Chapter 1

Introduction

1.1

History and Outline

Originally, the motivation for the basic meshfree approximation methods (radial basis
functions and moving least squares methods) came from applications in geodesy, geo-
physics, mapping, or meteorology. Later, applications were found in many areas such
as in the numerical solution of PDEs, artificial intelligence, learning theory, neural
networks, signal processing, sampling theory, statistics (kriging), finance, and opti-
mization. It should be pointed out that (meshfree) local regression methods have been
used (independently) in statistics for more than 100 years (see, e.g., [146]).

”Standard” multivariate approximation methods (splines or finite elements) require
an underlying mesh (e.g. triangulation) for the definition of basis functions or elements.
This is very difficult in space dimensions > 2.

Some historical landmarks for meshfree methods in approximation theory:

D. Shepard, Shepard functions, late 1960s (application, surface modelling)

Rolland Hardy (Towa State Univ.), multiquadrics (MQs), early 1970s (application,
geodesy)

Jean Duchon (Université Joseph Fourier, Grenoble, France), variational approach
(in R? minimize integral of V2s), leads to thin plate splines (TPSs), mid 1970s
(mathematics)

Jean Meinguet (Université Catholique de Louvain, Louvain, Belgium), surface
splines, late 1970s (mathematics)

Peter Lancaster and Kes Salkauskas (Univ. of Calgary, Canada): Surfaces gen-
erated by moving least squares methods, 1981, generalizes Shepard functions.

Richard Franke (NPG, Montery), in 1982 compared scattered data interpolation
methods, and concluded MQs and TPs were best. Franke conjectured interpola-
tion matrix for MQs is invertible.

Wally Madych (Univ. Connecticut), and S. A. Nelson (Iowa State Univ.), Multi-
variate interpolation: A variational theory, unpublished manuscript, 1983 (proved
Franke’s conjecture).



e Charles Micchelli (IBM), Interpolation of scattered data: Distance matrices and
conditionally positive definite functions, 1986.

Topics to be covered:
e radial basis functions (multiquadrics, thin plate splines, Gaussians

e moving least squares methods (element-free Galerkin (EFG), hp-clouds, meshless
local Petrov-Galerkin (MLPG), radial point interpolation method (RPIM), repro-
ducing kernel particle method (RKPM), smooth particle hydrodynamics (SPH))

partition of unity methods

e quasi-interpolation methods

e dual reciprocity method (DRM)

Applications discussed:

e scattered data fitting

e solution of PDEs (collocation, Galerkin; elliptic, parabolic, hyperbolic)
e surface reconstruction

e machine learning

e optimization

1.2 Motivation: Scattered Data Interpolation

In this section we will describe the general process of scattered data fitting, which is one
of the fundamental problems in approximation theory and data modelling in general.
Our desire to have a well-posed problem formulation will naturally lead to the concepts
of positive definite matrices, and strictly positive definite functions.

1.2.1 Scattered Data Interpolation.

In many scientific disciplines one faces the following problem. We have a set of data
(measurements, and locations at which these measurements were obtained), and we
want to find a rule which allows us to deduce information about the process we are
studying also at locations different from those at which we obtained our measurements.
Thus, we are trying to find a function s which is a “good” fit to the given data. There are
many ways to decide what we mean by “good”, and the only criterion we will consider
now is that we want the function s to exactly match the given measurements at the
corresponding locations. This approach is called interpolation, and if the locations
at which the measurements are taken are not on a uniform or regular grid, then the
process is called scattered data interpolation. More precisely, we are considering the
following



Problem 1.2.1 Given data (zj,y;), j =1,...,N with x; € R®, y; € R find a (con-
tinuous) function P f such that Pf(x;) =y;, j=1,...,N.

Here the x; are the measurement locations (or data sites), and the y; are the
corresponding measurements (or data values). We will often assume that these values
are obtained by sampling a data function f at the data sites, i.e., y; = f(x;), j =
1,...,N. The fact that we allow x; to lie in s-dimensional space IR* means that the
formulation of Problem 1.2.1 allows us to cover many different types of problems. If
s = 1 the data could be a series of measurements taken over a certain time period,
thus the “data sites” x; would correspond to certain time instances. For s = 2 we can
think of the data being obtained over a planar region, and so x; corresponds to the two
coordinates in the plane. For instance, we might want to produce a map which shows
the rainfall in the state we live in based on the data collected at weather station located
throughout the state. For s = 3 we might think of a similar situation in space. One
possibility is that we could be interested in the temperature distribution inside some
solid body. Higher-dimensional examples might not be that intuitive, but a multitude
of them exist, e.g., in finance, economics or statistics, but also in artificial intelligence
or learning.

A convenient and common approach to solving the scattered data problem is to
make the assumption that the function Pf is a linear combination of certain basis
functions By, i.e.,

g ..

N
Pf(x)=> cBr(z), xR (1.1)
k=1
Solving the interpolation problem under this assumption leads to a system of linear
equations of the form
Ac =y,

where the entries of the interpolation matriz A are given by A, = By(x;), j,k =
1,...,N,c=lc1,...,en]", and y = [y1,...,yn]".

Problem 1.2.1 will be well-posed, i.e., a solution to the problem will exist and be
unique, if and only if the matrix A is non-singular.

In the univariate setting it is well known that one can interpolate to arbitrary data
at N distinct data sites using a polynomial of degree N — 1. For the multivariate
setting, however, there is the following negative result due to Mairhuber and Curtis in
1956 [425].

Theorem 1.2.2 If Q C R®, s > 2, contains an interior point, then there exist no
Haar spaces of continuous functions except for one-dimensional ones.

In order to understand this theorem we need

Definition 1.2.3 Let the linear finite-dimensional function space B C C(Q2) have a
basis {B1,...,Bn}. Then B is a Haar space on Q if

det (By(;)) # 0

for any set of distinct x1,...,xN in ).



Remarks:

1. Note that existence of a Haar space guarantees invertibility of the interpolation
matrix (Bj(x;)), i.e., existence and uniqueness of an interpolant to data specified
at ¢1,...,xy, from the space B.

2. As mentioned above, univariate polynomials of degree N —1 form an /N-dimensional
Haar space for data given at z1,...,xy.

3. The Mairhuber-Curtis Theorem implies that in the multivariate setting we can no
longer expect this to be the case. E.g., it is not possible to perform unique inter-
polation with (multivariate) polynomials of degree N to data given at arbitrary
locations in R?.

4. The Mairhuber-Curtis Theorem tells us that if we want to have a well-posed
multivariate scattered data interpolation problem, then the basis needs to depend
on the data locations.

Proof of Theorem 1.2.2: Let s > 2 and suppose B is a Haar space with basis
{Bi,...,By} with N > 2. Then, by the definition of a Haar space

det (By(;)) # 0 (1.2)

for any distinct x1,...,xN.

Now consider a closed path P in €2 connecting only @1 and xs. This is possible
since — by assumption — §2 contains an interior point. We can exchange the positions
of &1 and @2 by moving them continuously along the path P (without interfering with
any of the other «;). This means, however, that rows 1 and 2 of the determinant (1.2)
have been exchanged, and so the determinant has changed sign.

Since the determinant is a continuous function of x; and s we must have had
det = 0 at some point along P. This is a contradiction. O

In order to obtain such data dependent approximation spaces we now consider
positive definite matrices and functions.

1.2.2 Positive Definite Matrices and Functions

A common concept in linear algebra is that of a positive definite matrix.

Definition 1.2.4 A real symmetric matriz A is called positive semi-definite if its as-
sociated quadratic form is non-negative, i.e.,

N N
Z Z CjCkAjk > 0 (13)
j=1k=1

forec=lci,...,en]T € RYN. If the only vector ¢ that turns (1.3) into an equality is the
zero vector, then A is called positive definite.



An important property of positive definite matrices is that all their eigenvalues are
positive, and therefore a positive definite matrix is non-singular (but certainly not vice
versa).

If we therefore had basis functions By, in the expansion (1.1) above which generate a
positive definite interpolation matrix, we would always have a well-posed interpolation
problem. To this end we introduce the concept of a positive definite function from
classical analysis.

Historically, in the 1920s and 30s, only positive definite functions were introduced.
However, in order to meet our goal of having a well-posed interpolation problem it is
necessary to sharpen the classical notion of a positive definite function to that of a
strictly positive definite one. This leads to an unfortunate difference in terminology
used in the context of matrices and functions. Unfortunately, in the course of history
it has turned out that a positive definite function is associated with a positive semi-
definite matrix.

Definition 1.2.5 A complex-valued continuous function ® is called positive definite
on R? if

N N
D) emr®(m; —ap) >0 (1.4)

j=1k=1

for any N pairwise different points x1,...,zx € R, and ¢ = [c1,...,cn]t € cN.
The function ® is called strictly positive definite on R® if the only vector ¢ that turns
(1.4) into an equality is the zero vector.

We note that an extension of the notion of positive definiteness to cover complex
coefficients ¢ and complex-valued functions ® as done in Definition 1.2.5 will be helpful
when deriving some properties of (strictly) positive definite functions later on. More-
over, the celebrated Bochner’s Theorem (see the next chapter) characterizes exactly the
positive definite functions of Definition 1.2.5. In all practical circumstances, however,
we will be concerned with real-valued functions only, and a characterization of such
functions appears below as Theorem 1.2.7.

Definition 1.2.5 and the discussion preceding it suggest that we should use strictly
positive definite functions as basis functions in (1.1), i.e., Bx(x) = ®(x — xy), or

N
Pflx) = chfb(m —xy), xecR°. (1.5)
k=1

Remarks:

1. The function Pf of (1.5) will yield an interpolant that is translation invariant,
i.e., the interpolant to translated data is the same as the translated interpolant
to the original data.

2. Definition 1.2.5 can be generalized to the notion of strictly positive definite kernels
of the form ®(x,y).



3. Positive definite functions were first considered in classical analysis early in the
20th century. In the 1920s Mathias [432] seems to have been the first to define and
study positive definite functions. An overview of the development up to the mid
1970s can be found in [590]. There seems to have been no need to study strictly
positive functions until Micchelli [456] made the connection between scattered
data interpolation and positive definite functions. We will discuss some of the
most important properties and characterizations of (strictly) positive definite
functions in the next chapter.

4. We would like to point out that when reading recent articles (especially in the
radial basis function literature) dealing with (strictly) positive definite functions
one has to be aware of the fact that some authors have tried to “correct” history,
and now refer to strictly positive definite functions as positive definite functions.

We close this section with a list of some basic properties of (strictly) positive definite
functions and some examples.

Theorem 1.2.6 Some basic properties of positive definite functions are

(1) If ®4,...,®, are positive definite on R® and ¢; > 0,i=1,...,n, then
CI)(:B) = ZCZ'(I)Z'(.’E), x € R’

1s also positive definite. Moreover, if one of the ®; is strictly positive definite and
the corresponding c; > 0, then ® is strictly positive definite.

(2) ®(~z) = &(x).
(3) ®(0) > 0.
(4) Any positive definite function is bounded, in fact,
|[®(z)| < ©(0).
(5) If ® is positive definite with ®(0) =0 then ® = 0.
(6) The product of (strictly) positive definite functions is (strictly) positive definite.
Proof: Properties (1) and (3) follow immediately from Definition 1.2.5.

To show (2) we let N =2, 1 = 0, 3 = @, and choose ¢; = 1 and ¢3 = ¢. Then
the quadratic form in Definition 1.2.5 becomes

2 2
Z Zc@op(xj —xp) = (1+¢>)®(0) + c®(x) + cd(—x) > 0
=1 k=1

<.

for every ¢ € C. Taking ¢ = 1 and ¢ = i (where i = y/—1), respectively, we can see
that both ®(x) + ®(—x) and ¢ (®(x) — ®(—x)) must be real. This, however, is only
possible if ®(—x) = ®(x).



For the proof of (4) we let N = 2, ;1 = 0, 3 = @, and choose ¢; = |®(x)| and
). Then the quadratic form in Definition 1.2.5 is

—O(z
2 2
YD car®(a; —ap) = 20(0)|0(2)* — &(—2)0(2)|®(2)| — ¢*(z)|®(z)| > 0.

]:1 k=

—_

Since ®(—x) = ®(x) by Property 2, this gives
©(0)[@()|* — 2[P(x)° > 0.

If |®(x)| > 0, we divide by |®(z)|? and the statement follows immediately. In case
|®(x)| = 0 the statement holds trivially.

Property (5) follows immediately from (4), and Property (6) is a consequence of a
theorem by Schur, which states that the elementwise (or Hadamard) product of positive
(semi-)definite matrices is positive (semi-)definite (see [132] or [634] for details). O

Remarks:

1. Property (1) states that in particular the sum of two (strictly) positive definite
functions is (strictly) positive definite.

2. Property (2) shows that any real-valued (strictly) positive definite function has to
be even. However, it is also possible to characterize real-valued (strictly) positive
definite functions using only real coefficients (see [634] for details), i.e

Theorem 1.2.7 A real-valued continuous function ® is positive definite on IR® if and
only if it is even and

N N
Y cien®(x; — ) > 0 (1.6)
Jj=1k=1

for any N pairwise different points x1,...,xx € R®, and ¢ = [cy,...,cn]T € RV,

The function ® is strictly positive definite on R® if the only vector ¢ that turns (1.6)
into an equality is the zero vector.
Examples:

1. The function ®(x) = @Y, y € R?, is positive definite on IR® since the quadratic
form in Definition 1.2.5 becomes

N N
Z Zq@@(axj

j=1k=1
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= c;je™Y > 0.

Jj=1

2. The cosine function is positive definite on IR since, for x € IR, we have cosx =

% (ei‘” + e*m), and Property (1) and the previous example can be invoked.



1.2.3 Radial Functions

Of particular interest in applications are positive definite functions which are also
radial. Radial functions have the nice property that they are invariant under all Eu-
clidean transformations (i.e., translations, rotations, and reflections). This is an im-
mediate consequence of the fact that Euclidean transformations are characterized by
orthogonal transformation matrices and are therefore norm-invariant. Invariance un-
der translation, rotation and reflection is often desirable in applications. We therefore
define

Definition 1.2.8 A function ® : R® — IR is called radial provided there exists a
univariate function ¢ : [0,00) — R such that

(x) =p(r), where r= ||,

and || - || is some norm on R® — usually the Euclidean norm.

Definition 1.2.8 says that for a radial function ®
1]l = llzol] = @(21) = B(22), @1, B> € R

However, what makes radial functions most useful for applications is the fact that
the interpolation problem becomes insensitive to the dimension s of the space in which
the data sites lie. Instead of having to deal with a multivariate function ® (whose
complexity will increase with increasing space dimension s) we can work with the same
univariate function ¢ for all choices of s.

We call the univariate function ¢ a (strictly) positive definite radial function on R®
if and only if the associated multivariate function @ is (strictly) positive definite on R*
in the sense of Definition 1.2.5 and radial in the sense of Definition 1.2.8.



