the statistics literature.

The equivalence with our formulation (6.3) above follows from

1

2
cTQc + ω

N∑

j=1

(Pf(xj)− fj)
2 =

1

2
cTQc + ω[Ac− f ]T [Ac− f ]

=
1

2
cTQc− λT [Ac− f ],

where
λ = −ω[Ac− f ].

We are now interested in the more general setting where we still sample the given
function f on the set X = {x1, . . . ,xN}, but now introduce a second set Ξ = {ξi}Mi=1

at which we center the basis functions. Usually we will have M ≤ N , and the case
M = N with Ξ = X recovers the traditional interpolation setting discussed thus far.
Therefore,

Qf(x) =
M∑

j=1

cjΦ(x, ξj), x ∈ IRs, (6.7)

and the coefficients cj can be found by minimizing ‖Qf − f‖22, where the `2-norm

‖f‖22 =
N∑

i=1

[f(xi)]
2

is induced by the discrete inner product

〈f, g〉 =
N∑

i=1

f(xi)g(xi). (6.8)

This approximation problem has a unique solution if the (rectangular) collocation
matrix A with entries

Ajk = Φ(xj , ξk), j = 1, . . . , N, k = 1, . . . ,M,

has full rank.

Remarks:

1. If the centers in Ξ are chosen to form a subset of the data locations X then
A has full rank provided the radial basis function is selected according to our
previous chapters on interpolation. This is true, since in this case A will have an
M×M square submatrix which is non-singular (by virtue of being an interpolation
matrix).

2. The over-determined linear system Ac = y which arises in the solution of the
least squares problem can be solved using standard algorithms from numerical
linear algebra such as QR or singular value decomposition.

In the following section we give a brief account of theoretical results known for the
general problem in which the centers and data sites differ.
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6.1 Theoretical Results

The results mentioned here are due to Sivakumar and Ward [583], and Quak, Sivakumar
and Ward [521]. The first paper deals with discrete least squares, the second with
continuous least squares approximation. In both papers the authors do not discuss the
collocation matrix A above, but rather base their results on the non-singularity of the
coefficient matrix obtained from a system of normal equations. In the discrete setting
they use the inner product (6.8) which induces the `2 norm, and then discuss non-
singularity of the Gramian which occurs in the following system of normal equations

Gc = w, (6.9)

where the entries of G are the `2 inner products of the radial basis functions, i.e.,

Gjk = 〈Φ(·, ξj),Φ(·, ξk)〉 =
N∑

i=1

Φ(xi, ξj)Φ(xi, ξk), j, k = 1, . . . ,M,

and the right-hand side vector w in (6.9) is given by

wj = 〈Φ(·, ξj),f〉 =
N∑

i=1

Φ(xi, ξj)f(xi), j = 1, . . . ,M.

Remarks:

1. Note that in the interpolation case with M = N and Ξ = X we have

〈Φ(·,xj),Φ(·,xk)〉 = 〈Φ(·,xj),Φ(·,xk)〉NΦ(Ω) = Φ(xj ,xk)

so that G is just the interpolation matrix A.

2. Of course, this also presents an interpretation of the interpolation matrix A as
the system matrix for the normal equations in the case of best approximation
with respect to the native space norm – a fact already mentioned earlier in the
section on optimal recovery.

In both papers, [583] as well as [521], even the formulation of the main theorems is
very technical. We therefore just try to give a feel for their results.

Essentially, the authors show that the Gramian for certain radial basis functions
(norm, (inverse) multiquadrics, and Gaussians) is non-singular if the centers ξk, k =
1, . . . ,M , are sufficiently well distributed and the data points xj , j = 1, . . . , N , are fairly
evenly clustered about the centers with the diameter of the clusters being relatively
small compared to the separation distance of the data points. Figure 6.1 illustrates the
clustering idea.

One of the key ingredients in the proof of the non-singularity of G is to set up an
interpolation matrix B for which the basis functions are centered at certain represen-
tatives of the clusters of knots about the data sites. One then splits the matrix B
(which is non-symmetric in general) into a part which is symmetric and one which is
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Figure 6.1: Clusters of data points ◦ around well separated centers •.

anti-symmetric, a standard strategy in linear algebra, i.e., B = B1 +B2 where B1 and
B2 are defined by

B1 =
B +BT

2
, (symmetric),

B2 =
B −BT

2
, (anti-symmetric).

Then, lower estimates for the norm of these two parts are found and used to conclude
that, under certain restrictions, G is non-singular.

Remarks:

1. As a by-product of this argumentation the authors obtain a proof for the non-
singularity of interpolation matrices for the case in which the centers of the basis
functions are chosen different from the data sites, namely as small perturbations
thereof.

2. The discussion of the continuous case is very similar to that of the discrete one.

6.2 Adaptive Least Squares using Knot Insertion

In this and in the following section we mention some strategies for an algorithm for
solving the least squares problem in an adaptive fashion. When fitting data by linear
combinations of certain basis functions, it is a classical technique to improve the quality
of a given initial approximation by increasing the number of basis functions used for
the fit, i.e., by refining the space from which we are approximating. Since every radial
basis function is associated with one particular center (or knot), this can be achieved
by adding new knots to the existing ones. This idea was explored for multiquadrics on
IR2 in [237, 238], and for radial basis functions on spheres in [192].

We will now describe an algorithm which adaptively adds knots to a radial basis
function approximant in order to improve the `2 error.

Let us assume we are given a large number, N , of data and we want to fit them
with a radial basis expansion to within a given tolerance. The idea is to start with very
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few initial knots, and then to repeatedly insert a knot at that data location whose `2
error component is largest. This is done as long as the least squares error exceeds a
given tolerance. The following algorithm may be used.

Algorithm: Knot insertion

(1) Let data sites X = {x1, . . . ,xN}, data fi, i = 1, . . . , N , and a tolerance ε be
given.

(2) Choose M initial knots Ξ = {ξ1, . . . , ξM}.

(3) Calculate the least squares fit

Qf(x) =
M∑

j=1

cjΦ(x, ξj)

with its associated error

e =
N∑

i=1

[fi −Qf(xi)]
2.

While e > ε do

(4) “Weight” each data point xi, i = 1, . . . , N , according to its error component,
i.e., let

wi = |fi −Qf(xi)|, i = 1, . . . , N.

(5) Find the data point xν 6∈ Ξ with maximum weight wν and insert it as a
knot, i.e.,

Ξ = Ξ ∪ {xν} and M = M + 1.

(6) Recalculate fit and associated error.

Remarks:

1. We note that we have to solve one linear least squares problem for every knot
we add. This can be done employing standard techniques such as QR or SVD
factorization. The size of these problems increases by one at each step. In order
to improve the runtime of this algorithms an updating QR factorization (see
e.g., [265]) could be used. However, neither [237, 238] nor [192] have found this
necessary since the problems they considered begin with very small systems (and
therefore fast solutions), and the desired accuracy was achieved with fairly few
additional knots.

2. If the initial knots are chosen to lie at data sites, the process described in the
above algorithm will always have a full rank collocation matrices A. This is
guaranteed, since we only add data sites as new knots, and we make sure in step
(5) that no multiple knots are created (which would obviously lead to a rank
deficiency).
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6.3 Adaptive Least Squares using Knot Removal

The idea of knot removal was primarily motivated by the need for data reduction, but
it can also be used for the purpose of adaptive approximation (for a survey of knot
removal see, e.g., [412]). The basic idea is to start with a good fit (e.g., an interpolation
to the data), and then successively reduce the number of knots (and therefore basis
functions) used until a certain given tolerance is reached.

Specifically, this means we will start with an initial fit and then use some kind of
weighting strategy for the knots, so that we can repeatedly remove those contributing
least to the accuracy of the fit. The following algorithm performs this task.

Algorithm: Knot removal

(1) Let data points X = {x1, . . . ,xN}, data fi, i = 1, . . . , N , and a tolerance ε be
given.

(2) Choose M initial knots Ξ = {ξ1, . . . , ξM}.

(3) Calculate an initial fit

Qf(x) =
M∑

j=1

cjΦ(x, ξj)

with its associated least squares error

e =
N∑

i=1

[fi −Qf(xi)]
2.

While e < ε do

(4) “Weight” each knot ξj , j = 1, . . . ,M , according to its least squares error,
i.e., form

Ξ∗ = Ξ \ {ξj},
and calculate the weights

wj =

N∑

i=1

[fi −Q∗f(xi)]
2 ,

where

Q∗f(x) =
M−1∑

j=1

cjΦ(x, ξ∗j )

is the approximation based on the reduced set of knots Ξ∗.

(5) Find the knot ξµ with lowest weight wµ < ε and permanently remove it, i.e.

Ξ = Ξ \ {ξµ} and M = M − 1.

(6) Recalculate fit and associated error.
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Again we would like to comment on the algorithm.

Remarks:

1. As far as computational times are concerned, this algorithm is much slower than
the knot insertion algorithm, since the weight for every knot is determined by
the solution of a least squares problem, i.e., in every iteration we solve M least
squares problems. These problems, however, become increasingly smaller.

2. This approach should be especially beneficial when the number of evaluations of
the constructed approximant is much larger than its actual computation, since,
for the same tolerance, one would expect knot removal to result in fewer knots
than knot insertion.

3. If the initial knots are chosen at the data sites, then again there will be no
problems with the collocation matrix becoming rank deficient.

4. In [192, 193] some alternatives to this knot removal strategy were also considered.
One of them is the removal of certain groups of knots at one time in order to
speed up the process. We used this version of knot removal algorithm in our
examples in the next subsection. Another is based on choosing the weights based
on the size of the coefficients cj in the expansion of Qf , i.e., to remove that knot
whose associated coefficient is smallest.

5. A further variation of the adaptive algorithms was considered in both [237] and
in [192]. Instead of treating only the coefficients of the expansion of Qf as
parameters in the minimization process, one can also include the knot locations
themselves and possibly the parameters which are inherent in the definition of
some of the radial functions used in practice. This however, leads to nonlinear
least squares problems. We will not discuss this topic further here.

6. Buhmann, Derrien, and Le Méhauté [88], and Le Méhauté [366] also discuss knot
removal. Their approach is based on an a priori estimate for the error made when
removing a certain knot. These estimates depend on the specific choice of radial
basis function, and so far they only cover the inverse multiquadric type, i.e.,

ϕ(r) = (r2 + α2)β/2, −s ≤ β < 0, α > 0.

7. Iske [317] suggests an alternative knot removal strategy for least squares approx-
imation. His removal heuristics are based on so-called thinning algorithms. In
particular, in each iteration a point is removed if it belongs to a pair of points in
Ξ with minimal separation distance. The thinning phase of the algorithm is then
enhance by an exchange phase in which points can be “swapped back in” if this
process reduces the fill-distance of Ξ.
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µ ρ # knots used time

KI 8.074767e-02 1.773359e-04 30 4 sec

KR 6.948009e-02 1.488779e-04 36 153 sec

Table 6.1: Comparison of adaptive algorithms for Franke’s function (ε = 0.01).

6.4 Some Numerical Examples

For the following tests we consider Franke’s test function

f(x, y) =
3

4
e−1/4((9x−2)2+(9y−2)2) +

3

4
e−(1/49)(9x+1)2−(1/10)(9y+1)2

+
1

2
e−1/4((9x−7)2+(9y−3)2) − 1

5
e−(9x−4)2−(9y−7)2 . (6.10)

The range of this function on the grid G described below is

range f = [0.003280, 1.220000].

The graph of Franke’s function is shown in Figure 6.2. We choose the set X of data
sites as the grid G64 of 8 × 8 equally spaced points in the unit square [0, 1] × [0, 1] of
IR2.

For the evaluation and rendering of our test examples we use a grid G of 30 × 30
equally spaced points in the unit square. On this grid we compute maximum errors

µ := ‖f −Qf‖∞ = max
x∈G
|f(x)−Qf(x)|,

and mean-square errors

ρ :=
1

900

∑

x∈G
|f(x)−Qf(x)|2,

where f is the known test function, and Qf is a radial basis function approximant to
it.

For the results shown in Table 6.1 we have used the multiquadric without any
constant added to its expansion. The value of α = 0.3, and the tolerance ε was chosen
to be 0.01. We compare the knot insertion algorithm (KI) with a version of the knot
removal algorithm (KR) which removes certain groups of knots all at once before a
new weighting step is performed, rather than re-weighting after the removal of each
individual knot. The effect of this is a considerable speedup in execution time with
some loss of accuracy (we point out that the numerical experiments were performed in
1996, and therefore the times are only to be used as relative measures of performance).
We do not consider this loss of accuracy to be so crucial, since there does not exist a
strategy which would prescribe the optimal order in which to remove knots one at a
time, either. The knot insertion algorithm is initialized with a single random knot in
the unit square, the knot removal algorithm begins with an interpolant to all 64 data
values.

Figure 6.2 shows the original function, and Figures 6.3 and 6.4 the approximation
via knot insertion and the fit obtained by performing knot removal along with the grid

70



µ ρ # knots used time

KI 4.191418e-02 4.630199e-05 52 18 sec

KR 4.1404723-02 4.618084e-05 49 399 sec

Table 6.2: Comparison of adaptive algorithms for Franke’s function (ε = 0.0001).

of data sites and the knots used for the fit. The color shading of the graphs of the
approximations is such that a dark color reflects small maximum errors, and a light
color indicates large errors.
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Figure 6.2: (a) Franke’s function, and (b) 8× 8 grid.
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Figure 6.3: (a) Knot insertion fit, and (b) selected knots for ε = 0.01.

Table 6.2 along with Figures 6.5 and 6.6 show the approximation via knot insertion
and the fit obtained by performing knot removal using a tighter tolerance of ε = 0.0001
along with the respective knot sets.

It is clearly apparent that the knot insertion algorithm is much faster than the
one for knot removal. However, we should remark that the implementation of the
method used for the solution of the least squares systems uses SVD, which emphasizes
this discrepancy even more. The knot removal algorithm for the tighter tolerance
performed relatively more exact than that with tolerance ε = 0.01. This can be seen
when one observes the size of the groups of knots which were removed. For tolerance
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Figure 6.4: (a) Knot removal fit, and (b) selected knots for ε = 0.01.
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Figure 6.5: (a) Knot insertion fit, and (b) selected knots for ε = 0.0001.

ε = 0.01 first 16 and then 12 knots were removed, whereas for ε = 0.0001 the algorithm
was not quite as radical and removed knots in groups of size 3, 4, 4, 4, and 2. This is
also evident from the fact that for ε = 0.0001 the KR algorithm ended up using fewer
knots than the KI algorithm, which was not the case for ε = 0.01. In general, one
should expect the KR algorithm to be able to produce fits with a comparable accuracy
to that of a KI fit, but using fewer knots. This should be so since the KR algorithm
removes redundancies from an ideal initial fit, whereas the KI algorithm starts with
almost no information and has to find a good fit from there.

It is also interesting to note the actual sets of knots chosen by the two methods.
They certainly are not the same, but quite a few features are in common.

Remark: Since we developed the native space theory in Chapter 5 it is clear that
the above algorithms can also be performed in an analogous way with respect to best
approximation in the native space norm. Now, the power function can be used as
an error indicator. This idea is pursued in recent papers by Schaback and Wendland
[562, 563] to design so-called greedy algorithms.
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Figure 6.6: (a) Knot removal fit, and (b) selected knots for ε = 0.0001.
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Chapter 7

Moving Least Squares

Approximation

An alternative to radial basis function interpolation and approximation is the so-called
moving least squares method. As we will see below, in this method the approximation
Pf to f is obtained by solving many (small) linear systems, instead of via solution of
a single – but large – linear system as we did in the previous chapters.

To make a connection with the previous chapters we start with the Backus-Gilbert
formulation of the moving least squares method since this corresponds to a linearly
constrained quadratic minimization problem.

7.1 Moving Least Squares Approximation: The Backus-

Gilbert Approach

The connection between the standard moving least squares formulation (to be ex-
plained in the next section) and Backus-Gilbert theory was pointed out by Bos and
Šalkauskas in [67]. Mathematically, in the Backus-Gilbert approach one considers a
quasi-interpolant of the form

Pf(x) =
N∑

i=1

f(xi)Ψi(x), (7.1)

where f = [f(x1), . . . , f(xN )]T represents the given data. From Theorem 5.5.6 we
know that the quasi-interpolant that minimizes the point-wise error is given if the
generating functions Ψi are cardinal functions, i.e., Ψi(xj) = δij , i, j = 1, . . . , N .

In the moving least squares method one does not attempt to minimize the pointwise
error, but instead seeks to find the values of the generating functions Ψi(x) = Ψ(x,xi)
by minimizing

1

2

N∑

i=1

Ψ2
i (x)

1

W (x,xi)
(7.2)

subject to the polynomial reproduction constraints

N∑

i=1

p(xi)Ψi(x) = p(x), for all p ∈ Πs
d, (7.3)

74



where Πs
d is the space of s-variate polynomials of total degree at most d which has

dimension m =
(
s+d
d

)
.

Remarks:

1. In the above formulation there is no explicit emphasis on nearness of fit as this is
implicitly obtained by the quasi-interpolation “ansatz” and the closeness of the
generating functions to the pointwise optimal delta functions. This is achieved by
the above problem formulation if the W (·,xi) are weight functions that decrease
with distance from the origin. Many of the radial functions used earlier are
candidates for the weight functions. However, strict positive definiteness is not
required, so that, e.g., (radial or tensor product) B-splines can also be used. The
polynomial reproduction constraint is added so that the quasi-interpolant will
achieve a desired approximation order. This will become clear in Section 7.6
below.

2. The smoothness functional (7.2) used here is also motivated by practical appli-
cations. In the Backus-Gilbert theory which was developed in the context of
geophysics (see [17]) it is desired that the generating functions Ψi are as close
as possible to the ideal cardinal functions (i.e., delta functions). Therefore, one
needs to minimize their “spread”. The polynomial reproduction constraints cor-
respond to discrete moment conditions for the function Ψ = Ψ(x, ·).

If we think of x as a fixed (evaluation) point, then we have another constrained
quadratic minimization problem of the form discussed in previous chapters. The un-
knowns are collected in the “coefficient vector” Ψ(x) = [Ψ(x,x1), . . . ,Ψ(x,xN )]T . The
smoothness functional (7.2)

1

2
Ψ(x)TQ(x)Ψ(x)

is given via the diagonal matrix

Q(x) = diag

(
1

W (x,x1)
, . . . ,

1

W (x,xN )

)
, (7.4)

where W (·,xi) are positive weight functions (and thus for any x the matrix Q(x) is
positive definite).

The linear polynomial reproduction constraint (7.3) can be written in matrix form
as

AΨ(x) = p(x),

where A is the m × N matrix with entries Aji = pj(xi), i = 1, . . . , N , j = 1, . . . ,m,
and p = [p1, . . . , pm]T is a vector that contains a basis for the space Πs

d of polynomials
of degree d.

According to our earlier work we use Lagrange multipliers and then know that (cf.
(6.4) and (6.5))

λ(x) =
(
AQ−1(x)AT

)−1
p(x) (7.5)

Ψ(x) = Q−1(x)AT λ(x). (7.6)
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Equation (7.5) implies that the Lagrange multipliers are obtained as the solution of a
Gram system

G(x)λ(x) = p(x),

where the entries of G are the weighted `2 inner products

Gjk(x) = 〈pj , pk〉W (x) =
N∑

i=1

pj(xi)pk(xi)W (x,xi), j, k = 1, . . . ,m. (7.7)

The special feature here is that the weight varies with the evaluation point x.
Two short comments are called for. First, the Gram matrix is symmetric and

positive definite since the polynomial basis is linearly independent and the weights are
positive. Second, in practice, the polynomials will be represented in shifted form, i.e.,
centered at the point of evaluation x, so that only p1(x) ≡ 1 6= 0.

Equation (7.6) can be written componentwise, i.e., the generating functions in (7.1)
are given by

Ψi(x) = W (x,xi)
m∑

j=1

λj(x)pj(xi), i = 1, . . . , N.

Therefore, once the values of the Lagrange multipliers λj(x), j = 1, . . . , N , have been
determined we have explicit formulas for the values of the generating functions. In
general, however, finding the Lagrange multipliers involves solving a (small) linear
system that changes as soon as x changes.

7.2 Standard Interpretation of MLS Approximation

We now consider the following approximation problem. Assume we are given data
values f(xi), i = 1, . . . , N , on some set X = {x1, . . . ,xN} ⊂ IRs of distinct data
sites, where f is some (smooth) function, as well as an approximation space U =
span{u1, . . . , um} (with m < N), along with the same weighted `2 inner product

〈f, g〉W (x) =
N∑

i=1

f(xi)g(xi)Wi(x), x ∈ IRs fixed, (7.8)

as introduced above in (7.7). Again, the positive weights Wi, i = 1, . . . , N , depend on
the evaluation point x. We will interpret the weight functions in a way similar to radial
basis functions, i.e., Wi(x) = W (x,xi), with the points xi coming from the set X .

We now wish to find the best approximation from U to f at the point x with respect
to the norm induced by (7.8). This means we will obtain the approximation (at the
point x) as

Pf(x) =
m∑

j=1

cj(x)uj(x), (7.9)

where the coefficients cj(x) are such that

N∑

i=1

[Pf(xi)− f(xi)]
2Wi(x) (7.10)
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is minimized. Due to the definition of the inner product (7.8) whose weight function
“moves” with the evaluation point x, the coefficients cj in (7.9) depend also on x. As
a consequence one has to solve the normal equations

m∑

j=1

cj(x)〈uj , uk〉W (x) = 〈f, uk〉W (x), k = 1, . . . ,m, (7.11)

anew each time the evaluation point x is changed. In matrix notation (7.11) becomes

G(x)c(x) = fu(x), (7.12)

with the positive definite Gram matrix G(x) =
(
〈uj , uk〉W (x)

)m
j,k=1

, coefficient vector

c(x) and right-hand side vector fu(x) as in (7.11) all depending on x.
In the moving least squares method one usually takes U to be a space of (multi-

variate) polynomials, i.e.,

Pf(x) =
m∑

j=1

cj(x)pj(x), x ∈ IRs, (7.13)

where the {p1, . . . , pm} is a basis for the space Πs
d of s-variate polynomials of degree d.

The Gram system (7.12) now becomes

G(x)c(x) = fp(x), (7.14)

where the matrix G(x) has entries

Gjk(x) = 〈pj , pk〉W (x) =
N∑

i=1

pj(xi)pk(xi)W (x,xi), j, k = 1, . . . ,m, (7.15)

and the right-hand side vector consists of the projections of the data f onto the basis
functions, i.e.,

fp(x) =
[
〈f, p1〉W (x), . . . , 〈f, pm〉W (x)

]T
.

Remarks:

1. The fact that the coefficients depend on the evaluation point x, and thus for every
evaluation of Pf a Gram system (with different matrix G(x)) needs to be solved,
initially scared people away from the moving least squares approach. However,
one can either choose compactly supported weight functions so that only a few
terms are “active” in the sum in (7.15), or even completely avoid the solution of
linear systems (see, e.g., [202]).

2. We point out that since we are working with a polynomial basis, the matrix G
can also be interpreted as a moment matrix for the weight W . This interpretation
is used in the engineering literature (see, e.g., [381]), and also plays an essential
role when connecting moving least squares approximation to the more efficient
concept of approximate approximation [434]. For a discussion of approximate
moving least squares approximation see [203, 204, 205, 206].
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The connection to the constrained quadratic minimization problems discussed ear-
lier can be seen as follows. We are now minimizing (for fixed x)

1

2
cT (x)G(x)c(x)− µT (x)

[
G(x)c(x)−AQ−1(x)f

]
, (7.16)

where G(x) is the Gram matrix (7.7), Q(x) the diagonal matrix of weight functions
(7.4) and A the matrix of polynomials used earlier. The term AQ−1(x)f corresponds
to the right-hand side vector f p(x) of (7.14). The solution of the linear system resulting
from the minimization problem (7.16) gives us

µ(x) =
(
G(x)G−1(x)GT (x)

)−1
AQ−1(x)f = G−T (x)AQ−1(x)f

c(x) = G−1(x)GT (x)µ(x) = µ(x)

so that – as in the case of radial basis function interpolation – by solving only the Gram
system G(x)c(x) = fp(x) we automatically minimize the functional

cT (x)G(x)c(x) =
m∑

j=1

m∑

k=1

cj(x)ck(x)Gjk(x)

=
m∑

j=1

m∑

k=1

cj(x)ck(x)〈pj , pk〉W (x)

which should be interpreted as the native space norm of the approximant Pf(x) =
m∑

j=1

cj(x)pj(x).

7.3 A Dual Representation for the Standard Approach

We now know that on the one hand (from the Backus-Gilbert formulation)

G(x)λ(x) = p(x) ⇐⇒ λ(x) = G−1(x)p(x). (7.17)

By taking multiple right-hand sides p(x) with x ∈ X we get

Λ = G−1(x)A, (7.18)

where the m×N matrix Λ has entries Λji = λj(xi).
The standard formulation, on the other hand, gives us

G(x)c(x) = fp(x) ⇐⇒ c(x) = G−1(x)fp(x) = G−1(x)AQ−1(x)f (7.19)

with
fp(x) =

[
〈f, p1〉W (x), . . . , 〈f, pm〉W (x)

]T
= AQ−1(x)f

as above. By combining (7.18) with (7.19) we get

c(x) = G−1(x)AQ−1(x)f = ΛQ−1(x)f = fλ(x),
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where fλ(x) is defined analogously to f p(x). Componentwise this gives us

cj(x) = 〈f, λj〉W (x), j = 1, . . . ,m,

and therefore,

Pf(x) =

m∑

j=1

〈f, λj〉W (x)pj(x). (7.20)

It is also possible to formulate the moving least squares method by using the La-
grange multipliers of the Backus-Gilbert approach as basis functions for the approxi-
mation space U . Then, using the same argumentation as above, we end up with

Pf(x) =
m∑

j=1

dj(x)λj(x) (7.21)

with
dj(x) = 〈f, pj〉W (x), j = 1, . . . ,m.

Remarks:

1. The Lagrange multipliers form a basis that is dual to the polynomials. In partic-
ular one can show that for any x ∈ X

〈λj , pk〉W (x) = δjk, j, k = 1, . . . ,m.

This shows that we have two sets of basis functions that are bi-orthogonal on the
set X .

2. Note that the expansions (7.20) and (7.21) are generalizations of (finite) eigen-
function or Fourier series expansions.

7.4 Equivalence of Our Approaches to Moving Least Squares

Approximation

We now show that the two main approaches to the moving least squares method de-
scribed above are equivalent, i.e., we show that Pf(x) computed via (7.1) and (7.13)
are the same. The approximant (7.1) in the Backus-Gilbert “ansatz” is of the form

Pf(x) =
N∑

i=1

f(xi)Ψi(x) = ΨT (x)f ,

where as before Ψ(x) = [Ψ(x,x1), . . . ,Ψ(x,xN )]T and f = [f(x1), . . . , f(xN )]T . The
standard moving least squares formulation (7.13), on the other hand, establishes Pf(x)
in the form

Pf(x) =
m∑

j=1

cj(x)pj(x) = pT (x)c(x),
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where p = [p1, . . . , pm]T and c(x) = [c1(x), . . . , cm(x)]T .
In (7.16) we wrote the normal equations for the standard approach as

G(x)c(x) = AQ−1(x)f

which implies
c(x) = G−1(x)AQ−1(x)f .

Thus, using the standard approach, we get

Pf(x) = pT (x)c(x) = pT (x)G−1(x)AQ−1(x)f . (7.22)

For the Backus-Gilbert approach we derived (see (7.5) and (7.6))

λ(x) = G−1(x)p(x)
Ψ(x) = Q−1(x)AT λ(x),

where G(x) = AQ−1(x)AT (see (7.7) or (7.15)). Therefore, we now obtain

Pf(x) = ΨT (x)f =
[
Q−1(x)ATG−1(x)p(x)

]T
f

which, by the symmetry of Q(x) and G(x), is the same as (7.22).

Remarks:

1. The equivalence of the two approaches shows that the moving least squares ap-
proximant has all of the following properties:

• It reproduces any polynomial of degree at most d in s variables exactly.

• It produces the best locally weighted least squares fit.

• Viewed as a quasi-interpolant, the generating functions Ψi are as close as
possible to the optimal cardinal basis functions in the sense that (7.2) is
minimized.

• Since polynomials are infinitely smooth, either of the representations of Pf
shows that its smoothness is determined by the smoothness of the weight
function(s) Wi(x) = W (x,xi).

2. In particular, the standard moving least squares method will reproduce the poly-
nomial basis functions p1, . . . , pm even though this is not explicitly enforced by
the minimization (solution of the normal equations). Moreover, the more general
“ansatz” with approximation space U allows us to build moving least squares
approximations that also reproduce any other function that is included in U .
This can be very beneficial for the solution of partial differential equations with
known singularities (see, e.g., the papers [16] by Babuška and Melenk, and [49]
by Belytschko and co-authors).

By also considering the dual expansion (7.21) we have three alternative representa-
tions for the moving least squares quasi-interpolant. This is summarized in the following
theorem.
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Theorem 7.4.1 Let f : Ω → IR be some function whose values on the set of points
X = {xi}Ni=1 ⊂ IRs are given as data. Let p1, . . . , pm be a basis for Πs

d, let {W (·,xi)}Ni=1

be a set of positive weight functions centered at the points of X , and let λj, j = 1, . . . ,m,
be the Lagrange multipliers defined by (7.5). Furthermore, consider the generating
functions

Ψi(x) = W (x,xi)
m∑

j=1

λj(x)pj(xi), i = 1, . . . , N.

The best local least squares approximation to f on X in the sense of (7.10) is given by

Pf(x) =
m∑

j=1

〈f, λj〉W (x)pj(x)

=
m∑

j=1

〈f, pj〉W (x)λj(x)

=
N∑

i=1

f(xi)Ψi(x).

7.5 Examples

7.5.1 Shepard’s Method

The moving least squares method in the case m = 1 with p1(x) ≡ 1 is known to yield
Shepard’s method [578]. In the statistics literature Shepard’s method is known as a
kernel method (see, e.g., the papers from the 1950s and 60s [534, 501, 476, 623]). Using
our notation we have

Pf(x) = c1(x).

The Gram “matrix” consists of only one element

G(x) = 〈p1, p1〉W (x) =

N∑

i=1

W (x,xi)

so that
G(x)c(x) = fp(x)

implies

c1(x) =

N∑

i=1

f(xi)W (x,xi)

N∑

i=1

W (x,xi)

.

The dual basis is defined by
G(x)λ(x) = p(x)
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so that

λ1(x) =
1

N∑

i=1

W (x,xi)

,

and
Pf(x) = d1(x)λ1(x) (7.23)

with

d1(x) = 〈f, p1〉W (x) =
N∑

i=1

f(xi)W (x,xi).

The generating functions are defined as

Ψi(x) = W (x,xi)λ1(x)p1(xi) =
W (x,xi)

N∑

i=1

W (x,xi)

.

This gives rise to the well-known quasi-interpolation formula for Shepard’s method

Pf(x) =
N∑

i=1

f(xi)Ψi(x)

=
N∑

i=1

f(xi)
W (x,xi)

N∑

k=1

W (x,xk)

.

Of course this is the same as the basis expansion c1(x) and the dual expansion (7.23).
We should now have bi-orthogonality of the basis and dual basis, i.e.,

〈λ1, p1〉W (x) = 1.

Indeed

〈λ1, p1〉W (x) =
m∑

i=1

λ1(xi)W (x,xi)

=
N∑

i=1

W (x,xi)
N∑

k=1

W (xi,xk)

,

and this equals 1 if we restrict x to be an element of the set X .

7.5.2 Plots of Basis-Dual Basis Pairs

We also illustrate the moving least squares basis functions, dual basis functions and
generating functions for a one-dimensional example with X being the set of 13 equally
spaced points in [−5, 5]. We take m = 2, i.e., we consider the case that ensures
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Figure 7.1: Plot of Gaussian weight function centered at x7 = 0.

reproduction of quadratic polynomials. The weight function is taken to be a standard
Gaussian as depicted in Figure 7.1.

The three basis polynomials p1(x) = 1, p2(x) = x, and p3(x) = x2 are shown in
Figure 7.2, whereas the dual basis functions λ1, λ2, and λ3 are displayed in Figure 7.3.
The figure shows that, except for the boundary effects caused by the finite interval,
these functions resemble a quadratic, linear and constant polynomial.
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Figure 7.2: Plot of three polynomial basis functions for moving least squares approxi-
mation.

In Figure 7.4 we plot one of the generating functions (centered at x7 = 0) along
with an approximate moving least squares generating function of the form

Ψ(x,y) =
1√
σπ

(
3

2
− ‖x− y‖2

σ

)
e−

‖x−y‖2

σ

with scale parameter σ as derived in [205].
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Figure 7.3: Plot of three dual basis functions for moving least squares approximation.
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Figure 7.4: Plot of moving least squares generating function (left) and approximate
generating function (right) centered at x7 = 0.

7.6 Approximation Order of Moving Least Squares

Since the moving least squares approximants can be written as quasi-interpolants, we
can use standard techniques to derive their point-wise error estimates. The standard
argument proceeds as follows. Let f be a given (smooth) function that generates the
data, i.e., f1 = f(x1), . . . , fN = f(xN ), and let p be an arbitrary polynomial. Moreover,
assume that the moving least squares approximant is given in the form

Pf(x) =
N∑

i=1

f(xi)Ψi(x)

with the generating functions Ψi satisfying the polynomial reproduction property

N∑

i=1

p(xi)Ψi(x) = p(x), for all p ∈ Πs
d,
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as described at the beginning of this chapter. Then, due to the polynomial reproduction
property of the generating functions,

|f(x)− Pf(x)| ≤ |f(x)− p(x)|+ |p(x)−
N∑

i=1

f(xi)Ψi(x)|

= |f(x)− p(x)|+ |
N∑

i=1

p(xi)Ψi(x)−
N∑

i=1

f(xi)Ψi(x)|

≤ |f(x)− p(x)|+
N∑

i=1

|p(xi)− f(xi)||Ψi(x)|

≤ ‖f − p‖∞
[
1 +

N∑

i=1

|Ψi(x)|
]
. (7.24)

We see that in order to refine the error estimate we now have to answer two questions:

• How well do polynomials approximate f? This will be done with standard Taylor
expansions.

• Are the generating functions bounded? The expression
N∑

i=1

|Ψi(x)| is known as

the Lebesgue function, and finding a bound for the Lebesgue function is the main
task that remains.

By taking the polynomial p above to be the Taylor polynomial for f at x of total
degree d, the remainder term immediately yields an estimate of the form

‖f − p‖∞ ≤ C1h
d+1 max

x∈Ω
|Dαf(x)|, |α| = d+ 1,

= C1h
d+1|f |d+1, (7.25)

where we have used the abbreviation

|f |d+1 = max
x∈Ω
|Dαf(x)|, |α| = d+ 1.

Thus, if we can establish a uniform bound for the Lebesgue function, then (7.24)
and (7.25) will result in

|f(x)− Pf(x)| ≤ Chd+1|f |d+1

which shows that moving least squares approximation with polynomial reproduction
of degree d has approximation order O(hd+1).

For Shepard’s method, i.e., moving least squares approximation with constant re-
production (i.e., m = 1 or d = 0), we saw above that the generating functions are of
the form

Ψi(x) =
W (x,xi)

N∑

j=1

W (x,xj)
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and therefore the Lebesgue function admits the uniform bound

N∑

i=1

|Ψi(x)| = 1,

This shows that Shepard’s method has approximation order O(h).
Bounding the Lebesgue function in the general case is more involved and is the

subject of the papers [378] by Levin and [632] by Wendland. This results in approxi-
mation order O(hd+1) for a moving least squares method that reproduces polynomials
of degree d. In both papers the authors assumed that the weight function is compactly
supported, and that the support size is scaled proportional to the fill distance. How-
ever, similar estimates should be possible if the weight function only decays fast enough
(see, e.g., the survey by de Boor [60]).

Aside from this consideration, the choice of weight function W does not play a role
in determining the approximation order of the moving least squares method. As noted
earlier, it only determines the smoothness of Pf . For example, in the paper [146] from
the statistics literature on local regression the authors state that often “the choice [of
weight function] is not too critical”, and the use of the so-called tri-cube

W (x,xi) = (1− ‖x− xi‖3)3+, x ∈ IRs,

is suggested. Of course, many other weight functions such as (radial) B-splines or any
of the (bell-shaped) radial basis functions studied earlier can also be used. If the weight
function is compactly supported, then the generating functions Ψi will be so, too. This
leads to computationally efficient methods since the Gram matrix G(x) will be sparse.

An interesting question is also the size of the support of the different local weight
functions. Obviously, a fixed support size for all weight functions is possible. How-
ever, this will cause serious problems as soon as the data are not uniformly distributed.
Therefore, in the arguments in [378] and [632] the assumption is made that the data
are at least quasi-uniformly distributed. Another choice for the support size of the in-
dividual weight functions is based on the number of nearest neighbors, i.e., the support
size is chosen so that each of the local weight functions contains the same number of
centers in its support. A third possibility is suggested by Schaback [556]. He proposes
to use another moving least squares approximation based on (equally spaced) auxiliary
points to determine a smooth function δ so that at each evaluation point x the radius
of the support of the weight function is given by δ(x). However, convergence estimates
for these latter two choices do not exist.

Sobolev error estimates are provided for moving least squares approximation with
compactly supported weight functions in [7]. The rates obtained in that paper are not
in terms of the fill distance but instead in terms of the support size R of the weight
function. Moreover, it is assumed that for general s and m =

(
s+d
d

)
the local Lagrange

functions are bounded. As mentioned above, this is the hard part, and such bounds
are only provided in the case s = 2 with d = 1 and d = 2 in [7]. However, if combined
with the general bounds for the Lebesgue function provided by Wendland the paper
[7] yields the following estimates:

|f(x)− Pf(x)| ≤ CRd+1|f |d+1
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but also
|∇(f − Pf)(x)| ≤ CRd|f |d+1.

In the weaker L2-norm we have

‖f − Pf‖L2(Bj∩Ω) ≤ CRd+1|f |W d+1
2 (Bj∩Ω)

and
‖∇(f − Pf)‖L2(Bj∩Ω) ≤ CRd|f |W d+1

2 (Bj∩Ω),

where the balls Bj provide a finite cover of the domain Ω, i.e., Ω ⊆ ⋃j Bj , and the
number of overlapping balls is bounded.

Remarks:

1. In the statistics literature the moving least squares idea is known as local (poly-
nomial) regression. There is a book by Fan and Gijbels [186] and a review article
by Cleveland and Loader [146] according to which the basic ideas of local regres-
sion can be traced back at least to work of Gram [267], Woolhouse [648], and De
Forest [148, 149] from the 1870s and 1880s.

2. In particular, in the statistics literature one learns that the use of least squares
approximation is justified when the data f1, . . . , fN are normally distributed,
whereas, if the noise in the data is not Gaussian, then other criteria should be
used. See, e.g., the survey article [146] for more details.

3. The general moving least squares method first appeared in the approximation
theory literature in a paper by Lancaster and Šalkauskas [358] who also pointed
out the connection to earlier (more specialized) work by Shepard [578] and McLain
[436].

4. Early error estimates for some special cases were provided by Farwig in [188, 189].
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Chapter 8

Some Issues Related to Practical

Implementations

In this chapter we will collect some information about issues that are important for
the practical use of radial basis function and moving least squares methods. These
issues include stability and conditioning of radial basis function interpolants, the trade-
off principle which explains the trade-off between achievable convergence rates and
numerical stability or efficiency, as well as algorithms for fast solution and evaluation
of radial basis interpolants and moving least squares approximants.

8.1 Stability and Conditioning of Radial Basis Function

Interpolants

A standard criterion to measure the numerical stability of an approximation method
is its condition number. In particular, for radial basis function interpolation we need
to look at the condition number of the interpolation matrix A with entries Aij =
Φ(xi − xj). For any matrix A the `2-condition number of A is given by

cond(A) = ‖A‖2‖A−1‖2 =
σmax

σmin
,

where σmax and σmin are the largest and smallest singular values of A. If we concentrate
on positive definite matrices A, then we can also take the ratio

λmax

λmin

of largest and smallest eigenvalues as an indicator for the condition number of A.
What do we know about these eigenvalues? First, Gershgorin’s Theorem says that

|λmax −Aii| ≤
N∑

j=1
j 6=i

|Aij |.

Therefore,
λmax ≤ N max

i,j=1,...,N
|Aij | = N max

xi,xj∈X
Φ(xi − xj),
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which, since Φ is strictly positive definite, becomes

λmax ≤ NΦ(0)

by the properties of positive definite functions listed in Theorem 1.2.6. Now, as long
as the data are not too wildly distributed, N will grow as h−s

X ,Ω which is acceptable.
Therefore, the main work in establishing a bound for the condition number of A lies
in finding lower bounds for λmin (or correspondingly upper bounds for the norm of the
inverse ‖A−1‖2). This is the subject of several papers by Ball, Narcowich, Sivakumar
and Ward [19, 479, 481, 482, 483] who make use of a result by Ball [18] on eigenvalues
of distance matrices. Ball’s result follows from the Rayleigh quotient, which gives the
smallest eigenvalue of a positive definite matrix as

λmin = inf
c∈IRN \0

cTAc

cT c
.

This leads to the following bound for the norm of the inverse of A.

Lemma 8.1.1 Let x1, . . . ,xN , be distinct points in IRs and let Φ : IRs → IR be either
strictly positive definite or strictly conditionally negative definite of order one with
Φ(0) ≤ 0. Also, let A be the interpolation matrix with entries Aij = Φ(xi −xj). If the
inequality

N∑

i=1

N∑

j=1

cicjAij ≥ θ‖c‖22

is satisfied whenever the components of c satisfy
∑N

j=1 cj = 0, then

‖A−1‖2 ≤ θ−1.

Note that for positive definite matrices the Rayleigh quotient implies θ = λmin which
shows why lower bounds on the smallest eigenvalue correspond to to upper bounds on
the norm of the inverse of A. In order to obtain the bound for conditionally negative
matrices the Courant-Fischer Theorem 3.1.2 needs to be employed.

Narcowich and Ward establish bounds on the norm of the inverse of A in terms of
the separation distance of the data sites

qX =
1

2
min
i6=j
‖xi − xj‖2.

We can picture qX as the radius of the largest ball that can be placed around every
point in X such that no two balls overlap (see Figure 8.1).

The derivation of these bounds is rather technical, and for details we refer to either
the original papers by Narcowich, Ward and co-workers, the more recent paper [557]
by Schaback (who uses a slightly simpler strategy), or Wendland’s book [634]. We now
list several bounds as derived in [634].

Examples: In the examples below the explicit constants

Ms = 12

(
πΓ2( s+2

2 )

9

)1/(s+1)

≤ 6.38s and Cs =
1

2Γ( s+2
2 )

(
Ms√

8

)s
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q

Figure 8.1: The separation distance qX for a set of data sites in IR2.

are used. The upper bound for Ms can be obtained using Stirling’s formula (see, e.g.,
[634]).

1. For Gaussians Φ(x) = e−α‖x‖2
one obtains

λmin ≥ Cs(2α)−s/2e−40.71s2/(q2
Xα)q−s

X .

2. For (inverse) multiquadrics Φ(x) =
(
‖x‖2 + α2

)β
, β ∈ IR \ IN0 one obtains

λmin ≥ C(α, β, s)q
β− s

2
+ 1

2
X e−2αMs/qX

with another explicitly known constant C(α, β, s).

3. For thin plate splines Φ(x) = (−1)k+1‖x‖2k log ‖x‖, k ∈ IN, one obtains

λmin ≥ Csck(2Ms)
−s−2kq2k

X

with another explicitly known constant ck.

4. For the powers Φ(x) = (−1)dβ/2e‖x‖β, β > 0, β /∈ 2 IN, one obtains

λmin ≥ Cscβ(2Ms)
−s−βqβ

X

with another explicitly known constant cβ.

5. For the compactly supported functions Φs,k(x) = ϕs,k(‖x‖) of Section 4 one
obtains

λmin ≥ C(s, k)q2k+1
X

with a constant C(s, k) depending on s and k.

By providing matching lower bounds for ‖A−1‖2 Schaback [547] showed that the
upper bounds on the norm of the inverse obtained earlier by Narcowich, Ward and
others are near optimal.

For the infinitely smooth functions of Examples 1 and 2 we see that, for a fixed shape
parameter α, the lower bound for λmin goes exponentially to zero, and therefore the
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condition number of the interpolation matrix A grows exponentially, as the separation
distance qX decreases. This shows that, if one adds more interpolation points in order
to improve the accuracy of the interpolant (within the same domain Ω), then the
problem becomes increasingly ill-conditioned. Of course one would always expect this
to happen, but here the ill-conditioning grows primarily due to the decrease in the
separation distance qX , and not to the increase in the number N of data points. We will
come back to this observation when we discuss a possible change of basis in Section 8.4.

On the other hand, if one keeps the number of points (or at least the separation
distance) fixed and instead increases (reduces) the value of α for Gaussians (multi-
quadrics), then the condition number of A is improved. This corresponds to the sta-
tionary approximation setting (which we did not discuss in detail earlier). In this case
it is possible to show that the upper bound for the error estimate increases, i.e., the
accuracy of the interpolant deteriorates. Conversely, one can attempt to improve the
accuracy of a radial basis function interpolant by decreasing (increasing) α for Gaus-
sians (multiquadrics). However, this is only possible at the cost of numerical instability
(ill-conditioning of A). This is to be expected since for small (large) values of α the
Gaussians (multiquadrics) more and more resemble a constant function, and therefore
the rows (as well as columns) of the matrix A become more and more alike, so that the
matrix becomes almost singular – even for well separated data sites. In the literature
this phenomenon has been referred to as trade-off or (uncertainty) principle (see, e.g.,
the paper [549] by Schaback). The relation between the power function (as part of
the upper bound on the approximation error) and minimal eigenvalue (as part of the
measure of the condition number) is derived below.

Remarks:

1. This trade-off has led a number of people to search for an “optimal” value of
the shape parameter, i.e., a value that yields maximal accuracy, while still main-
taining numerical stability. For example, in his original work on (inverse) mul-
tiquadric interpolation in IR2 Hardy [286] suggested using α = 0.815d, where
d = 1

N

∑N
i=1 di, and di is the distance from xi to its nearest neighbor. Later

Franke [231] suggested using α = 1.25 D√
N

, where D is the diameter of the small-

est circle containing all data points. Foley [221] based his strategy for finding a
good value for α on the observation that that good value was similar for mul-
tiquadrics and inverse multiquadrics. Other studies were reported in [102] and
[103]. A more recent algorithm was proposed by Rippa in [531]. He suggests
a variant of cross validation known as “leave-one-out” cross validation. This
method is rather popular in the statistics literature where it is also known as
PRESS (Predictive REsidual Sum of Squares). In this algorithm an “optimal”
value of α is selected by minimizing the least squares error for a fit based on the
data for which one of the centers was “left out”. A similar strategy was proposed
earlier in [262] for the solution of elliptic partial differential equations via the dual
reciprocity method based on multiquadric interpolation.

2. More recently, Fornberg and co-workers have investigated the dependence of the
stability on the values of the shape parameter α in a series of papers (e.g.,
[159, 228, 361]). On the one hand, they suggest a way of stably computing very
accurate (inverse) multiquadric and Gaussian interpolants (with extreme values
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of α) by using a complex Contour-Padé integration algorithm. This algorithm
is rather expensive, and so far only applicable for problems involving no more
than 100 centers. On the other hand, Fornberg and co-workers as well as Sch-
aback [558] have shown that in the limiting case of the shape parameter α, i.e.,
with very “flat” basis functions, the infinitely smooth radial basis function inter-
polants approach multivariate polynomial interpolants. Therefore, Fornberg and
his co-workers suggest using radial basis functions as a generalization of spectral
methods (applicable also in the case of scattered data) for the numerical solution
of partial differential equations. This approach was also taken recently by Sarra
[543].

We can observe that for the functions with finite smoothness (as in Examples 3–5)
the lower bounds for ‖A−1‖2 are of the same order as the upper bounds for the power
function. The following theorem therefore shows that the order of both of these bounds
is optimal. The theorem also provides the foundation for the trade-off principle referred
to above.

Theorem 8.1.2 Let u∗j (x), j = 1, . . . , N , denote the cardinal functions for interpo-
lation with the strictly positive definite function Φ as explained in Chapter 5, and
let λx be the minimal eigenvalue of the (N + 1) × (N + 1) matrix Ax with entries
Ax,ij = Φ(xi − xj), i, j = 0, 1, . . . , N , where we have added the evaluation point to the
set of centers, i.e., x0 = x. Then

λ−1
x P 2

Φ,X (x) ≥ 1 +
N∑

j=1

[
u∗j (x)

]2
.

Proof: The definition of the power function (with standard interpolation matrix A,
and right-hand side vector b(x) = [Φ(x−x1), . . . ,Φ(x−xN )]T , see Section 5.3) yields

P 2
Φ,X (x) = (u∗(x))TAu∗(x)− 2(u∗(x))T b(x) + Φ(0)

=

N∑

j=1

N∑

k=1

u∗j (x)u∗k(x)Φ(xj − xk)− 2

N∑

j=1

u∗j (x)Φ(x− xj) + Φ(x− x).

If we define u∗0(x) = −1 and x0 = x, then

P 2
Φ,X (x) =

N∑

j=0

N∑

k=0

u∗j (x)u∗k(x)Φ(xj − xk).

Finally, by using the Rayleigh quotient to get

λx ≤
cTAxc

cT c

for the (augmented) coefficient vector c = (u∗
x(x)) ∈ IRN+1 and (N + 1) × (N + 1)

matrix Ax, we have

P 2
Φ,X (x) ≥ λx

N∑

j=0

[
u∗j (x)

]2
,

92



and the statement follows by splitting off the j = 0 term again. �

Theorem 8.1.2 not only implies the uncertainty principle (or trade-off principle)
[549]

λx ≤ P 2
Φ,X (x) or λmin ≤ min

j=1,...,N
P 2

Φ,X\{xj}(x),

which gives the power function as an upper bound for the smallest eigenvalue and vice
versa. The theorem also provides an upper bound on the Lebesgue function, i.e.,

N∑

j=1

∣∣u∗j (x)
∣∣2 ≤

P 2
Φ,X (x)

λx
− 1.

Since the power function can be bounded in terms of the fill distance hX ,Ω, and the
minimum eigenvalue in terms of the separation distance qX , we see that for quasi-
uniformly distributed data, i.e., if hX ,Ω ' qX , the Lebesgue function will not grow too
rapidly.

There is also a trade-off principle for compactly supported functions. This was
explained theoretically as well as illustrated with numerical experiments by Schaback
[553]. The consequences are as follows. In the case of stationary interpolation, i.e.,
if we scale the support size of the basis functions proportional to the fill distance
hX ,Ω, then the “bandwidth” of the interpolation matrix A is constant. This means
we can apply numerical algorithms (e.g., conjugate gradient) that can be performed
in O(N) computational complexity. The method is numerically stable, but there will
be essentially no convergence (see Table 8.1). In the non-stationary case, i.e., with
fixed support size, the bandwidth of A increases as hX ,Ω decreases. This results in
convergence (i.e., the error decreases) as we showed in Chapter 5, but the interpolation
matrices will become more and more dense as well as ill-conditioned. Therefore, this
approach is not very efficient (see Table 8.2).

In Tables 8.1 and 8.2 we illustrate this behavior. We use the compactly supported
function ϕ3,1(r) = (1− r)4+ (4r + 1) to interpolate Franke’s function

F (x, y) =
3

4

[
exp

(
−(9x− 2)2

4
− (9y − 2)2

4

)
+ exp

(
−(9x+ 1)2

49
− (9y + 1)2

10

)]

+
1

2
exp

(
−(9x− 7)2

4
− (9y − 3)2

)
− 1

5
exp

(
−(9x− 4)2 − (9y − 7)2

)

on a grid of equally spaced points in the unit square [0, 1]2. In the stationary case (Ta-
ble 8.1) the support of the basis function is scaled to contain 25 grid points. Therefore,
the “bandwidth” of the interpolation matrix A is kept constant (at 25), so that A is
very sparse for finer grids. We can observe convergence for the first few iterations, but
once an `2-error of approximately 2×10−3 is reached, there is no further improvement.
This behavior is not yet fully understood. However, it is similar to what happens in
the approximate approximation method of Maz’ya (see, e.g., [434]). The rate listed in
the table is the exponent β of the observed `2-convergence rate O(hβ). The % nonzero
column indicates the sparsity of the interpolation matrices, and the time is measured
in seconds.

In the non-stationary case (Table 8.2) we used the basis function without adjusting
its support size. This is the situation to which the error bounds of Chapter 5 apply.
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Mesh `2-error rate % nonzero time

3× 3 2.367490e-01 100 0
5× 5 6.572754e-02 1.849 57.8 0
9× 9 1.740723e-02 1.917 23.2 0

17× 17 2.362950e-03 2.881 7.47 1
33× 33 2.060493e-03 0.198 2.13 1
65× 65 2.012010e-03 0.034 0.06 11

129× 129 2.007631e-03 0.003 0.01 158

Table 8.1: 2D stationary interpolation with ϕ(r) = (1 − r)4
+(4r + 1), 25 points in

support.

Mesh `2-error rate

3× 3 2.407250e-01
5× 5 7.101748e-02 1.761
9× 9 1.833534e-02 1.954

17× 17 1.392914e-03 3.718
33× 33 3.050789e-04 2.191
65× 65 9.314516e-06 5.034

Table 8.2: 2D non-stationary interpolation with ϕ(r) = (1− r)4
+(4r+ 1), unit support.

We have convergence – although it is not obvious what the rate might be. However,
the matrices become increasingly dense. Therefore, Table 8.2 is missing the entry for
the 129× 129 case, and even though no times are provided in that table, the time for
the 65× 65 case is already more than 20 minutes on a standard desktop PC.

8.2 Multilevel Interpolation and Approximation

In order to overcome the problems with both approaches for interpolation with com-
pactly supported radial functions described above, Schaback suggested using a multi-
level stationary scheme. This scheme was implemented first by Floater and Iske [217]
and later studied by a number of other researchers (see, e.g., [115, 209, 281, 297, 318,
478, 630].

The basic idea of the multilevel interpolation algorithm is to scale the size of the
support of the basis function with hX ,Ω, but to interpolate to residuals on progressively
refined sets of centers. This method has all of the combined benefits of the methods
described earlier: it is computationally efficient (can be performed in O(N) operations),
well-conditioned, and convergent.

An algorithm for multilevel interpolation is as follows:

Algorithm: (Multilevel interpolation)

1. Create nested point sets X1 ⊂ · · · ⊂ XK = X ⊂ IRs, and initialize Pf(x) = 0.

2. For k = 1, 2, . . . ,K do
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Mesh `2-error rate % nonzero time

3× 3 2.367490e-01 100 0
5× 5 6.665899e-02 1.828 57.8 0
9× 9 2.087575e-02 1.675 23.2 0

17× 17 1.090837e-04 4.258 7.47 0
33× 33 1.497227e-04 2.865 2.13 6
65× 65 5.313053e-05 1.495 0.06 37

129× 129 1.112638e-05 2.256 0.01 212

Table 8.3: 2D (stationary) multilevel interpolation with ϕ(r) = (1− r)4
+(4r + 1).

(a) Solve u(x) = f(x)− Pf(x) on Xk.

(b) Update Pf(x) = Pf(x) + u(x).

The representation of the update u at step k is of the form

u(x) =
∑

xj∈Xk

c
(k)
j ϕ

(‖x− xj‖
ρk

)

with ρk ' hXk,Ω. This requires the solution of a linear system whose size is determined
by the number of points in Xk.

In the numerical example listed in Table 8.3 we again use the compactly supported
function ϕ3,1(r) = (1− r)4+ (4r + 1) and Franke’s function.

The initial scale ρ1 was chosen so that the basis function was supported on [−2, 2].
Subsequent scales were successively divided by 2 – just as the fill distance of the com-
putational grids Xk. The rate listed in the table is the exponent β of the observed
`2-convergence rate O(hβ). The % nonzero column indicates the sparsity of the inter-
polation matrices, and the time is measured in seconds.

So far there are only limited theoretical results concerning the convergence of this
multilevel algorithm. Narcowich, Schaback and Ward [478] show that a related algo-
rithm (in which additional boundary conditions are imposed) converges at least linearly,
and Hartmann analyzed the multilevel algorithm in his Ph.D. thesis [297]. He showed
at least linear convergence for multilevel interpolation on a regular lattice for various
radial basis functions. Similar results are obtained by Hales and Levesley [281] for poly-
harmonic splines, i.e., thin plate splines and powers. The main difficulty in proving
the convergence of the multilevel algorithm is the fact that the approximation space
changes from one level to the next. The approximation spaces are not nested (as they
usually are for wavelets). This means that the native space norm changes from one
level to the next. Hales and Levesley avoid this problem by scaling the (uniformly
spaced) data instead of the basis functions. Then the fact that polyharmonic splines
are in a certain sense harmonic (see Section 8.4) simplifies the analysis. This fact was
also used by Wendland [634] to prove linear convergence for multilevel (scattered data)
interpolation based on thin plate splines.

The same basic multilevel algorithm can also be used for other approximation
methods. In [203] the idea was applied to moving least squares methods and ap-
proximate moving least squares methods. Tables 8.4 and 8.5 illustrate the effect of
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Mesh Shepard linear precision

`2-error rate time `2-error rate time

3× 3 2.737339e-01 7 2.749670e-01 14
5× 5 1.100713e-01 1.314 7 1.033060e-01 1.412 13
9× 9 5.393041e-02 1.029 5 5.242492e-02 0.979 9

17× 17 1.507797e-02 1.839 3 1.502361e-02 1.803 5
33× 33 4.124059e-03 1.870 3 4.111092e-03 1.870 4
65× 65 1.061904e-03 1.957 2 1.047348e-03 1.973 3

129× 129 2.628645e-04 2.014 2 2.628645e-04 1.994 3

Table 8.4: 2D MLS approximation with weight ϕ(r) = (1− r)4
+(4r + 1).

the multilevel algorithm for Shepard’s method and a moving least squares approxi-
mation with linear precision, both based on the compactly supported weight function
ϕ3,1(r) = (1 − r)4+(4r + 1). This experiment was conducted with a mollified Franke
function f on the unit square [0, 1]2, i.e.,

F (x, y) =
3

4

[
exp

(
−(9x− 2)2

4
− (9y − 2)2

4

)
+ exp

(
−(9x+ 1)2

49
− (9y + 1)2

10

)]

+
1

2
exp

(
−(9x− 7)2

4
− (9y − 3)2

)
− 1

5
exp

(
−(9x− 4)2 − (9y − 7)2

)
,

f(x, y) = 15 exp

( −1

1− 4(x− 1/2)2

)
exp

( −1

1− 4(y − 1/2)2

)
F (x, y) .

The support scaling was as in the previous multilevel example.
One can observe that the basic Shepard’s method actually performs much better

than the predicted O(h) (see Table 8.4). Notice that the multilevel algorithm (illus-
trated in Table 8.5) improves the accuracy considerably at very little extra cost. It
is interesting to note that this effect is much more pronounced for computations in
IR2 than in IR (cf. [202]). The times listed in Tables 8.4 and 8.5 are due only to the
evaluation on a very fine evaluation mesh since the method was coded so that no linear
systems had to be solved. This means that the Lagrange multipliers for the case of
linear precision were determined explicitly by solving the 3 × 3 Gram system analyt-
ically (cf. (7.5)). The resulting generating functions 7.6) were directly coded into the
program.

There seems to be no theoretical investigation of the convergence properties of the
multilevel algorithm for moving least squares approximation.

8.3 Preconditioning

In the first section of this chapter we noted that the system matrices arising in scat-
tered data interpolation with radial basis functions tend to become very ill-conditioned
as the minimal separation distance qX between the data sites x1, . . . ,xN , is reduced.
Therefore it is natural to devise strategies to prevent such instabilities by either pre-
conditioning the system, or by finding a better basis for the approximation space we
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Mesh Shepard linear precision

`2-error rate time `2-error rate time

3× 3 2.737339e-01 7 2.749670e-01 14
5× 5 1.076424e-01 1.347 7 1.013114e-01 1.440 12
9× 9 3.909725e-02 1.461 5 4.308322e-02 1.234 9

17× 17 7.327282e-03 2.416 3 8.549613e-03 2.333 6
33× 33 9.545860e-04 2.940 2 8.937409e-04 3.258 4
65× 65 1.424136e-04 2.745 2 9.896052e-05 3.175 3

129× 129 3.946680e-05 1.851 2 1.361339e-05 2.872 2

Table 8.5: 2D multilevel MLS approximation with ϕ(r) = (1− r)4
+(4r + 1).

are using. The former approach is standard procedure in numerical linear algebra,
and in fact we can use any of the well-established methods (such as preconditioned
conjugate gradient iteration) to improve the stability and convergence of the interpola-
tion systems that arise for strictly positive definite functions. In particular, the sparse
systems that arise in (multilevel) interpolation with compactly supported radial basis
functions can be efficiently solved with the preconditioned conjugate gradient method,
and in fact the examples reported in the previous section were implemented using the
conjugate gradient method with a diagonal (Jacobi) preconditioner.

The idea of using a more stable basis is well known from univariate polynomial and
spline interpolation. The Lagrange basis functions for univariate polynomial interpola-
tion are of course the ideal basis if we are interested in stably solving the interpolation
equations since the resulting interpolation matrix is the identity matrix (which is cer-
tainly much better conditioned than, e.g., the Vandermonde matrix that we get if we
use a monomial basis). Similarly, B-splines give rise to diagonally dominant, sparse
system matrices which are much easier to deal with than the matrices we would get if
we were to represent a spline interpolant using the alternative truncated power basis.
Both of these examples are studied in great detail in standard numerical analysis texts
(see, e.g., [350]) or in the literature on splines (see, e.g., [574]). We will address an
analogous approach for radial basis functions in the next section.

Before we describe any of the specialized preconditioning procedures for radial basis
function interpolation matrices we give two examples presented by Jackson [326] to
illustrate the effects of and motivation for preconditioning in the context of radial basis
functions.
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8.3.1 Two Simple Examples

Example 1: (Uniform data) Let s = 1 and ϕ(r) = r with no polynomial terms added.
As data sites we choose X = {1, 2, . . . , 10}. This leads to the system matrix

A =




0 1 2 3 . . . 9
1 0 1 2 . . . 8
2 1 0 1 . . . 7
3 2 1 0 . . . 6
...

...
...

...
. . .

...
9 8 7 6 . . . 0




with `2-condition number cond(A) ≈ 67. Instead of solving the linear system Ac = y,
where y = [y1, . . . , y10]

T ∈ IR10 is a vector of given real numbers (data values), we can
find a suitable matrix B to premultiply both sides of the equation such that the system
is simpler to solve. Ideally, the new system matrix BA should be the identity matrix,
i.e., B should be an approximate inverse of A. Thus, having found an appropriate
matrix B, we must now solve the linear system BAc = By. For the matrix A above
we can choose a preconditioner B as

B =




1 0 0 0 . . . 0 0
1
2 −1 1

2 0 . . . 0 0
0 1

2 −1 1
2 . . . 0 0

0 0 1
2 −1 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . −1 1

2
0 0 0 0 . . . 0 1




.

This leads to the following preconditioned system matrix BA in the system




0 1 2 . . . 8 9
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
9 8 7 . . . 1 0




c = By,

which is almost an identity matrix. Now cond(BA) ≈ 45.

The motivation for this choice of B is the following. The function ϕ(r) = r or
Φ(x) = |x| is a fundamental solution of the Laplacian ∆, i.e.,

∆Φ(x) =
d2

dx2
|x| = 1

2
δ0(x),

where δ0 is the Dirac delta function. Thus, B is chosen as a discretization of the
Laplacian with special choices at the endpoints of the data set.
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Remark: One can also verify that the function Φ(x) = |x| minimizes the functional

∫

IR

[
f ′(x)

]2
dx

over all functions interpolating data sampled from a function in the space

F = {f ∈ C(IR), f ′ ∈ L2(IR)}.

Therefore, the radial basis function ϕ(r) = r is a linear (natural) spline. An analogous
argument can be used to show that the function ϕ(r) = r3 in IR is nothing but a
cubic natural spline. This is in agreement with the variational theory presented earlier
according to which every radial basis function represents the minimum norm interpolant
in its native space.

Example 2: (Nonuniform data) For nonuniformly distributed data we can use a dif-
ferent discretization of the Laplacian ∆ for each row of B. To see this, let s = 1, and
X = {1, 3

2 ,
5
2 , 4,

9
2}, and again consider the radial function ϕ(r) = r. Then

A =




0 1
2

3
2 3 7

2
1
2 0 1 5

2 3
3
2 1 0 3

2 2

3 5
2

3
2 0 1

2
7
2 3 2 1

2 0




with cond(A) ≈ 18.15, and if we choose

B =




1 0 0 0 0

1 −3
2

1
2 0 0

0 1
2 −5

6
1
3 0

0 0 1
3 −4

3 1

0 0 0 0 1



,

based on second-order backward differences of the points in X , then the preconditioned
system to be solved becomes




0 1
2

3
2 3 7

2

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
7
2 3 2 1

2 0




c = By.

Once more, this system is almost trivial to solve and has an improved condition number
of cond(BA) ≈ 8.94.
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8.3.2 Early Preconditioners

Ill-conditioning of the interpolation matrices was identified as a serious problem very
early, and Nira Dyn along with some of her co-workers (see, e.g., [172], [173], [178], or
[180]) provided some of the first preconditioning strategies tailored especially to radial
basis functions.

For the following discussion we consider the general interpolation problem which
includes polynomial reproduction. Therefore, we have to solve the following system of
linear equations [

A P
P T 0

] [
c

d

]
=

[
y

0

]
, (8.1)

with the individual pieces given by Ajk = ϕ(‖xj − xk‖), j, k = 1, . . . , N , Pj` = p`(xj),
j = 1, . . . , N , ` = 1, . . . ,M , c = [c1, . . . , cN ]T , d = [d1, . . . , dM ]T , y = [y1, . . . , yN ]T ,
and 0 a zero vector of length M with M = dimΠs

m−1. Here, as discussed earlier, ϕ
should be strictly conditionally positive definite of order m and radial on IRs and the
set X = {x1, . . . ,xN} should be (m− 1)-unisolvent.

The preconditioning scheme proposed by Dyn and her co-workers is a generalization
of the simple differencing scheme discussed above. It is motivated by the fact that the
polyharmonic splines

ϕ(r) =

{
r2k−s log r, s even,
r2k−s, s odd,

2k > s, are fundamental solutions of the k-th iterated Laplacian in IRs, i.e.,

∆kϕ(‖x‖) = cδ0(x),

where δ0 is the Dirac delta function, and c is an appropriate constant. For the (inverse)
multiquadrics ϕ(r) = (r2 + α2)±1/2, which are also discussed in the papers mentioned
above, application of the Laplacian yields a similar limiting behavior, i.e.,

lim
r→∞

∆kϕ(r) = 0,

and for r → 0
∆kϕ(r)� 1.

One now wants to discretize the Laplacian on the (irregular) mesh given by the
(scattered) data sites in X . To this end Dyn, Levin, and Rippa [180] suggest the
following procedure for the case of scattered data interpolation over IR2.

1. Start with a triangulation of the set X , e.g., the Delaunay triangulation will do.
This triangulation can be visualized as follows.

(a) Begin with the points in X and construct their Dirichlet tesselation. The
Dirichlet tile of a particular point x is that subset of points in IR2 which are
closer to x than to any other point in X . The left part of Figure 8.2 shows
the Dirichlet tesselation for a given set of 6 points.

(b) Construct the Delaunay triangulation, which is the dual of the Dirichlet
tesselation, i.e., connect all strong neighbors in the Dirichlet tesselation, i.e.,
points whose tiles share a common edge. The right part of Figure 8.2 shows
the corresponding Delaunay triangulation of the 6 points.
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Figure 8.2: Dirichlet tesselation (left) and corresponding Delaunay triangulation (right)
of the points ◦.

2. Discretize the Laplacian on this triangulation. In order to also take into account
the boundary points Dyn, Levin and Rippa instead use a discretization of an iter-
ated Green’s formula which has the space Π2

m−1 as its null space. The necessary
partial derivatives are then approximated on the triangulation using certain sets
of vertices of the triangulation. (3 points for first order partials, 6 for second
order).

The discretization described above yields the matrix B = (bji)
N
j,i=1 as the precon-

ditioning matrix in an analogous to the previous section. We now obtain

(BA)jk =
N∑

i=1

bjiϕ(‖xi − xk‖) ≈ ∆mϕ(‖ · −xk‖)(xj), j, k = 1, . . . , N, (8.2)

which has the property that the entries close to the diagonal are large compared to
those away from the diagonal, which decay to zero as the distance between the two
points involved goes to infinity. Since the part BP = 0 by step 2 of the construction,
one must now solve the system

BAc = By

P T c = 0.

Actually, the system BAc = By is singular, but it is shown in the paper [180] that the
additional constraints P T c = 0 guarantee existence of a unique solution. Furthermore,
the coefficients d in the original expansion of the interpolant s can be obtained by
solving

Pd = y −Ac,

i.e., by fitting the polynomial part of the expansion to the residual y −Ac.
The approach just described leads to localized basis functions ψ which are linear

combinations of the original basis functions ϕ. More precisely,

ψj(x) =
N∑

i=1

bjiϕ(‖x− xi‖) ≈ ∆mϕ(‖ · −xj‖)(x), (8.3)
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ϕ N Grid I orig. Grid I precond. Grid II orig. Grid II precond.

TPS 49 1181 4.3 1885 3.4
121 6764 5.1 12633 3.9

MQ 49 7274 69.2 17059 222.8
121 10556 126.0 107333 576.0

Table 8.6: Condition numbers without and with preconditioning.

where the coefficients bji are those determined in the discretization above.

Remarks:

1. The localized basis functions ψj , j = 1, . . . , N , (see (8.3)) can be viewed as an
alternative (better conditioned) basis for the approximation space spanned by
the functions ϕj = ϕ(‖ · −xj‖).

2. In [180] it is described how the preconditioned matrices can be used efficiently
with various iterative schemes such as Chebyshev iteration or a version of the
conjugate gradient method. The authors also mention smoothing of noisy data,
or low-pass filtering as another application for this preconditioning scheme.

The effectiveness of the above preconditioning strategy was illustrated with some
numerical examples in [180]. We list some of their results in Table 8.6. Thin plate
splines and multiquadrics were tested on two different data sets (grid I and grid II) in
IR2. The shape parameter α for the multiquadrics was chosen to be the average mesh
size. A linear term was added for thin plate splines, and a constant for multiquadrics.

One can see that the most dramatic improvement is achieved for the thin plate
splines. This is to be expected since the method is tailored to them. As noted earlier,
for the multiquadrics an application of the Laplacian does not yield the delta function,
but for values of r close to zero gives just relatively large values.

Remarks:

1. Another early preconditioning strategy was suggested by Powell [516]. Powell uses
Householder transformations to convert the matrix of the interpolation system
(8.1) to a symmetric positive definite matrix, and then uses the conjugate gradient
method. However, Powell reports that this method is not particularly effective
for large thin plate spline interpolation problems in IR2.

2. Baxter [27, 30] discusses the use of a preconditioned conjugate gradient method
for solving the interpolation problem in the case when Gaussians or multiquadrics
are used on a regular grid. The resulting matrices are Toeplitz matrices, and a
large body of literature exists for dealing with this special case (see, e.g., [110]).
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8.3.3 Preconditioned GMRES via Approximate Cardinal Functions

More recently, Beatson, Cherrie and Mouat [34] have proposed a preconditioner for
the iterative solution of radial basis function interpolation systems using the GMRES
method of Saad and Schultz [538]. The GMRES method is a general purpose iterative
solver that can be applied to nonsymmetric (nondefinite) systems. For fast convergence
the matrix should be preconditioned such that its eigenvalues are clustered around 1
and away from the origin. Obviously, if the basis functions for the radial basis function
space were cardinal functions, then the matrix would be the identity matrix with all
its eigenvalues equal to 1. Therefore, the GMRES method would converge in a single
iteration. Consequently, the preconditioning strategy for the GMRES method is to
obtain a preconditioning matrix B that is close to the inverse of A.

Since it is too expensive to find the true cardinal basis (this would involve at least
as much work as solving the interpolation problem), the idea pursued in [34] (and
suggested earlier in [36, 46]) is to find approximate cardinal functions similar to the
functions ψj in the previous subsection. Now, however, there is also an emphasis on
efficiency, i.e., we are interested in local approximate cardinal functions, if possible.
Several different strategies were suggested in [34]. We will now explain the basic idea.

Given the centers x1, . . . ,xN , the j-th approximate cardinal function is given as a
linear combination of the basis functions ϕi = ϕ(‖ · −xi‖), where i runs over (some
subset of) {1, . . . , N}, i.e.,

ψj =

N∑

i=1

bjiϕ(‖ · −xi‖) + pj , (8.4)

where (for the conditionally positive definite case) pj is a polynomial in Πs
m−1 and the

coefficients bji satisfy the usual conditions

N∑

i=1

bjipj(xi) = 0 for all pj ∈ Πs
m−1. (8.5)

The key feature in designing the approximate cardinal functions is to have only a few
n � N coefficients in (8.4) to be nonzero. In that case the functions ψj are found
by solving small n × n linear systems, which is much more efficient than dealing with
the original N ×N system. For example, in [34] the authors use n ≈ 50 for problems
involving up to 10,000 centers. The resulting preconditioned system is of the same
form as the earlier preconditioner (8.2), i.e., we now have to solve the preconditioned
problem

(BA)c = By,

where the entries of the matrix BA are just ψj(xk), j, k = 1, . . . , N .
The simplest strategy for determining the coefficients bji is to select the n nearest

neighbors of xj , and to find bji by solving the (local) cardinal interpolation problem

ψj(xi) = δij , i = 1, . . . , n,

subject to the moment constraint (8.5) listed above. Here δij is the Kronecker-delta,
and the points xi are the nearest neighbors selected above.
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ϕ N unprecond. local precond. local precond. w/special

TPS 289 4.005e06 1.464e03 5.721e00
1089 2.753e08 6.359e05 1.818e02
4225 2.605e09 2.381e06 1.040e06

MQ 289 1.506e08 3.185e03 2.639e02
1089 2.154e09 8.125e05 5.234e04
4225 3.734e10 1.390e07 4.071e04

Table 8.7: Condition numbers without and with preconditioning.

This basic strategy is improved by adding so-called special points that are dis-
tributed (very sparsely) throughout the domain.

A few numerical results for thin plate spline and multiquadric interpolation in IR2

from [34] are listed in Table 8.7. The condition numbers are `2-condition numbers, and
the points were randomly distributed in the unit square. The “local precond.” column
uses the n = 50 nearest neighbors to determine the approximate cardinal functions,
whereas the right-most column uses the 41 nearest neighbors plus 9 special points placed
uniformly in the unit square. The effect of the preconditiong on the performance of
the GMRES algorithm was, e.g., a reduction from 103 to 8 iterations for the 289 point
data set for thin plate splines, or from 145 to 11 for multiquadrics.

Remark: An extension of the ideas of Beatson, Cherrie and Mouat [34] to linear sys-
tems arising in the collocation solution of partial differential equations (see Chapter 9)
was explored in Mouat’s Ph.D. thesis [468] and also in the recent paper by Ling and
Kansa [395].

8.4 Change of Basis

Another idea that can be used to obtain a “better” basis for conditionally positive
definite radial basis functions is closely connected to finding the reproducing kernel
of the associated native space. Since we did not elaborate on the construction of the
native spaces for conditionally positive definite functions earlier, we will now present
the relevant formulas (without going into the details). In particular, for polyharmonic
splines we will be able to find a basis that is in a certain sense homogeneous, and
therefore the condition number of the related interpolation matrix will depend only on
the number N of data points, but not on their separation distance.

This approach was suggested by Beatson, Light and Billings [42], and has its roots
in work by Sibson and Stone [582].

Let Φ be a strictly conditionally positive definite kernel of order m, and X =
{x1, . . . ,xN} ⊂ Ω ⊂ IRs be an (m− 1)-unisolvent set of centers. Then the reproducing
kernel for the native space NΦ(Ω) is given by

K(x,y) = Φ(x,y)−
M∑

k=1

pk(x)Φ(xk,y)−
M∑

`=1

p`(y)Φ(x,x`)
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+
M∑

k=1

M∑

`=1

pk(x)p`(y)Φ(xk,x`) +
M∑

`=1

p`(x)p`(y),

where the points x1, . . . ,xM are an (m−1)-unisolvent subset of X and the polynomials
pk, k = 1, . . . ,M , form a cardinal basis for Πs

m−1 whose dimension is M =
(
s+m−1
m−1

)
,

i.e.,
p`(xk) = δk,`, k, ` = 1, . . . ,M.

An immediate consequence is that we can express the radial basis function interpolant
to values of some function f given on X in the form

Pf(x) =
N∑

j=1

cjK(x,xj), x ∈ IRs .

The coefficients cj are determined by satisfying the interpolation conditions

Pf(xi) = f(xi), i = 1, . . . , N.

We will see below (in Tables 8.8 and 8.9) that this basis already performs “better” than
the standard basis {Φ(·,x1), . . . ,Φ(·,xN )} if we keep the number of centers fixed, and
vary only their separation distance.

To obtain the homogeneous basis referred to above we modify K by subtracting the
tensor product polynomial, i.e.,

κ(x,y) = K(x,y)−
M∑

`=1

p`(x)p`(y).

Now, if y is one of the points x1, . . . ,xM in the (m−1)-unisolvent subset of X mentioned
above, then

κ(·,y) = Φ(·,y)−
M∑

k=1

pk(·)Φ(xk,y)−
M∑

`=1

p`(y)Φ(·,x`) +

M∑

k=1

M∑

`=1

pk(·)p`(y)Φ(xk,x`)

= Φ(·,y)−
M∑

k=1

pk(·)Φ(xk,y)− Φ(·,y) +

M∑

k=1

pk(·)Φ(xk,y) = 0.

This means that the functions κ(·,xj), j = 1, . . . , N , cannot be used as a basis of
our approximation space. However, it turns out that the matrix C with entries Ci,j =
κ(xi,xj), i, j = M+1, . . . , N , is positive definite, and therefore we obtain the following
basis

{p1, . . . , pM} ∪ {κ(·,xM+1), . . . , κ(·,xN )},
and the interpolant can be represented in the form

Pf(x) =
M∑

j=1

djpj(x) +
N∑

k=M+1

ckκ(x,xk), x ∈ IRs .
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Spacing h Standard matrix Reproducing kernel Homogeneous matrix

1/8 3.5158e03 1.8930e04 7.5838e03
1/16 3.8938e04 2.6514e05 1.1086e05
1/32 5.1363e05 4.0007e06 1.6864e06
1/64 7.6183e06 6.2029e07 2.6264e07

Table 8.8: Condition numbers for different thin plate spline bases on [0, 1]2 with in-
creasing number of points and varying separation distance.

Since the polynomials pk are cardinal on {x1, . . . ,xM} the coefficients are determined
by solving the linear system

[
I 0
P T C

] [
d

c

]
= y, (8.6)

with I an M × M identity matrix, C as above, Pij = pj(xi), j = 1, . . . ,M , i =
M + 1, . . . , N , c = [cM+1, . . . , cN ]T , d = [d1, . . . , dM ]T , and the right-hand side y =
[f(x1), . . . , f(xM ), f(xM+1), . . . , f(xN )]T . The identity block (cardinality of the poly-
nomial basis functions) implies that the coefficient vector d is given by

dj = f(xj), j = 1, . . . ,M,

and therefore the system (8.6) can be solved as

Cc = ỹ − P T d,

where ỹ = [f(xM+1), . . . , f(xN )]T and the matrix C is symmetric and positive definite.
Finally, for polyharmonic splines, the `2-condition number of the matrix C is invariant
under a uniform scaling of the centers, i.e., if Ch = (κ(hxi, hxj)), then cond(Ch) =
cond(C). This is proved to varying degrees in the paper [42] by Beatson, Light and
Billings, the book [634] by Wendland, and the paper [320] by Iske.

We close with some numerical experiments from [42]. They use thin plate splines in
IR2. In the first experiment (illustrated in Table 8.8) the problem is formulated on the
unit square [0, 1]2. Here both the number of points and the separation distance vary
from one row in the table to the next. The three different columns list the `2-condition
numbers of the interpolation matrix for the three different approaches mentioned above,
i.e., using the standard basis consisting of functions Φ(·,xj) and monomials, using the
reproducing kernels K(·,xj), and using the matrix C. The three polynomial cardinal
functions are based on the three corners (0, 0), (0, 1), and (1, 0). With this setup all
three methods perform comparably.

In the second experiment (shown in Table 8.9) the number of points is kept fixed at
5×5 equally spaced points. However, the domain is scaled to the square [0, a]2 with scale
parameter a, so that only the separation distance qX changes from one row to the next.
Now, clearly the two new methods show less dependence on the separation distance,
with the homogeneous matrix C being completely insensitive as claimed earlier.

Remark: Iske takes advantage of the scale invariance of polyharmonic splines (and
thin plate splines in particular) in the construction of a numerical multiscale solver for
transport problems (see, e.g., [47]).
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Scale parameter Standard matrix Reproducing kernel Homogeneous matrix

0.001 2.4349e08 8.4635e08 5.4938e02
0.01 2.4364e06 8.4640e06 5.4938e02
0.1 2.5179e04 8.5134e04 5.4938e02
1.0 3.6458e02 1.3660e03 5.4938e02
10 1.8742e06 1.2609e03 5.4938e02
100 1.1520e11 1.1396e05 5.4938e02
1000 3.4590e15 1.1386e07 5.4938e02

Table 8.9: Condition numbers for different thin plate spline bases on [0, a]2 with fixed
number of points and varying separation distance.

8.5 Special Numerical Algorithms

Since the use of radial basis functions for interpolation of scattered data leads to (large)
linear systems that are frequently ill-conditioned it is important to devise algorithms
that can

1. efficiently solve the interpolation system (preferably in O(N) operations), and

2. efficiently evaluate a radial basis function expansion once its coefficients have
been determined (preferably in a constant number of operations – independent
of N).

The second goal is also important for approximation via the moving least squares
method or by quasi-interpolation.

All of the work described below is very recent, and it is quite likely that much more
insight can be gained, and many improvements are still possible.

8.5.1 Iterative Algorithms

This section is based on the contents of the papers [562, 563] by Schaback and Wend-
land, the book [634] by Wendland, and the papers [212, 213] by Faul and Powell.

We concentrate on systems for strictly positive definite functions (variations for
strictly conditionally positive definite functions also exist). One of the central ingredi-
ents is the native space inner product discussed in Chapter 5. As always we assume
that our data sites are X = {x1, . . . ,xN}, but now we also consider a second set Y ⊆ X .

If we consider PYf to be the interpolant to f on Y ⊆ X , then 〈f−PYf,PYf〉NΦ(Ω) =
0 and we obtain the energy split (see Corollary 5.5.3)

‖f‖2NΦ(Ω) = ‖f − PYf‖2NΦ(Ω) + ‖PYf‖2NΦ(Ω).

One possible point of view is now to consider an iteration on residuals. To this end
we start with our desired interpolant r0 = PX f on the entire set X , and an appropriate
sequence of sets Yk, k = 0, 1, . . . (we will discuss some possible choices later). Then,
we iteratively define

rk+1 = rk − PYk
rk, k = 0, 1, . . . . (8.7)
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Now, the energy splitting identity with f = rk gives us

‖rk‖2NΦ(Ω) = ‖rk − PYk
rk‖2NΦ(Ω) + ‖PYk

rk‖2NΦ(Ω) (8.8)

or, using the iteration formula (8.7),

‖rk‖2NΦ(Ω) = ‖rk+1‖2NΦ(Ω) + ‖rk − rk+1‖2NΦ(Ω). (8.9)

Therefore,

K∑

k=0

‖PYk
rk‖2NΦ(Ω) =

K∑

k=0

‖rk − rk+1‖2NΦ(Ω)

=
K∑

k=0

{
‖rk‖2NΦ(Ω) − ‖rk+1‖2NΦ(Ω)

}

= ‖r0‖2NΦ(Ω) − ‖rK+1‖2NΦ(Ω) ≤ ‖r0‖2NΦ(Ω),

which shows that the sequence of partial sums is monotone increasing and bounded,
and therefore convergent – even for a poor choice of the sets Yk. If we can show that
the residuals rk converge to zero, then we would have that the iteratively computed
approximation

sK+1 =
K∑

k=0

PYk
rk =

K∑

k=0

(rk − rk+1) = r0 − rK+1 (8.10)

converges to the original interpolant r0 = PX f .

Remark: While this residual iteration algorithm has some structural similarities with
the multilevel algorithm of Section 8.2 we now are considering a way to efficiently
compute the interpolant PX f on some fine set X based on a single function Φ, whereas
earlier, our final interpolant was the result of using the spaces

⋃K
k=1NΦk

(Ω), where Φk

was an appropriately scaled version of the basis function Φ. And the goal there was to
approximate f .

In order to prove convergence of the residual iteration let us assume that we can
find sets of points Yk such that at step k at least some fixed percentage of the energy
of the residual is picked up by its interpolant, i.e.,

‖PYk
rk‖2NΦ(Ω) ≥ γ‖rk‖2NΦ(Ω) (8.11)

with some fixed γ ∈ (0, 1]. Then (8.9) and the iteration formula (8.7) imply

‖rk+1‖2NΦ(Ω) = ‖rk‖2NΦ(Ω) − ‖PYk
rk‖2NΦ(Ω),

and therefore

‖rk+1‖2NΦ(Ω) ≤ ‖rk‖2NΦ(Ω) − γ‖rk‖2NΦ(Ω) = (1− γ)‖rk‖2NΦ(Ω).

Applying this bound recursively yields (see [562])
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Theorem 8.5.1 If the choice of sets Yk satisfies (8.11), then the residual iteration
(8.10) converges linearly in the native space norm, and after K steps of iterative re-
finement there is an error bound

‖r0 − sK‖2NΦ(Ω) = ‖rK‖2NΦ(Ω) ≤ (1− γ)K‖r0‖2NΦ(Ω).

This theorem has various limitations. In particular, the norm involves the function
Φ which makes it difficult to find sets Yk that satisfy (8.11). Moreover, the native space
norm of the initial residual r0 is not known, either. Therefore, using an equivalent
discrete norm on the set X , Schaback and Wendland establish an estimate of the form

‖r0 − sK‖2X ≤
C

c

(
1− δ c

2

C2

)K/2

‖r0‖2X ,

where c and C are constants denoting the norm equivalence, i.e.,

c‖s‖X ≤ ‖s‖NΦ(Ω) ≤ C‖s‖X

for any s ∈ NΦ(Ω), and where δ is a constant analogous to γ (but based on use of the
discrete norm ‖ · ‖X in (8.11)).

In [563] a basic version of this algorithm – where the sets Yk consist of a single point
– is described and tested. The resulting approximation yields the best K-term approx-
imation to the interpolant. This idea is related to the concept of greedy approximation
algorithms (see, e.g., [607]) and sparse approximation (see, e.g., [252]).

If the set Yk consists only of a single point yk, then the partial interpolant PYk
rk

is particularly simple, namely

PYk
rk = βΦ(·,yk)

with

β =
rk(yk)

Φ(yk,yk)
.

The point yk is picked to be the point in X where the residual is largest, i.e., |rk(yk)| =
‖rk‖∞. For this choice of “set” Yk we certainly satisfy the constraint (8.11). Moreover,
the interpolation problem is (approximately) solved without having to invert any linear
systems. The algorithm can be summarized as

Algorithm (Greedy one-point algorithm)

Input data locations X , associated values of f , tolerance ε > 0

Set initial residual r0 = PX f , initialize s0 = 0, e =∞, k = 0

Choose starting point yk ∈ X

While e > ε do

Set β =
rk(yk)

Φ(yk,yk)

For 1 ≤ i ≤ N do
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rk+1(xi) = rk(xi)− βΦ(xi,yk)

sk+1(xi) = sk(xi) + βΦ(·,yk)

Find e = max
X
|rk+1| and the point yk+1 where it occurs

end

Increment k = k + 1

end

Remarks:

1. One advantage of this very simple (but fairly slow) algorithm is that no linear sys-
tems need to be solved. Nor are any matrix-vector multiplications required. This
can be beneficial for problems that are very large (and possibly ill-conditioned),
since in that situation the conjugate gradient method (which does use matrix-
vector multiplications) may take very long.

2. For practical situations, e.g., for smooth radial basis functions and densely dis-
tributed points in X the convergence can be rather slow. In order to speed up
the algorithm one should couple it with an algorithm that efficiently evaluates
the residuals. If the basis functions are compactly supported, then a fast tree
code algorithm can be used. Otherwise, fast multipole or fast Fourier transforms
for non-uniform data can be used (see below for more details on these methods).

3. Schaback and Wendland [563] extend the simple greedy algorithm described above
to a version that adaptively uses basis functions of varying scales.

Another iterative algorithm was suggested by Faul and Powell [212, 213]. From
our earlier discussions we know that it is possible to express the radial basis function
interpolant in terms of cardinal functions u∗j (x), j = 1, . . . , N , i.e.,

Pf(x) =
N∑

j=1

f(xj)u
∗
j (x).

The basic idea of the Faul-Powell algorithm is to use approximate cardinal functions
instead. Of course, this will only give an approximate value for the interpolant, and
therefore an iteration on the residuals is suggested to improve the accuracy of this
approximation. As done several times before, the approximate cardinal functions ψj ,
j = 1, . . . , N , are determined as linear combinations of the basis functions Φ(·,xi), i.e.,

ψj =
∑

i∈Lj

bjiΦ(·,xi), (8.12)

where Lj is an index set consisting of n (n ≈ 50) indices that are used to determine
the approximate cardinal function. For example, the n nearest neighbors of xj with
some additional special points (as in Section 8.3.3) will do. For every j = 1, . . . , N , the
coefficients bji found as solution of the linear system

ψj(xk) = δjk, k ∈ Lj . (8.13)
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These approximate cardinal functions are computed in a pre-processing step.
In its simplest form the residual iteration can be formulated as

s(0)(x) =
N∑

j=1

f(xj)ψj(x)

s(k+1)(x) = s(k)(x) +
N∑

j=1

[
f(xj)− s(k)(xj)

]
ψj(x), k = 0, 1, . . . .

Instead of adding the contribution of all approximate cardinal functions at the same
time, this is done in a three-step process in the Faul-Powell algorithm. To this end
index sets Lj , j = 1, . . . , N − n, are chosen so that Lj ⊆ {j, j + 1, . . . , N} making
sure that j ∈ Lj . Also, one needs to ensure that the corresponding centers form an
(m− 1)-unisolvent set.

Now, in the first step we define s
(k)
0 = s(k), and then iterate

s
(k)
j = s

(k)
j−1 + θ

(k)
j ψj , j = 1, . . . , N − n, (8.14)

with

θ
(k)
j =

〈Pf − s(k)
j−1, ψj〉NΦ(Ω)

〈ψj , ψj〉NΦ(Ω)
. (8.15)

The stepsize θ
(k)
j is chosen so that the native space best approximation to the residual

Pf − s(k)
j−1 from the space span{ψj} is added. Using the representation (8.12) of ψj in

terms of the basis {Φ(·,xi) : i = 1, . . . , N}, the reproducing kernel property of Φ, and
the (local) cardinality property (8.13) of ψj we can calculate

〈ψj , ψj〉NΦ(Ω) = 〈ψj ,
∑

i∈Lj

bjiΦ(·,xi)〉NΦ(Ω)

=
∑

i∈Lj

bji〈ψj ,Φ(·,xi)〉NΦ(Ω)

=
∑

i∈Lj

bjiψj(xi) = bjj .

Similarly, we get

〈Pf − s(k)
j−1, ψj〉NΦ(Ω) = 〈Pf − s(k)

j−1,
∑

i∈Lj

bjiΦ(·,xi)〉NΦ(Ω)

=
∑

i∈Lj

bji〈Pf − s(k)
j−1,Φ(·,xi)〉NΦ(Ω)

=
∑

i∈Lj

bji

(
Pf − s(k)

j−1

)
(xi)

=
∑

i∈Lj

bji

(
f(xi)− s(k)

j−1(xi)
)
.

Therefore (8.14) and (8.15) can be written as

s
(k)
j = s

(k)
j−1 +

ψj

bjj

∑

i∈Lj

bji

(
f(xi)− s(k)

j−1(xi)
)
, j = 1, . . . , N − n.
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In the second step the residual is interpolated on the remaining n points (collected
via the index set L∗). Thus, we find a function σ(k) such that

σ(k)(xi) = f(xi)− s(k)
N−n(xi), i ∈ L∗,

and the approximation is updated, i.e.,

s(k+1) = s
(k)
N−n + σ(k).

In the third step the residuals are updated, i.e.,

r
(k+1)
i = f(xi)− s(k+1)(xi), i = 1, . . . , N.

The outer iteration (on k) is now repeated unless the largest of these residuals is small
enough.

We can summarize this algorithm as

Algorithm (Faul-Powell algorithm)

Input data locations X , associated values of f , tolerance ε > 0

Set k = 0 and s
(k)
0 = 0

Compute residuals r
(k)
i = f(xi)−s(k)(xi), i = 1, . . . , N , and set e = max

i=1,...,N
|r(k)

i |.

While e > ε do

For 1 ≤ j ≤ N − n do

Update

s
(k)
j = s

(k)
j−1 +

ψj

bjj

∑

i∈Lj

bji

(
f(xi)− s(k)

j−1(xi)
)

end

Solve the interpolation problem

σ(k)(xi) = f(xi)− s(k)
N−n(xi), i ∈ L∗

Update the approximation

s
(k+1)
0 = s

(k)
N−n + σ(k)

Compute new residuals and new value for e

Increment k = k + 1

end
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Faul and Powell prove that this algorithm converges to the solution of the origi-
nal interpolation problem. Similar to some of the other algorithms (greedy one-point
or preconditioned GMRES) one needs to make sure that the residuals are evaluated
efficiently by using a fast multipole expansion, fast Fourier transform, or compactly
supported functions. Since the approximate cardinal functions can be computed in a
preprocessing step this evaluation along with the determination of the sets Lj is the
most expensive operation in the algorithm.

Remark: In its most basic form the Krylov subspace algorithm of Faul and Powell
can also be explained via a dual approach to the greedy residual iteration algorithm of
Schaback and Wendland. Instead of defining appropriate sets of points Yk, in the Faul
and Powell algorithm one picks certain subspaces Sk of the native space. In particular,
if Sk is the one-dimensional space Sk = span{ψk} (where ψk is a local Lagrange function
as in Section 8.3.3) we get the algorithm described above. For more details see [563].

8.5.2 Fast Fourier Transforms

In the recent papers [354, 490, 508] by Kunis, Nieslony, Potts and Steidl use of the fast
Fourier transform at nonuniformly spaced points was suggested as an efficient way to
solve and evaluate radial basis function problems. The software package NFFT by the
authors is available for free download [353]. A discussion of the actual NFFT software
would go beyond the scope of this manuscript. Instead, we briefly describe how to use
NFFTs and FFTs to evaluate expansions of the form

Pf(yj) =
N∑

k=1

f(xk)Φ(yj − xk) (8.16)

simultaneously at many evaluation points yj , j = 1, . . . ,M . Direct summation requires
O(MN) operations, while it can be shown that use of the NFFT reduces the cost to
O(M + N) operations. Therefore, as is always the case with fast Fourier transforms,
use of the algorithm will pay off for sufficiently many evaluations.

In their papers Nieslony, Potts and Steidl distinguish between kernels Φ that are
singular and those that are non-singular. Singular kernels are C∞ everywhere except
at the origin and include examples such as

1

r
,

1

r2
, log r, r2 log r,

where r = ‖ · ‖. Non-singular kernels are smooth everywhere such as Gaussians and
(inverse) multiquadrics. We will restrict our discussion to this latter class.

The basic idea for the following algorithm is remarkably simple. It relies on the fact
that the exponential e−α(yj−xk) can be written as e−αyjeαxk . Moreover, the method
applies to arbitrary kernels (which is in strong contrast to the fast multipole type
methods discussed in the next section). One starts out by approximating the (arbitrary,
but smooth) kernel using standard Fourier series, i.e.,

Φ(x) ≈
∑

`∈In

b`e
2πi`x
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with index set In =
[
−n

2 ,
n
2

)s
. The coefficients b` are found by the discrete inverse

Fourier transform

b` =
1

ns

∑

k∈In

Φ

(
k

n

)
e−2πik`/n.

Numerically, this task is accomplished with software for the standard (inverse) FFT
(e.g., [245]).

Remark: Note that this definition of the Fourier transform (as well as the one below)
is different from the one used in Chapter 2. However, in order to stay closer to the
software packages, we adopt the notation used there.

Therefore,

Pf(yj) ≈
N∑

k=1

f(xk)
∑

`∈In

b`e
2πi`(yj−xk)

=
∑

`∈In

b`

N∑

k=1

f(xk)e
2πi`(yj−xk)

Now, the exponential is split using the above mentioned property, i.e.,

Pf(yj) ≈
∑

`∈In

b`

N∑

k=1

f(xk)e
−2πi`xke2πi`yj .

This, however, can be viewed as a fast Fourier transform at non-uniformly spaced
points, i.e.,

Pf(yj) ≈
∑

`∈In

c`e
2πi`yj .

where the coefficients c` = b`a` with

a` =
N∑

k=1

f(xk)e
−2πi`xk

which is nothing but an inverse discrete Fourier transform at non-uniformly spaced
points. These latter two transforms are dealt with numerically using the NFFT soft-
ware.

Together, for the case of non-singular kernels Φ we have the following algorithm.

Algorithm (Fast Fourier transform evaluation)

For ` ∈ In
Compute the coefficients

b` =
1

ns

∑

k∈In

Φ

(
k

n

)
e−2πik`/n

by inverse FFT.
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Compute the coefficients

a` =
N∑

k=1

f(xk)e
−2πi`xk

by inverse NFFT.

Compute the coefficients c` = a`b`.

end

For 1 ≤ j ≤M

Compute the values

Pf(yj) ≈
∑

`∈In

d`e
2πi`yj

by NFFT.

end

Remarks:

1. In the papers [354, 490, 508] the authors also suggest a special boundary regu-
larization in case the kernel does not decay fast enough, i.e., the kernel is large
near the boundary of the domain.

2. Of course, this method will only provide an approximation of the expansion (8.16)
and error estimates are provided in the literature (see, e.g., [490]).

3. While we only illustrated the use of (N)FFTs for the evaluation of radial sums it
should be clear that this method can also be coupled with the algorithms of the
previous sections (such as preconditioned GMRES, the “greedy” algorithm, or
the Faul-Powell algorithm) to efficiently solve radial basis function interpolation
systems.

A few examples of the use of fast Fourier transforms for the evaluation of ap-
proximate moving least squares approximations (quasi-interpolants) are given in Fig-
ures 8.3–8.5. The graphs on the left indicate `∞ approximation errors for a Franke-type
function. The graphs on the right show the execution times in seconds for direct sum-
mation (solid lines) and FFT summations (dashed lines). The colors correspond to the
three different types of kernels listed in Table 8.10 below. The red curves correspond to
the Gaussians (listed in the O(h2) column), green curves to the function in the O(h4)
column (Gaussian multiplied by a linear Laguerre polynomial), and blue curves to those
in the O(h6) column (Gaussian multiplied by a quadratic Laguerre polynomial).

The evaluation of the results listed in Figures 8.3–8.5 occurs at 10,001, 16,641,
and 2,146,689 randomly distributed points in the unit square, respectively. The 3D
experiments show that there is a cross-over value of about 1,000 evaluations at which
the FFT approach becomes faster than the direct approach. For the one and two-
dimensional experiments this cross-over point occurs much earlier and is not detectable
in the figures.
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Figure 8.3: Convergence and execution times for 1D example.
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Figure 8.4: Convergence and execution times for 2D example.

The polynomial terms in Table 8.10 are given by generalized Laguerre polynomials

with radial arguments. In general one can show (see, e.g., [434]) that if L
s/2
d is used

to denote the generalized Laguerre polynomial of degree d, then the smooth function
f in IRs can be approximated with approximate approximation order O(h2d+2) by an
expansion of the form

Pf(x) =
1

(πD)s/2

N∑

k=1

f(xk)L
s/2
d

(‖x− xk‖2
Dh2

)
exp

(
−‖x− xk‖2

Dh2

)
.

Here D is a parameter that controls a so-called saturation error, i.e., the predicted ap-
proximation order is achieved only up to some user-controllable threshold (and there-
fore referred to as approximate approximation). This threshold is clearly visible in the
convergence graphs.

8.5.3 The Fast Multipole Method

Another quite popular strategy for dealing with fast summation problems is known as
the fast multipole method. This method was first suggested by Greengard and Rokhlin
in 1987 (see, e.g., the original paper [269], the popular discussion [268], or the short
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Figure 8.5: Convergence and execution times for 3D example.

s O(h2) O(h4) O(h6)

1 e−|x|2
(

3

2
− |x|2

)
e−|x|2

(
15

8
− 5

2
|x|2 +

1

2
|x|4
)
e−|x|2

2 e−‖x‖2 (
2− ‖x‖2

)
e−‖x‖2

(
3− 3‖x‖2 +

1

2
‖x‖4

)
e−‖x‖2

3 e−‖x‖2

(
5

2
− ‖x‖2

)
e−‖x‖2

(
35

8
− 7

2
‖x‖2 +

1

2
‖x‖4

)
e−‖x‖2

Table 8.10: Generating functions for approximate MLS approximation in IRs.

course tailored to radial basis functions [37]). It has quickly become very popular in
the computational sciences. The breakthrough accomplishment of this algorithm was
the ability to perform fast evaluations of sums of the type

Pf(x) =
N∑

k=1

ckΦ(x,xk), x ∈ IRs .

In particular, M such evaluations can be performed in O(M logN) (or even O(M))
operations instead of the standard O(MN) operations. The nonuniform fast Fourier
transform of the previous section was able to do this also, and in a fairly general way for
a very large class of kernels Φ, but the fast multipole method is a little older and may
be more efficient since special expansions are used that are chosen with the particular
kernel Φ in mind. We will now outline the basic idea of the fast Gauss transform
[270]. This transform can be applied directly to the approximate moving least squares
approximands based on Gaussians used in the previous section (see the numerical
experiments reported in Table 8.11 below). The higher-order kernels consisting of
Gaussians times Laguerre polynomials, however, require a completely new derivation.

Thus, using the abbreviation ρ =
√
Dh, we are now interested in a fast summa-

tion technique for M evaluations of the Gaussian quasi-interpolant (or discrete Gauss
transform)

Gf(yj) =
N∑

k=1

f(xk)e
−‖(yj−xk)/ρ‖2

, j = 1, . . . ,M. (8.17)
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In [270] such an algorithm was developed, and in [591] a modification was suggested to
cover also the case of variable scales ρk as needed for use with quasi-interpolation at
scattered sites or with variable scales.

One of the central ingredients for the fast Gauss transform are the multivariate
Hermite functions

hα(x) = (−1)|α|Dαe−‖x‖2
, (8.18)

which are related to the (multivariate) Hermite polynomials via

Hα(x) =
s∏

i=1

Hαi
(xi) = e‖x‖

2
hα(x) (8.19)

(see, e.g., the univariate formula (6.1.3) in [5]). It is beneficial that the Hermite func-
tions can be evaluated recursively using the (univariate) recurrence relation

hn+1(x) = 2xhn(x)− 2nhn−1(x), n = 1, 2, . . . ,

h0(x) = e−|x|2 , h1(x) = 2xe−|x|2 ,

which follows immediately from (8.19) and the recursion relation for Hermite polyno-
mials (see, e.g., formula (6.1.10) in [5]).

The algorithm of Greengard and Strain is based on three basic expansions which we
list below as Theorems 8.5.2–8.5.4 (see [270, 271]). The main effect of these expansions
is the fact that the variables yj and xk will be separated (this is the fundamental “trick”
used with all fast summation algorithms). This will allow for the pre-computation and
storage of certain moments below.

The first step in the algorithm is to scale the problem to the unit box [0, 1]s, and
then subdivide the unit box into smaller boxes B and C which usually coincide. They
can, however, also differ. The boxes B contain the sources xk, and the boxes C the
targets yj . For each source box B one then determines its interaction region IR(B).
The interaction region of B is a set of nearest neighbors of B such that the error of
truncating the sum over all boxes is below a certain threshold. Due to the fast decay
of the Gaussians it is suggested (see [271]) to use the 9s nearest neighbors for single
precision and the 13s nearest neighbors for double precision.

Theorem 8.5.2 Let IB be the index set denoting the sources xk which lie in a box B
with center xB and side length ρ, and let yC be the center of the target box C (∈ IR(B))
of radius rc containing the targets yj. Then the Gaussian field due to the sources in
B,

G(B)f(yj) =
∑

k∈IB

f(xk)e
−‖(yj−xk)/ρ‖2

,

has the following Taylor expansion about yC :

G(B)f(yj) =
∑

α≥0

A
(B)
α

(
yj − yC

ρ

)α

, (8.20)

where the coefficients A
(B)
α are given by

A
(B)
α =

(−1)|α|

α!

∑

k∈IB

f(xk)hα

(
xk − yC

ρ

)
.
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The error ET (p) due to truncating the series (8.20) after the p-th order terms satisfies
the bound

|ET (p)| = |
∑

α>p

A
(B)
α

(
yj − yC

ρ

)α

| ≤ (1.09)sF (B) 1√
(p+ 1)!

s




(
rc

ρ

)p+1

1− rc

ρ




s

,

where F (B) =
∑

k∈IB
|f(xk)|.

Remark: Here we used the multi-index notation α ≥ 0 to denote the constraints
αi ≥ 0 for all i = 1, . . . , s. More generally, for some integer p α ≥ p if αi ≥ p for all
i = 1, . . . , s. This implies α > p for some integer p if α ≥ p and αi > p for some i. We
also use α ≥ β if αi ≥ βi for all i = 1, . . . , s.

The expansion (8.20) will be used in the case when the source box B contains
relatively few sources, but the target box C contains many targets.

By reversing the role of the Hermite functions and the shifted monomials one can
write a single Gaussian as a multivariate Hermite expansion about a point z0 ∈ IRs,
i.e.,

e−‖(yj−xk)/ρ‖2
=
∑

α≥0

1

α!

(
xk − z0

ρ

)α

hα

(
yj − z0

ρ

)
. (8.21)

This is used in

Theorem 8.5.3 (Far-field expansion) Let IB be the index set denoting the sources xk

which lie in a box B with center xB and side length ρ. Then the Gaussian field due to
the sources in B,

G(B)f(yj) =
∑

k∈IB

f(xk)e
−‖(yj−xk)/ρ‖2

,

is equal to an Hermite expansion about xB:

G(B)f(yj) =
∑

α≥0

B
(B)
α hα

(
yj − xB

ρ

)
. (8.22)

The moments B
(B)
α are given by

B
(B)
α =

1

α!

∑

k∈IB

f(xk)

(
xk − xB

ρ

)α

.

The error EH(p) due to truncating the series (8.22) after p-th order terms satisfies the
bound

|EH(p)| = |
∑

α>p

B
(B)
α hα

(
yj − xB

ρ

)
| ≤ (1.09)sF (B) 1√

(p+ 1)!
s




(
rc

ρ

)p+1

1− rc

ρ




s

.

Theorem 8.5.3 is used when B contains many sources, but C only few targets.
Finally, in the case when both B and C contain relatively many points we use

119



Theorem 8.5.4 (Translation operation) Let the sources xk lie in a box B with center
xB and side length ρ and let yj be an evaluation point in a box C with center yC . Then
the corresponding truncated Hermite expansion (8.22) can be expanded as a Taylor
series of the form

G(BC)f(yj) =
∑

β≥0

Cβ

(
yj − yC

ρ

)β

. (8.23)

The coefficients Cβ are given by

Cβ =
(−1)|β|

β!

∑

α≤p

B
(B)
α hα+β

(
xB − yC

ρ

)
,

with B
(B)
α as in Theorem 8.5.3. The error ET (p) due to truncating the series (8.23)

after p-th order terms satisfies the bound

|ET (p)| = |
∑

β>p

B
(B)
β

(
x− yC

ρ

)β

| ≤ (1.09)sF (B) 1√
(p+ 1)!

s




(
rc

ρ

)p+1

1− rc

ρ




s

.

Theorem 8.5.4 is based on the multivariate Taylor series expansion of the Hermite
functions hα

hα

(
yj − xB

ρ

)
=
∑

β≥0

(−1)|β|

β!

(
yj − yC

ρ

)β

hα+β

(
xB − yC

ρ

)
.

Remarks:

1. The error estimates in the original paper on the fast Gauss transform [270] were
incorrect. In the mean time a number of other authors have provided alternate
error bounds in their papers (see, e.g., [31, 225, 271, 637]).

2. For 1D calculations on the order of p = 20 terms are required to achieve double
precision accuracy. For the 2D one can get by with a smaller value of p (about
15), but the number of terms is of course much higher (on the order of ps for
s-dimensional problems).

The basic outline of the algorithm is as follows:

Algorithm:

1. If necessary, scale the problem so that the coarsest box B0 = [0, 1]s. Subdivide
B0 into smaller boxes with side length ρ parallel to the axes. Assign each source
xk to the box B in which it lies and each evaluation point yj to the box C in
which it lies.

2. Choose p so that the truncation error satisfies the desired accuracy, and for each
box B compute and store the coefficients (or moments)

B
(B)
α =

1

α!

∑

k∈IB

f(xk)

(
xk − xB

ρ

)α

, α ≤ p,

of its Hermite expansion (8.22).
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3. For each evaluation box C, determine its interaction region IR(C).

4. For each evaluation box C transform all Hermite expansions in source boxes
within the interaction region IR(C) into a single Taylor expansion using (8.23),
i.e.,

Gf(yj) ≈
∑

β≤p

Cβ

(
yj − yC

ρ

)β

,

where

Cβ =
(−1)|β|

β!

∑

B∈IR(C)

∑

α≤p

B
(B)
α hα+β

(
xB − yC

ρ

)
.

For a small number of points direct summation is more efficient than the fast trans-
form. For the case s = 1 the fast Gauss transform should be preferable to direct
summation for N ≈ 1000 (with M ≈ 2000 evaluation points). The break-even point
in IR2 is at about N = 12000 (with M = 24000). In particular, in IR3, it is rather
disappointing that the break-even point may not occur until about N = 270000 data
sites (with M = 2.16× 106 evaluation points). This makes fast Gauss transform in its
basic form virtually unusable for 3D applications.

Note that this algorithm does not use a hierarchical decomposition of space as
is typical for so-called tree codes, as well as many other more general fast multipole
algorithms. In this algorithm the interaction region is determined simply based on the
fast decay of the Gaussian.

Clearly, the most work is involved in step 4. The performance of this step can be
improved by using plane wave expansions to diagonalize the translation operators (see
[271]). In order to keep matters as simple as possible, we will not discuss this feature.

A more complete algorithm (designed for radial basis function interpolation) has
been developed by Beatson and co-workers (see, e.g., [43, 137]).

The numerical experiments in Table 8.11 were conducted by performing quasi-
interpolation of the form

Qhf(x) = D−1/2
N∑

k=1

f(xk)ψ

(
x− xk√
Dh

)
,

with a Gaussian ψ on N = 2κ + 1 equally spaced points in [0, 1] with the mollified test
function

f(x) = 15e
−.25

.25−(x−.5)2

[
3

4
e−(x−2)2/4 +

3

4
e−(x+1)2/49 +

1

2
e−(x−7)2/4 − 1

5
e−(x−4)2

]
.

All errors were computed on M = 524289 equally spaced points in [0, 1]. In the
“order” column we list the number order = ln(eκ−1/eκ)/ ln 2 corresponding to the
exponent in the O(horder) notation. Other parameters were D = 4, and the default
values for the code of [225] (i.e., R = 0.5). All times are measured in seconds.

The asterisk ∗ on the entries in the lower part of the direct column indicate estimated
times. The fast Gauss transform yields a speedup of roughly a factor of 300. Another
way to interpret these results is that for roughly the same amout of work we can obtain
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direct fast

N `∞ error order time `∞ error order time speedup

5 3.018954e-00 1.93 5.495125e-00 1.07 1.80
9 2.037762e-00 0.57 3.40 2.037762e-00 1.43 5.31 0.64
17 9.617170e-01 1.08 6.39 9.617170e-01 1.08 5.33 1.20
33 3.609205e-01 1.41 12.28 3.609205e-01 1.41 5.35 2.30
65 1.190192e-01 1.60 24.72 1.190192e-01 1.60 5.39 4.59
129 3.354132e-02 1.83 53.38 3.354132e-02 1.83 5.46 10.14
257 8.702868e-03 1.95 113.35 8.702868e-03 1.95 5.61 20.20
513 2.196948e-03 1.99 226.15 2.196948e-03 1.99 5.94 38.07
1025 450∗ 5.505832e-04 2.00 6.67 67.47
2049 900∗ 1.377302e-04 2.00 7.87 114.36
4097 1800∗ 3.443783e-05 2.00 10.56 170.45
8193 3600∗ 8.609789e-06 2.00 15.78 228.14
16385 7200∗ 2.152468e-06 2.00 26.27 274.08
32769 14400∗ 5.381182e-07 2.00 47.39 303.86
65537 28800∗ 1.345296e-07 2.00 89.91 320.32
131073 57600∗ 3.363241e-08 2.00 174.74 329.63
262145 115200∗ 8.408103e-09 2.00 343.59 335.28

Table 8.11: 1D quasi-interpolation using fast Gauss transform.

an answer which is about 100000 times more accurate. The O(h2) convergence of the
Gaussian quasi-interpolant is perfectly illustrated by the entries in the “order” columns.

An alternative to fast multipole methods are so-called fast tree codes. These kind
of algorithms originated in computational chemistry. We recommend recent papers by
Krasny and co-workers (e.g., [160, 385]). The advantage of these kinds of methods is
that they make use of standard Taylor expansions instead of the specialized expansions
(such as, e.g, in terms of Hermite functions, spherical harmonics, spherical Hankel
functions, plane waves, or hypergeometric functions [137]). This simplifies their imple-
mentation. However, their convergence properties are probably not as good as for fast
mutipole expansions.

We now present a very general discussion of fast summation via Taylor expansions.
The presentation of this material is motivated by the work of Krasny and co-workers
(see, e.g., [160, 385]) as well as the algorithm for the fast Gauss transform reviewed
above. Since we are interested in many evaluations of our quasi-interpolants (or other
radial basis function expansion), we split the set of M evaluation points yj into groups
(contained in boxes C with centers yC). We also split the N data locations xk into
boxes B with center xB, and use the index set IB to denote the points in B.

In order to set the stage for a fast summation of the quasi-interpolant

Qf(yj) =
N∑

k=1

f(xk)Φ(yj − xk)

=
∑

B

∑

k∈IB

f(xk)Φ(yj − xk) (8.24)
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with generating function Φ we require the multivariate Taylor expansion of Φ about a
point z0 ∈ IRs, i.e.,

Φ(z) =
∑

α≥0

DαΦ(z)|z=z0

(z − z0)
α

α!
, (8.25)

where α is a multi-index. Now – as for the fast Gauss transform – we consider three
basic expansions.

Theorem 8.5.5 (Taylor Series Expansion about Centers of Target Boxes) Let IB be
the index set denoting the sources xk which lie in a box B with center xB, and let
yC be the center of the target box C containing an evaluation point yj. Then the
quasi-interpolant due to sources in B

Q(B)f(yj) =
∑

k∈IB

f(xk)Φ(yj − xk)

can be written as a Taylor expansion about yC :

Q(B)f(yj) =
∑

α≥0

A
(B)
α (yj − yC)α,

where

A
(B)
α =

(−1)|α|

α!

∑

k∈IB

f(xk)Tα(yC ,xk)

with Tα(yC ,xk) = (−1)|α|DαΦ(z)|z=yC−xk
.

Proof: We combine the contribution for the source box B of (8.24) with (8.25), and
let z = yj − xk and z0 = yC − xk. Then (8.24) becomes

Q(B)f(yj) =
∑

k∈IB

f(xk)
∑

α≥0

DαΦ(z)|z=yC−xk

(yj − yC)α

α!
.

Using the abbreviation Tα(yC ,xk) = (−1)|α|DαΦ(z)|z=yC−xk
we can rewrite this as

Q(B)f(yj) =
∑

α≥0

A
(B)
α (yj − yC)α,

where

A
(B)
α =

(−1)|α|

α!

∑

k∈IB

f(xk)Tα(yC ,xk).

�

Example : If we take Φ(x) = e−‖x‖2
then

Tα(yC ,xk) = hα(yC − xk) = hα(xk − yC),

and Theorem 8.5.5 is equivalent to Theorem 8.5.2 given above.

Remark: We can see that the Taylor expansion has allowed us to separate the evalu-
ation points yj from the data points xk.
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Theorem 8.5.6 (Reversed Taylor Series Expansion about Centers of Source Boxes)
Let IB be the index set denoting the sources xk which lie in a box B with center xB.
Then the quasi-interpolant due to sources in B

Q(B)f(yj) =
∑

k∈IB

f(xk)Φ(yj − xk)

can be written as a reversed Taylor expansion about xB:

Q(B)f(yj) =
∑

α≥0

B
(B)
α Tα(yj ,xB),

with the moments B
(B)
α given by

B
(B)
α =

1

α!

∑

k∈IB

f(xk)(xk − xB)α,

and Tα(yj ,xB) = (−1)|α|DαΦ(z)|z=yj−xB
.

Proof: We combine the contribution for the source box B of (8.24) with (8.25), and
let z = yj − xk and z0 = yj − xB. Then (8.24) becomes

Q(B)f(yj) =
∑

k∈IB

f(xk)
∑

α≥0

DαΦ(z)|z=yj−xB
(−1)|α| (xk − xB)α

α!
.

Using the abbreviation Tα(yj ,xB) = (−1)|α|DαΦ(z)|z=yj−xB
we can reverse the role

of the Taylor coefficients and the polynomials to write this as

Q(B)f(yj) =
∑

α≥0

B
(B)
α Tα(yj ,xB),

with

B
(B)
α =

1

α!

∑

k∈IB

f(xk)(xk − xB)α.

�

Example: Using Φ(x) = e−‖x‖2
this is equivalent to Theorem 8.5.3.

Remark: The moments can be pre-computed and stored during the setup phase of
the algorithm.

Theorem 8.5.7 (Conversion of Taylor Series Expansions about Source Centers to
Series about Target Centers) Let IB be the index set denoting the sources xk which lie
in a box B with center xB, and let yC be the center of the target box C containing yj.
Then a fast summation formula for the quasi-interpolant

Qf(yj) =

N∑

k=1

f(xk)Φ(yj − xk)
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can be given as an expansion about yC :

Qf(yj) ≈
∑

β≤p

Cβ(yj − yC)β,

where

Cβ =
(−1)|β|

β!

∑

α+β≤p

∑

B

Tα+β(yC ,xB)B
(B)
α ,

Tα+β(yC ,xB) = (−1)|α+β|Dα+βΦ(z)|z=yC−xB
, and the moments B

(B)
α are as in The-

orem 8.5.6.

Proof: We combine (8.24) with (8.25), and now replace z by yj − xk and z0 by
yC − xB. Then (8.24) becomes

Qf(yj) =
∑

B

∑

k∈IB

f(xk)
∑

α≥0

DαΦ(z)|z=yC−xB

(yj − xk − (yC − xB))α

α!
.

Using the abbreviation Tα(yC ,xB) = (−1)|α|DαΦ(z)|z=yC−xB
along with the multi-

variate binomial theorem we can rewrite this as

Qf(yj) =
∑

B

∑

k∈IB

f(xk)
∑

α≥0

(−1)|α|Tα(yC ,xB)

α!

∑

β≤α

(
α

β

)
(−1)|β|(yj − yC)α−β(xk − xB)β

=
∑

α≥0

∑

B

(−1)|α|Tα(yC ,xB)
∑

β≤α

(−1)|β| (yj − yC)α−β

(α− β)!

∑

k∈IB

f(xk)
(xk − xB)β

β!
.

In fact, we can introduce the moments of Theorem 8.5.6 and write

Qf(yj) =
∑

α≥0

∑

B

(−1)|α|Tα(yC ,xB)
∑

β≤α

(−1)|β| (yj − yC)α−β

(α− β)!
B

(B)
β ,

where

B
(B)
β =

1

β!

∑

k∈IB

f(xk)(xk − xB)β.

A fast algorithm is now obtained by truncating the infinite series after the p-th order
terms, i.e.,

Qf(yj) ≈
∑

α≤p

∑

B

(−1)|α|Tα(yC ,xB)
∑

β≤α

(−1)|β| (yj − yC)α−β

(α− β)!
B

(B)
β .

Using the fact that
∑

α≤p

aα

∑

β≤α

bα−β =
∑

α≤p

bα
∑

α≤β≤p

aβ =
∑

α≤p

bα
∑

α+β≤p

aα+β,

which can be verified by a simple rearrangement of the summations and an index trans-
formation, we obtain (interchanging the role of α and β) the following fast summation
formula:

Qf(yj) ≈
∑

β≤p

∑

α+β≤p

(−1)|α| 1

β!

∑

B

(−1)|α+β|Tα+β(yC ,xB)B
(B)
α (yj − yC)β.
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This is equivalent to the statement of the theorem. �

Example: Using Φ(x) = e−‖x‖2
this is almost equivalent to Theorem 8.5.3. However,

our alternate formula is more efficient since only Hermite functions up to order p
are required (as opposed to order 2p in the Greengard/Strain version). This gain is
achieved by using the binomial theorem instead of a second Taylor expansion (the
Hermite series expansion used in the traditional fast Gauss transform is equivalent to
a Taylor expansion).

Remarks:

1. Note that the Taylor coefficients Tα(yC ,xB) depend only on the box centers yC

and xB.

2. In order to make the algorithm efficient one will use a decision rule (as in Strain’s
code for the fast Gauss transform) to decide when to use which of the three
expansions. Error estimation is very similar to Greengard/Strain. The only dif-
ference is that one needs bounds on the Taylor coefficients instead of the Hermite
functions.

3. In order to adapt this fast transform to Gauss-Laguerre generating functions of
the previous sections (or any other generating function) one needs to compute
the required Taylor coefficients. This is a task that goes beyond the scope of this
manuscript.

8.6 Domain Decomposition

Finally, another method commonly used to deal with large computational problems is
the domain decomposition method. The domain decomposition method is frequently
implemented on parallel computers in order to speed up the computation even more.
A standard reference (based mostly on finite difference and finite element methods) is
the book by Smith, Bjørstad and Gropp [584]. For radial basis functions there is a
recent paper by Beatson, Light and Billings [42].

The main aim of the paper [42] is to solve the radial basis function interpolation
problem discussed multiple times in previous sections. In particular, a so-called multi-
plicative Schwarz algorithm (which is analogous to Gauss-Seidel iteration) is presented,
and linear convergence of the algorithm is proved. A section with numerical experi-
ments reports results for an additive Schwarz method (which is analogous to Jacobi
iteration).

In particular, the authors implemented polyharmonic radial basis functions, and
used the scale invariant basis discussed in Section 8.4.

The classical additive Schwarz algorithm is usually discussed in the context of par-
tial differential equations, and it is known that one should add a coarse level correction
in order to ensure convergence and to filter out some of the low-frequency oscillations
(see, e.g., [584]).

In [42] a two-level additive algorithm for interpolation problems was presented.
One begins by subdividing the set on interpolation point X into M smaller sets Xi,
i = 1, . . . ,M , whose pairwise intersection is non-empty. The points that belong to one
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set Xi only are called inner points of Xi. Those points in the intersection of more than
one set need to be assigned in some way as inner points to only one of the subsets Xi

so that the collection of all inner points yields the entire set X . This corresponds to
the concept of overlapping domains. One also needs to choose a coarse grid Y that
contains points from all of the inner point sets.

In the setup phase of the algorithm the radial basis function interpolation matrices
for the smaller problems on each of the subsets Xi, i = 1, . . . ,M , are computed and
factored. At this point one can use the homogeneous basis of Section 8.4 to ensure
numerical stability. Now the algorithm proceeds as follows:

Algorithm:

Input: Data f , point sets Xi and factored interpolation matrices Ai, i = 1, . . . ,M ,
tolerance ε

Initialize r = f , s = 0

While ‖r‖ > ε do

For i = 1 to m (i.e., for each subset Xi) do

Determine the coefficients ci of the interpolant to the residual r|Xi
on

Xi.

end

Make c orthogonal to Πs
m−1.

Assemble an intermediate approximation s1 =

N∑

j=1

cjΦ(·,xj).

Compute the residual on the coarse grid, i.e.,

r1 = r − s1|Y .

Interpolate to r1 on the coarse grid Y using a radial basis function expansion
s2.

Update s = s+ s1 + s2.

Reevaluate the global residual r = f − s on the whole set X

end

Remarks:

1. In [42] it is proved that a multiplicative version of this algorithm converges at
least linearly. However, the additive version can be more easily implemented on
a parallel computer.

2. If strictly positive definite kernels such as Gaussians are used, then it is not
necessary to make the coefficients c orthogonal to polynomials.

3. As in many algorithms before, the evaluation of the residuals needs to be made
“fast” using either a fast multipole method or a version of the fast Fourier trans-
form.
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4. In the case of very large data sets it may be necessary to use more than two levels
so that one ends up with a multigrid algorithm.

5. The authors of [42] report having solved interpolation problems with several mil-
lions of points using the domain decomposition algorithm above.

6. A number of other papers discussing domain decomposition methods for radial
basis functions have recently appeared in the literature (see, e.g., [166, 306, 313,
379, 396, 647]). However, most of these papers contain little theory, focussing
mostly on numerical experiments.
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Chapter 9

Applications

9.1 Solving Partial Differential Equations via Collocation

In this section we discuss the numerical solution of elliptic partial differential equations
using a collocation approach based on radial basis functions. To make the discus-
sion transparent we will focus on the case of a time independent linear elliptic partial
differential equation in IR2.

9.1.1 Kansa’s Approach

In [340] Kansa suggested a now very popular non-symmetric method for the solution
of elliptic PDEs with radial basis functions. In order to be able to clearly point out
the differences between Kansa’s method and a symmetric approach proposed in [194]
we recall some of the basics of scattered data interpolation with radial basis functions
in IRs.

In this context we are given data {xi, fi}, i = 1, . . . , N , xi ∈ IRs, where we can
think of the values fi being sampled from a function f : IRs → IR. The goal is to find
an interpolant of the form

Pf(x) =
N∑

j=1

cjϕ(‖x− xj‖), x ∈ IRs, (9.1)

such that
Pf(xi) = fi, i = 1, . . . , N.

The solution of this problem leads to a linear system Ac = f with the entries of A
given by

Aij = ϕ(‖xi − xj‖), i, j = 1, . . . , N. (9.2)

As discussed earlier, the matrix A is non-singular for a large class of radial functions
including (inverse) multiquadrics, Gaussians, and the strictly positive definite com-
pactly supported functions of Wendland, Wu, or Buhmann. In the case of strictly
conditionally positive definite functions such as thin plate splines the problem needs to
be augmented by polynomials.
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We now switch to the collocation solution of partial differential equations. Assume
we are given a domain Ω ⊂ IRs, and a linear elliptic partial differential equation of the
form

L[u](x) = f(x), x in Ω, (9.3)

with (for simplicity of description) Dirichlet boundary conditions

u(x) = g(x), x on ∂Ω. (9.4)

For Kansa’s collocation method we then choose to represent u by a radial basis function
expansion analogous to that used for scattered data interpolation, i.e.,

u(x) =
N∑

j=1

cjϕ(‖x− ξj‖), (9.5)

where we now introduce the points ξ1, . . . , ξN as centers for the radial basis func-
tions. They will usually be selected to coincide with the collocation points X =
{x1, . . . ,xN} ⊂ Ω. However, the discussion below is clearer if we formally distin-
guish between centers ξj and collocation points xi. We assume the simplest possible
setting here, i.e., no polynomial terms are added to the expansion (9.5). The collocation
matrix which arises when matching the differential equation (9.3) and the boundary
conditions (9.4) at the collocation points X will be of the form

A =

[
Φ
L[Φ]

]
, (9.6)

where the two blocks are generated as follows:

Φij = ϕ(‖xi − ξj‖), xi ∈ B, ξj ∈ X ,
L[Φ]ij = L[ϕ](‖xi − ξj‖), xi ∈ I, ξj ∈ X .

Here we have identified (as we will do throughout this section) the set of centers with
the set of collocation points. The set X is split into a set I of interior points, and B
of boundary points. The problem is well-posed if the linear system Ac = y, with y

a vector consisting of entries g(xi), xi ∈ B, followed by f(xi), xi ∈ I, has a unique
solution.

We note that a change in the boundary conditions (9.4) is as simple as changing a
few rows in the matrix A in (9.6) as well as on the right-hand side y. We also point out
that Kansa only proposed to use multiquadrics in (9.5), and for that method suggested
the use of varying parameters αj , j = 1, . . . , N , which improves the accuracy of the
method when compared to using only one constant value of α (see [340]).

A problem with Kansa’s method is that – for a constant multiquadric shape pa-
rameter α – the matrix A may for certain configurations of the centers ξj be singular.
Originally, Kansa assumed that the non-singularity results for interpolation matrices
would carry over to the PDE case. However, as the numerical experiments of Hon and
Schaback [304] show, this is not so. This is to be expected since the matrix for the
collocation problem is composed of rows which are built from different functions (which
– depending on the differential operator L – might not even be radial). The results for
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the non-singularity of interpolation matrices, however, are based on the fact that A is
generated by a single function ϕ.

An indication of the success of Kansa’s method (which has not yet been shown to be
well-posed) are the early papers [165, 166, 262, 341, 467] and many more since. In his
paper [340] Kansa describes three sets of experiments using his method and comments
on the superior performance of multiquadrics in terms of computational complexity
and accuracy when compared to finite difference methods. Therefore, it remains an
interesting open question whether the well-posedness of Kansa’s method can be estab-
lished at least for certain configurations of centers. Moreover, Kansa’s suggestion to use
variable shape parameters αj in order to improve accuracy and stability of the problem
has very little theoretical support. Except for one paper by Bozzini, Lenarduzzi and
Schaback [68] (which addresses only the interpolation setting) this problem has not
been addressed in the literature.

Before we describe an alternate approach which does ensure well-posedness of the
resulting collocation matrix and which is based on basis functions suitable for scattered
Hermite interpolation we would like to point out that in [467] the authors suggest how
Kansa’s method can be applied to other types of partial differential equation prob-
lems such as non-linear elliptic PDEs, systems of elliptic PDEs, and time-dependent
parabolic or hyperbolic PDEs.

9.1.2 An Hermite-based Approach

The following symmetric approach is based on scattered Hermite interpolation (see,
e.g., [315, 484, 598, 651]), which we now also quickly review. In this context we are
given data {xi, Lif}, i = 1, . . . , N , xi ∈ IRs where L = {L1, . . . , LN} is a linearly
independent set of continuous linear functionals. We try to find an interpolant of the
form

Pf(x) =
N∑

j=1

cjL
ξ
jϕ(‖x− ξ‖), x ∈ IRs, (9.7)

satisfying
LiPf = Lif, i = 1, . . . , N.

We have used Lξ to indicate that the functional L acts on ϕ viewed as a function of the
second argument ξ. The linear system Ac = Lf which arises in this case has matrix
entries

Aij = LiL
ξ
jϕ, i, j = 1, . . . , N. (9.8)

In the references mentioned at the beginning of this subsection it is shown that A is
non-singular for the same classes of ϕ as given for scattered data interpolation in our
earlier chapters.

Remark: It should be pointed out that this formulation of Hermite interpolation is
very general and goes considerably beyond the standard notion of Hermite interpolation
(which refers to interpolation of successive derivative values). Here any kind of linear
functional are allowed as long as the set L is linearly independent.

We illustrate this approach with a simple example using derivative functionals.
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Example: Let data {xi, f(xi)}ni=1 and {xi,
∂f
∂x (xi)}Ni=n+1 with x = (x, y) ∈ IR2 be

given. Then

Pf(x) =
n∑

j=1

cjϕ(‖x− xj‖)−
N∑

j=n+1

cj
∂ϕ

∂x
(‖x− xj‖),

and

A =

[
Φ −Φx

Φx −Φxx

]
,

with

Φij = ϕ(‖xi − xj‖), i, j = 1, . . . , n,

−Φx,ij = −∂ϕ
∂x

(‖xi − xj‖), i = 1, . . . , n, j = n+ 1, . . . , N,

Φx,ij =
∂ϕ

∂x
(‖xi − xj‖), i = n+ 1, . . . , N, j = 1, . . . , n,

Φxx,ij =
∂2ϕ

∂x2
(‖xi − xj‖), i, j = n+ 1, . . . , N.

Now we describe an alternative collocation method based on the generalized interpo-
lation theory just reviewed. Assume we are given the same PDE (9.3) with boundary
conditions (9.4) as in the section on Kansa’s method. In order to be able to apply
the results from scattered Hermite interpolation to ensure the non-singularity of the
collocation matrix we propose the following expansion for the unknown function u:

u(x) =

#B∑

j=1

cjϕ(‖x− ξj‖) +
N∑

j=#B+1

cjL
ξ[ϕ](‖x− ξj‖), (9.9)

where #B denotes the number of nodes on the boundary of Ω, and Lξ is the differential
operator used in (9.3), but acting on ϕ viewed as a function of the second argument,
i.e., L[ϕ] is equal to Lξ[ϕ] up to a possible difference in sign. Note the difference in
notation. In (9.7) L is a linear functional, and in (9.9) a differential operator.

This expansion for u leads to a collocation matrix A which is of the form

A =

[
Φ Lξ[Φ]
L[Φ] L[Lξ[Φ]]

]
, (9.10)

where the four blocks are generated as follows:

Φij = ϕ(‖xi − ξj‖), xi, ξj ∈ B,
Lξ[Φ]ij = Lξ[ϕ](‖xi − ξj‖), xi,∈ B, ξj ∈ I,
L[Φ]ij = L[ϕ](‖xi − ξj‖), xi ∈ I, ξj ∈ B,

L[Lξ[Φ]]ij = L[Lξ[ϕ]](‖xi − ξj‖), xi, ξj ∈ I.

The matrix (9.10) is of the same type as the scattered Hermite interpolation matri-
ces (9.8), and therefore non-singular as long as ϕ is chosen appropriately. Thus, viewed
using the new expansion (9.9) for u, the collocation approach is certainly well-posed.
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α ρK ρH condK(A) condH(A)

5× 3 1.0 5.248447e-02 2.004420e-01 2.599606e+03 1.627432e+03
8× 4 1.0 1.126843e-02 1.124710e-02 2.325758e+05 8.167527e+04
10× 6 1.0 5.809472e-03 6.481697e-03 4.321740e+07 1.808001e+07
16× 8 1.0 1.347863e-03 1.720007e-03 8.685785e+10 1.496772e+10
20× 12 1.0 5.053090e-04 5.973294e-04 5.161540e+15 1.234633e+15

Table 9.1: Error progression for increasingly denser data sets (Ex.1, fixed α).

Another point in favor of the Hermite based approach is that the matrix (9.10) is (anti)-
symmetric as opposed to the completely unstructured matrix (9.6) of the same size.
This property should be of value when trying to devise an efficient implementation of
the collocation method. Also note that although A consists of four blocks now, it still
is of the same size, namely N ×N , as the collocation matrix (9.6) obtained for Kansa’s
approach.

Remark: One attempt to obtain an efficient implementation of the Hermite based
collocation method is a version of the greedy algorithm described in Section 8.5.1 by
Hon, Schaback and Zhou [305].

9.1.3 Numerical Examples

The following test examples are taken from [194]. We restrict ourselves to two-dimensional
Poisson problems whose analytic solution is readily available and therefore can easily
be verified. We will refer to a point in IR2 as (x, y). In all of the following tests we
used multiquadrics in the expansions (9.5) and (9.9) of the unknown function u.

Example 1: Consider the Poisson equation

∆u(x, y) = y(1− y) sin3 x, x ∈ (0, π), y ∈ (0, 1),

with Dirichlet boundary conditions

u(x, 0) = u(x, 1) = u(0, y) = u(π, y) = 0.

For this test problem we selected various uniform grids as listed in Tables 9.1 and
9.2 on [0, π]× [0, 1]. Tables 9.1 and 9.2 show the values of the multiquadric parameter
α, the relative maximum errors ρ computed on a fine grid of 60 × 60 points, and
the approximate condition numbers of A. The range of u on the evaluation grid is
approximately [−0.021023, 0.0]. The “optimal” value for α was determined by trial
and error. The subscripts K and H refer to Kansa’s and the Hermite based method,
respectively.

Figure 9.1 shows the distribution of the errors |u(x)− s(x)| on the evaluation grid
for the two methods on the 8×4 grid used in Table 9.2. The scale used for the shading
is displayed on the right.
Example 2: Consider the Poisson equation

∆u(x, y) = sinx− sin3 x, x ∈ (0,
π

2
), y ∈ (0, 2),
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αK αH ρK ρH condK(A) condH(A)

5× 3 1.18 1.39 1.627193e-02 4.180428e-02 5.592238e+03 5.231279e+03
8× 4 1.04 1.11 1.103747e-02 1.062891e-02 3.175078e+05 1.735482e+05
10× 6 4.80 3.84 2.739293e-03 3.451799e-03 1.193586e+18 1.414927e+15
16× 8 3.12 3.12 2.707006e-04 2.082886e-04 1.209487e+19 6.609375e+18
20× 12 2.00 2.30 3.894511e-05 1.273363e-05 3.739554e+19 6.750955e+18

Table 9.2: Error progression for increasingly denser data sets (Ex.1, “optimal” α).

0.0

2.328866e-04

Figure 9.1: Error for Kansa’s (top), Hermite (bottom) solution for Ex. 1 on 8× 4 grid.

with mixed Dirichlet and Neumann boundary conditions

u(0, y) = ux(
π

2
, y) = uy(x, 0) = uy(x, 2) = 0.

For this example we selected uniform grids on [0, π/2]× [0, 2] as listed in Table 9.3.
This time we only list the results for the “optimal” choice of α. The values listed are
analogous to those in Ex. 1.

All in all the Hermite method seems to perform slightly better than Kansa’s method.
Especially for the cases in which we used relatively many interior points (which is where
the methods differ). Also, the matrices for the Hermite method generally have smaller
condition numbers. An advantage of the Hermite approach over Kansa’s method is

αK αH ρK ρH condK(A) condH(A)

3× 3 109.0 2.19 9.628085e-01 1.141043e-01 1.592286e+16 5.560886e+02
5× 5 1.80 1.73 2.181029e-02 4.327029e-02 2.395293e+06 1.271196e+05
7× 7 1.58 3.56 6.910084e-03 1.871798e-04 5.762316e+08 1.854850e+12

10× 10 2.80 3.29 9.265197e-05 5.126676e-05 2.842111e+18 7.070804e+17
14× 14 2.28 2.62 1.138751e-05 1.725526e-06 6.573143e+19 5.891454e+18
20× 20 1.53 1.91 5.501057e-06 6.217559e-07 5.889491e+19 7.576112e+19

Table 9.3: Error progression for increasingly denser data sets (Ex.2, “optimal” α).
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that for the differential operator L used here, the collocation matrices resulting from
the Hermite approach are symmetric. Therefore the amount of computation can be
reduced considerably, which is important for larger problems. Kansa’s method has the
advantage of being simpler to implement (since less derivatives of the basis functions
are required).

Remarks:

1. Both of the methods described in this section have been implemented for many
different applications. A thorough comparison of the two methods was reported
in [520].

2. Since the methods described above were both originally used with globally sup-
ported basis functions, the same concerns as for interpolation problems about
stability and numerical efficiency apply. Two recent papers by Ling and Kansa
[395, 396] address these issues. In particular, they develop a preconditioner in the
spirit of the one described in Section 8.3.3, and describe their experience with a
domain decomposition algorithm.

3. A convergence analysis for the symmetric method was established by Franke and
Schaback [229, 230]. The error estimates established in [229, 230] require the solu-
tion of the PDE to be very smooth. Therefore, one should be able to use meshfree
radial basis function collocation techniques especially well for (high-dimensional)
PDE problems with smooth solutions on possibly irregular domains. Due to
the known counterexamples [304] for the non-symmetric method, a convergence
analysis is still lacking for that method.

4. Recently, Miranda [462] has shown that Kansa’s method will be well-posed if it
is combined with so-called R-functions. This idea was also used by Höllig and
his co-workers in their development of WEB-splines (see, e.g., [299]).

5. Kansa’s method has the advantage of being easily adapted for nonlinear elliptic
PDEs (see, e.g., [201, 467]).

Some numerical evidence for convergence rates of the symmetric collocation method
is given by the examples above, and in the papers [336, 520]. The example above
shows very high convergence rates (as predicted by the estimate in [230]) when using
multiquadrics on a problem which has a smooth solution. In [336] thin plate splines
as well as Wendland’s C4 compactly supported RBF ϕ3,2 were tested. The results
for thin plate splines are in good agreement with the theory. However, the numerical
experiments using the Wendland function show O(h3) convergence instead of O(h) as
predicted by the lower bounds of [230] combined with the error bound for Wendland
functions. This could suggest that a sharper error estimate may be possible when using
compactly supported RBFs.

Other recent papers investigating various aspects of radial basis function collocation
are, e.g., [135] by Cheng, Golberg, Kansa and Zammito, [215] by Fedoseyev, Friedman
and Kansa, [345] by Kansa and Hon, [360] by Larsson and Fornberg, [365] by Leitão,
and [424] by Mai-Duy and Tran-Cong.

For example, in the paper [215] it is suggested that the collocation points on the
boundary are also used to satisfy the PDE. However, this adds a set of extra equations
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to the problem, and therefore one should also use some additional basis functions in
the expansion (9.5). It is suggested in [215] that these centers lie outside the domain Ω.
The motivation for this modification is the well-known fact that both for interpolation
and collocation with radial basis functions the error is largest near the boundary. In
various numerical experiments this strategy is shown to improve the accuracy of Kansa’s
basic non-symmetric method. It should be noted that there is once more no theoretical
foundation for this method.

Larsson and Fornberg [360] compare Kansa’s basic collocation method, the modi-
fication just described, and the Hermite-based symmetric approach mentioned earlier.
Using multiquadric basis functions in a standard implementation they conclude that
the symmetric method is the most accurate, followed by the non-symmetric method
with boundary collocation. The reason for this is the better conditioning of the system
for the symmetric method. Larsson and Fornberg also discuss an implementation of
the three methods using the complex Contour-Padé integration method mentioned in
Section 8.1. With this technique stability problems are overcome, and it turns out that
both the symmetric and the non-symmetric method perform with comparable accu-
racy. Boundary collocation of the PDE yields an improvement only if these conditions
are used as additional equations, i.e., by increasing the problem size. It should also
be noted that often the most accurate results were achieved with values of the multi-
quadric shape parameter α which would lead to severe ill-conditioning using a standard
implementation, and therefore these results could be achieved only using the complex
integration method. Moreover, in [360] radial basis function collocation is deemed to
be far superior in accuracy than standard second-order finite differences or a standard
Fourier-Chebyshev pseudospectral method.

Leitão [365] applies the symmetric collocation method to a fourth-order Kirchhoff
plate bending problem, and emphasizes the simplicity of the implementation of the ra-
dial basis function collocation method. And, finally, Mai-Duy and Tran-Cong [424] sug-
gest a collocation method for which the basis functions are taken to be anti-derivatives
of the usual radial basis functions.

All of the experiments just mentioned were conducted without using a multilevel
approach. In particular, in order to achieve convergence with the Wendland functions
the support had to be chosen so large that only problems with a very modest number of
centers could be handled (see [336]). So, as for scattered data interpolation, a multilevel
approach is needed to obtain computational efficiency.

We would like to end the discussion of the collocation approach by looking at a
multilevel implementation with compactly supported functions.

The most significant difference between the use of compactly supported RBFs for
scattered data interpolation and for the numerical solution of PDEs by collocation
appears when we turn to the multilevel approach. Recall that the use of the multilevel
method is motivated by our desire to obtain a convergent scheme while at the same
time keeping the bandwidth fixed, and thus the computational complexity at O(N).

Here is an adaptation of the basic multilevel algorithm of Section 8.2 to the case of
a collocation solution of the problem Lu = f :
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mesh `2-error rate

5 3.637579e-04
9 1.892007e-05 4.26
17 3.055339e-06 2.63
33 2.111403e-06 0.53
65 2.062621e-06 0.03
129 2.066411e-06 0.00
257 2.070168e-06 0.00
513 2.072171e-06 0.00
1025 2.073182e-06 0.00
2049 2.073688e-06 0.00

Table 9.4: Multilevel collocation algorithm for symmetric collocation with constant
bandwidth.

Algorithm (Multilevel Collocation)

u0 = 0.

For k from 1 to K do

Find uk ∈ SXk
such that Luk = (f − Luk−1) on grid Xk.

Update uk ← uk−1 + uk.

end

Here SXk
is the space of functions used for expansion (9.5) or (9.9) on grid Xk.

Whereas we noted above that there is strong numerical (and limited theoretical) ev-
idence that the basic multilevel interpolation algorithm converges (at least linearly),
the following example shows that we cannot in general expect the multilevel collocation
algorithm to converge at all.

Example: Consider the boundary-value problem

−u′′(x) + π2u(x) = 2π2 sinπx, x ∈ (0, 1),
u(0) = u(1) = 0,

with solution u(x) = sinπx. As computational grids Xk we take 2k+1 + 1 uniformly
spaced points on [0, 1] as indicated in Table 9.4. We use the C6 compactly supported
Wendland function ϕ3,3 and the conjugate gradient method with Jacobi preconditioning
is used to solve the resulting linear systems. We take the support size on the first grid
to be so large that the resulting matrix is a dense matrix. During subsequent iterations
the support size is halved (as is the meshsize) in order to maintain a constant bandwidth
of 17 (i.e., work in the stationary setting). Even though the first three iterations seem
to indicate significant rates of convergence, the convergence behavior quickly changes,
and by the fifth iteration there is virtually no improvement of the error (the fact that
the errors actually increase is due to the fact that they are computed on increasingly
finer grids).
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We note that the same behavior can be observed if the non-symmetric approach
is used instead. However, then the convergence ceases at a slightly later stage. We
also note that the same phenomenon was observed by Wendland in the context of a
multilevel Galerkin algorithm for compactly supported RBFs (see [631] as well as our
discussion in the next section).

Remarks:

1. It has been suggested that the convergence behavior of the multilevel colloca-
tion algorithm may be linked to the phenomenon of approximate approximation.
However, so far no connection has been established.

2. As was shown in [198] a possible remedy for the non-convergence problem is
smoothing. One might also expect that a slightly different scaling of the support
sizes of the basis functions (such that the bandwidth of the matrix is allowed to
increase slowly from one iteration to the next, i.e., moving to the non-stationary
setting) will lead to better results. In [198] it was shown that this is in fact true.
However, smoothing further improved the convergence. A discussion of the idea
of post-conditioning via smoothing is beyond the scope of this text. We refer the
reader to the paper [209].

9.2 Galerkin Methods

A variational approach to the solution of PDEs with RBFs has so far only been consid-
ered by Wendland [630, 631]. In [631] he studies the Helmholtz equation with natural
boundary conditions, i.e.,

−∆u+ u = f in Ω,
∂

∂ν
u = 0 on ∂Ω,

where ν denotes the outer unit normal vector. The classical Galerkin formulation then
leads to the problem of finding a function u ∈ H1(Ω) such that

a(u, v) = (f, v)L2(Ω) for all v ∈ H1(Ω),

where (f, v)L2(Ω) is the usual L2 inner product, and for the Helmholtz equation the
bilinear form a is given by

a(u, v) =

∫

Ω
(∇u · ∇v + uv)dx.

In order to obtain a numerical scheme the infinite-dimensional space H1(Ω) is replaced
by some finite-dimensional subspace SX ⊆ H1(Ω), where X is some computational grid
to be used for the solution. In the context of RBFs SX is taken as

SX = span{φ(‖ · −xj‖2), xj ∈ X}.
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This results in a square system of linear equations for the coefficients of uX ∈ SX
determined by

a(uX , v) = (f, v)L2(Ω) for all v ∈ SX .
For more on the Galerkin method (in the context of finite elements) see, e.g., [69, 70].
It was shown in [630] that for those RBFs (globally as well as locally supported) whose
Fourier transform decays like (1 + ‖ · ‖2)−2β the following convergence estimate holds:

‖u− uX ‖H1(Ω) ≤ Chσ−1‖u‖Hσ(Ω), (9.11)

where h is the meshsize of X , the solution satisfies the regularity requirements u ∈
Hσ(Ω), and where the convergence rate is determined by β ≥ σ > s/2 + 1. For
Wendland’s compactly supported RBFs this implies that functions which are in C2κ

and strictly positive definite on IRs satisfying κ ≥ σ − s+1
2 will have O(hκ+(s−1)/2)

convergence order, i.e., the C0 function ϕ3,0 = (1−r)2+ yields O(h) and the C2 function
ϕ3,1 = (1 − r)4+(4r + 1) delivers O(h2) convergence in IR3. As with the convergence
estimate for symmetric collocation there is a link between the regularity requirements
on the solution and the space dimension s. Also, so far, the theory is only established
for PDEs with natural boundary conditions.

The convergence estimate (9.11) holds for the non-stationary setting, i.e., if we
are using compactly supported basis functions, for fixed support radii. By the same
argumentation as used in Section 8, one will want to switch to the stationary setting
and employ a multilevel algorithm in which the solution at each step is updated by
a fit to the most recent residual. This should ensure both convergence and numerical
efficiency.

Here is the variant of the stationary multilevel collocation algorithm listed above
for the weak formulation (see [631]):

Algorithm (Multilevel Galerkin)

u0 = 0.

For k from 1 to K do

Find uk ∈ SXk
such that a(uk, v) = (f, v)− a(uk−1, v) for all v ∈ SXk

.

Update uk ← uk−1 + uk.

end

This algorithm does not converge in general (see Tab. 1 in [631]).
Since the weak formulation can be interpreted as a Hilbert space projection method,

Wendland was able to show that a modified version of the multilevel Galerkin algorithm,
namely

Algorithm (Nested Multilevel Galerkin)

Fix K and M ∈ IN, and set v0 = 0.

For j from 0 while resiudal > tolerance to M do

Set u0 = vj .
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Apply the k-loop of the previous algorithm and denote the result with û(vj).

Set vj+1 = û(vj).

end

does converge. In fact, using this algorithm Wendland proves, and also observes
numerically, convergence which is at least linear (see Theorem 3 and Tab. 2 in [631]).
The important difference between the two multilevel Galerkin algorithms is the added
outer iteration in the nested version which is a well-known idea from linear algebra
introduced in 1937 by Kaczmarz [337]. A proof of the linear convergence for general
Hilbert space projection methods coupled with Kaczmarz iteration can be found in
[585]. This alternate projection idea is also the fundamental ingredient in the conver-
gence proof of the domain decomposition method of Beatson, Light and Billings [42]
described in the previous chapter. We mention here that in the multigrid literature
Kaczmarz’ method is frequently used as a smoother (see e.g. [435]).

Remarks:

1. Aside from difficulties with Dirichlet (or sometimes called essential) boundary
conditions, Wendland reports that the numerical evaluation of the weak-form in-
tegrals presents a major problem for the radial basis function Galerkin approach.
Both of these difficulties are also well-known in many other flavors of meshfree
weak-form methods. An especially promising solution to the issue of Dirichlet
boundary conditions seems to be the use of R-functions as proposed by Höllig
and Reif in the context of WEB-splines (see, e.g., [299] or our earlier discussion
in the context of collocation methods).

2. In a recent paper by Schaback [559] the author presents a framework for the
radial basis function solution of problems both in the strong (collocation) and
weak (Galerkin) form.

Many other meshfree methods for the solution of partial differential equations in
the weak form appear in the (mostly engineering) literature. These methods come
under such names as smoothed particle hydrodynamics (SPH) (e.g., [463]), reproducing
kernel particle method (RKPM) (see, e.g., [380, 399]), point interpolation method
(PIM) (see, [397]), element free Galerkin method (EFG) (see, e.g., [49]), meshless local
Petrov-Galerkin method (MLPG) [14], h-p-cloud method [164], partition of unity finite
element method (PUFEM) [16, 443], or generalized finite element method (GFEM)
[15]. Most of these methods are based on the moving least squares approximation
method discussed in Chapter 7.

There are two recent books by Atluri [12] and Liu [397] summarizing many of
these methods. However, these books focus mostly on a survey of the various meth-
ods and related computational and implementation issues with little emphasis on the
mathematical foundation of these methods. The recent survey paper [15] by Babuška,
Banerjee and Osborn, fills a large part of this void.
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[15] I. Babuška, U. Banerjee and J. E. Osborn, Survey of meshless and generalized
finite element methods: A unified approach, University of Texas, Austin, TICAM
Report 02-03, 2002.
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[67] L. P. Bos and K. Šalkauskas, Moving least-squares are Backus-Gilbert optimal, J.
Approx. Theory 59 (1989), 267–275.

[68] M. Bozzini, L. Lenarduzzi, and R. Schaback, Adaptive interpolation by scaled mul-
tiquadrics, Adv. in Comp. Math. 16 (2002), 375–387.

[69] D. Braess, Finite Elements: Theory, Fast Solvers, and Applications in Solid Me-
chanics, Cambridge University Press (Cambridge), 1997.

[70] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Meth-
ods, Springer Verlag (New York), 1994.

[71] D. S. Broomhead and D. Lowe, Multivariate functional interpolation and adaptive
networks, Complex Systems, 2 (1988), 321–355.

[72] A. L. Brown, Uniform approximation by radial basis functions, Appendix B to
Radial basis functions in 1990, in Advances in Numerical Analysis II: Wavelets,
Subdivision, and Radial Basis Functions, W. Light (ed.), Oxford University Press,
Oxford, 1992, 203–206.

[73] M. J. Buckley, Fast computation of a discretized thin-plate smoothing spline for
image data, Biometrika, 81 (1994), 247–258.

[74] M. D. Buhmann, Convergence of univariate quasi-interpolation using multi-
quadrics, IMA J. Numer. Anal., 8 (1988), 365–383.

[75] M. D. Buhmann, Multivariate interpolation using radial basis functions, Ph.D.
Dissertation, University of Cambridge, 1989.

145



[76] M. D. Buhmann, Cardinal interpolation with radial basis functions: an integral
approach, in Multivariate Approximation Theory IV, ISNM 90, C. Chui, W.
Schempp, and K. Zeller (eds.), Birkhäuser Verlag, Basel, 1989, 41–64.
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lished as: Angenäherte Auflösung von Systemen linearer Gleichungen, Bulletin
International de l’Academie Polonaise des Sciences, Lett. A, 1937, 355–357), Int.
J. Control 57 (1993) 1269–1271.

[338] E. J. Kansa, Application of Hardy’s multiquadric interpolation to hydrodynamics,
Proc. 1986 Simul. Conf., Vol. 4, (1986), 111–117.

[339] E. J. Kansa, Multiquadrics – A scattered data approximation scheme with appli-
cations to computational fluid-dynamics – I: Surface approximations and partial
derivative estimates, Comput. Math. Appl., 19 (1990), 127–145.

[340] E. J. Kansa, Multiquadrics – A scattered data approximation scheme with appli-
cations to computational fluid-dynamics – II: Solutions to parabolic, hyperbolic and
elliptic partial differential equations, Comput. Math. Appl., 19 (1990), 147–161.

[341] E. J. Kansa, A strictly conservative spatial approximation scheme for the govern-
ing engineering and physics equations over irregular regions and inhomogeneous
scattered nodes, Comput. Math. Appl., 24 (1992), 169–190.

[342] E. J. Kansa and R. E. Carlson, Improved accuracy of multiquadric interpolation
using variable shape parameters, Comput. Math. Appl., 24 (1992), 99–120.

[343] E. J. Kansa and R. E. Carlson, Radial basis functions: a class of grid free scattered
data approximations, Computational Fluid Dynamics J., 3 (1995), 479–496.

[344] E. J. Kansa, G. E. Fasshauer, H. Power, and L. Ling, A volumetric integral radial
basis function method for time-dependent partial differential equations: I. Formu-
lation, to appear in Journal of Engineering Analysis with Boundary Elements.

[345] E. J. Kansa and Y. C. Hon, Circumventing the ill-conditioning problem with mul-
tiquadric radial basis functions: Applications to elliptic partial differential equa-
tions, Comput. Math. Applic. 39 (2000), 123–137.

[346] S. Karlin, Total Positivity, Stanford University Press, Stanford, 1968.

163



[347] S. R. Karur and P. A. Ramachandran, Radial basis function approximation in
the dual reciprocity method, Math. Comput. Modell., 20 (1994), 59–70.

[348] S. R. Karur and P. A. Ramachandran, Augmented thin plate spline approximation
in DRM, Boundary Elements Comm., 6 (1995), 55–58.

[349] J. T. Kent and K. V. Mardia, The link between kriging and thin-plate splines,
Probability, statistics and optimisation, Wiley Ser. Probab. Math. Statist., Wiley,
Chichester, 1994, 325–339.

[350] D. Kincaid and W. Cheney, Numerical Analysis: Mathematics of Scientific Com-
puting (2nd ed.), Brooks/Cole, Pacific Grove, CA, 1996.

[351] O. Kounchev, Multivariate Polysplines: Applications to Numerical and Wavelet
Analysis, Academic Press, New York, 2001.

[352] A. Krzyzak, T. Linder, and G. Lugosi, Nonparametric estimation and classifica-
tion using radial basis function nets and empirical risk minimization, IEEE Trans.
Neural Networks, 7 (1996), 475–487.

[353] S. Kunis and D. Potts, NFFT, Softwarepackage (C-library), Universität Lübeck,
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