
Chapter 2

Positive Definite and Completely

Monotone Functions

Below we will first summarize facts about positive definite functions, and closely related
completely and multiply monotone functions. Most of these facts are integral charac-
terizations and were established in the 1930s by Bochner and Schoenberg. In the second
part of this chapter we will mention the more recent extensions to strictly positive def-
inite and strictly completely/multiply monotone functions. Integral characterizations
are an essential ingredient in the theoretical analysis of radial basis functions.

2.1 A Brief Summary of Integral Transforms

Before we get into the details of the integral representations we summarize some for-
mulas for various integral transforms to be used later.

The Fourier transform conventions we will adhere to are laid out in

Definition 2.1.1 The Fourier transform of f ∈ L1(IR
s) is given by

f̂(ω) =
1

√

(2π)s

∫

IRs

f(x)e−iω·xdx, ω ∈ IRs, (2.1)

and its inverse Fourier transform is given by

f̌(x) =
1

√

(2π)s

∫

IRs

f(ω)eix·ωdω, x ∈ IRs .

Remark: This definition of the Fourier transform can be found in Rudin [537]. An-
other, just as common, definition uses

f̂(ω) =

∫

IRs

f(x)e−2πiω·xdx, (2.2)

and can be found in Stein and Weiss [589]. The form we use can also be found in
Wendland’s book [634], whereas (2.2) is used in the book by Cheney and Light [132].
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Similarly, we can define the Fourier transform of a finite (signed) measure µ on IRs

by

µ̂(ω) =
1

√

(2π)s

∫

IRs

e−iω·xdµ(x), ω ∈ IRs .

Since we will be interested in positive definite radial functions, we note that the
Fourier transform of a radial function is again radial. Indeed,

Theorem 2.1.2 Let Φ ∈ L1(IR
s) be continuous and radial, i.e., Φ(x) = ϕ(‖x‖). Then

its Fourier transform Φ̂ is also radial, i.e., Φ̂(ω) = Fsϕ(‖ω‖) with

Fsϕ(r) =
1√
rs−2

∫ ∞

0
ϕ(t)t

s
2 J(s−2)/2(rt)dt,

where J(s−2)/2 is the classical Bessel function of the first kind of order (s − 2)/2.

Remark: The integral transform appearing in Theorem 2.1.2 is also referred to as a
Bessel transform.

A third integral transform to play an important role in the following is the Laplace
transform. We have

Definition 2.1.3 The Laplace transform of a piecewise continuous function f that
satisfies |f(t)| ≤ Meat for some constants a and M is given by

Lf(s) =

∫ ∞

0
f(t)e−stdt, s > a.

Similarly, the Laplace transform of a Borel measure µ on [0,∞) is given by

Lµ(s) =

∫ ∞

0
e−stdµ(t).

The Laplace transform is continuous at the origin if and only if µ is finite.

2.2 Bochner’s Theorem

One of the most celebrated results on positive definite functions is their characterization
in terms of Fourier transforms established by Bochner in 1932 (for s = 1) and 1933 (for
general s).

Theorem 2.2.1 (Bochner’s Theorem) A (complex-valued) function Φ ∈ C(IRs) is pos-
itive definite on IRs if and only if it is the Fourier transform of a finite non-negative
Borel measure µ on IRs, i.e.,

Φ(x) = µ̂(x) =
1

√

(2π)s

∫

IRs

e−ix·ydµ(y), x ∈ IRs .
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Proof: There are many proofs of this theorem. Bochner’s original proof can be found
in [58], p. 407. Other proofs can be found, e.g., in the books by Cuppens ([147], p. 41)
or Gelfand and Vilenkin ([250], p. 155). A nice proof using the Riesz Representation
Theorem to interpret the Borel measure as a distribution, and then taking advantage
of distributional Fourier transforms can be found in the book by Wendland [634].

We will prove only the one (easy) direction which is important for the application
to scattered data interpolation. We assume Φ is the Fourier transform of a finite
non-negative Borel measure and show Φ is positive definite. Thus,

N
∑

j=1

N
∑

k=1

cjckΦ(xj − xk) =
1

√

(2π)s

N
∑

j=1

N
∑

k=1

[

cjck

∫

IRs

e−i(xj−xk)·ydµ(y)

]

=
1

√

(2π)s

∫

IRs





N
∑

j=1

cje
−ixj ·y

N
∑

k=1

cke
ixk·y



 dµ(y)

=
1

√

(2π)s

∫

IRs

∣

∣

∣

∣

∣

∣

N
∑

j=1

cje
−ixj ·y

∣

∣

∣

∣

∣

∣

2

dµ(y) ≥ 0.

The last inequality holds because of the conditions imposed on the measure µ. �

2.3 Strictly Positive Definite Functions

In order to accomplish our goal of guaranteeing a well-posed interpolation problem,
we have to extend (if possible) Bochner’s characterization to strictly positive definite
functions.

We begin with a sufficient condition for a function to be strictly positive definite
on IRs.

For this result we require the notion of the carrier of a (non-negative) Borel measure
defined on some topological space X. This set is given by

X \
⋃

{O : O is open and µ(O) = 0}.

Theorem 2.3.1 Let µ be a non-negative finite Borel measure on IRs whose carrier is
not a set of Lebesgue measure zero. Then the Fourier transform of µ is strictly positive
definite on IRs.

Proof: As in the proof of Bochner’s Theorem we have

N
∑

j=1

N
∑

k=1

cjckµ̂(xj − xk) =
1

√

(2π)s

N
∑

j=1

N
∑

k=1

cjck

[
∫

IRs

e−i(xj−xk)·ydµ(y)

]

=
1

√

(2π)s

∫

IRs





N
∑

j=1

cje
−ixj ·y

N
∑

k=1

cke
ixk·y



 dµ(y)
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=
1

√

(2π)s

∫

IRs

∣

∣

∣

∣

∣

∣

N
∑

j=1

cje
−ixj ·y

∣

∣

∣

∣

∣

∣

2

dµ(y) ≥ 0.

Now let

g(y) =

N
∑

j=1

cje
−ixj ·y,

and assume that the points xj are all distinct and c 6= 0. In this case the functions
y 7→ e−ixj ·y are linearly independent, and thus the zero set of g, i.e., {y ∈ IRs : g(y) =
0} has Lebesgue measure zero. Therefore, the only remaining way to make the above
inequality an equality is if the carrier of µ is contained in the zero set of g, i.e., has
Lebesgue measure zero. �

The following corollary gives us a way to construct strictly positive definite func-
tions.

Corollary 2.3.2 Let f be a continuous non-negative function in L1(IR
s) which is not

identically zero. Then the Fourier transform of f is strictly positive definite on IRs.

Proof: We use the measure µ defined for any Borel set B by

µ(B) =

∫

B
f(x)dx.

Then the carrier of µ is equal to the closed support of f . However, since f is non-
negative and not identically equal to zero, its support has positive Lebesgue measure,
and hence the Fourier transform of f is strictly positive definite by the preceding
theorem. �

Remark: Work toward an analog of Bochner’s Theorem, i.e., an integral character-
ization for functions which are strictly positive definite on IRs, is given in [112] for
s = 1.

Example: The Gaussian
Φ(x) = e−α‖x‖2

, α > 0, (2.3)

is strictly positive definite on IRs for any s. This is essentially due to the fact that
the Fourier transform of a Gaussian is again a Gaussian. In particular, for α = 1

2

we have Φ̂ = Φ which can be verified by direct calculation. The general statement
follows from the properties of the Fourier transform (complete details are given in the
book by Wendland on pp. 50 and 69). An easier argument (using completely monotone
functions) will become available later.

Remark: Since Gaussians play a central role in statistics, this is a good place to
mention that positive definite functions are – up to a normalization Φ(0) = 1 – identical
with characteristic functions of distribution functions in statistics.

Finally, a criterion to check whether a given function is strictly positive definite is
given in [634].

12



Theorem 2.3.3 Let Φ be a continuous function in L1(IR
s). Φ is strictly positive def-

inite if and only if Φ is bounded and its Fourier transform is non-negative and not
identically equal to zero.

Remark: The proof of Theorem 2.3.3 shows that – if Φ 6≡ 0 (which implies that Φ̂ 6≡ 0)
– we need to ensure only that Φ̂ be non-negative in order for Φ to be strictly positive
definite.

Example: Theorem 2.3.3 can be used to show that the so-called inverse multiquadrics

Φ(x) =
(

‖x‖2 + α2
)−β

, α > 0, β >
s

2
, (2.4)

are strictly positive definite on IRs (complete details are given in [634]). By using
another argument based on completely monotone functions we will be able to show
that in fact we need to require only β > 0, and therefore the inverse multiquadrics are
strictly positive definite on any IRs.

2.4 Positive Definite Radial Functions

We now turn our attention to positive definite radial functions. Theorem 2.1.2 can be
used to prove the following characterization due to Schoenberg (see [569], p.816).

Theorem 2.4.1 A continuous function ϕ : [0,∞) → IR is positive definite and radial
on IRs if and only if it is the Bessel transform of a finite non-negative Borel measure
µ on [0,∞), i.e.,

ϕ(r) =

∫ ∞

0
Ωs(rt)dµ(t),

where

Ωs(r) =

{

cos r for s = 1,

Γ
(

s
2

) (

2
r

)(s−2)/2
J(s−2)/2(r) for s ≥ 2,

and J(s−2)/2 is the classical Bessel function of the first kind of order (s − 2)/2.

Since any function which is positive definite and radial on IRs1 is also positive
definite and radial on IRs2 as long as s2 ≤ s1, those functions which are positive definite
and radial on IRs for all s are of particular interest. This latter class of functions
was also characterized by Schoenberg ([569], pp. 817–821.). We saw above that the
Gaussians and inverse multiquadrics provide examples of such functions.

Theorem 2.4.2 A continuous function ϕ : [0,∞) → IR is positive definite and radial
on IRs for all s if and only if it is of the form

ϕ(r) =

∫ ∞

0
e−r2t2dµ(t),

where µ is a finite non-negative Borel measure on [0,∞).
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Remark: Schoenberg referred to the functions which are positive definite and radial
on IRs for all s as positive definite radial functions on `2.

We end this section with examples of functions that are strictly positive definite
and radial on IRs with restrictions on the space dimension s. Moreover, the following
functions differ from the previous ones in that they have compact support.
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Examples:

1. The truncated power function

ϕ`(r) = (1 − r)`
+ (2.5)

is strictly positive definite and radial on IRs provided ` satisfies ` ≥ b s
2c + 1. For

details see [634]. Here we have used the cutoff function (·)+ which is defined by

(x)+ =

{

x, for x ≥ 0,

0, for x < 0.

2. Let f ∈ C[0,∞) be non-negative and not identically equal to zero, and define the
function ϕ by

ϕ(r) =

∫ ∞

0
(1 − rt)k−1

+ f(t)dt. (2.6)

Then ϕ is strictly positive definite and radial on IRs provided k ≥ b s
2c + 2. This

can been verified by considering the quadratic form

N
∑

j=1

N
∑

k=1

cjckϕ(‖xj − xk‖) =

∫ ∞

0

N
∑

j=1

N
∑

k=1

cjckϕk−1(t‖xj − xk‖)f(t)dt

which is non-negative since ϕk−1 is strictly positive definite by the first example,
and f is non-negative. Since f is also assumed to be not identically equal to zero,
the only way for the quadratic form to equal zero is if c = 0.
Note that (2.6) amounts to another integral transform of f with the compactly
supported truncated power function as integration kernel. We will take another
look at these functions in the context of multiply monotone functions below.

The Schoenberg characterization of positive definite radial functions on IRs for all
s implies that we have a finite non-negative Borel measure µ on [0,∞) such that

ϕ(r) =

∫ ∞

0
e−r2t2dµ(t).

If we want to find a zero r0 of ϕ then we have

ϕ(r0) =

∫ ∞

0
e−r2

0
t2dµ(t) = 0.

Since the exponential function is positive and the measure is non-negative, it follows
that µ must be the zero measure. However, then φ is identically equal to zero. There-
fore, a non-trivial function ϕ that is positive definite and radial on IRs for all s can have
no zeros. This implies in particular that there are no compactly supported univariate
continuous functions that are positive definite and radial on IRs for all s.
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2.5 Completely Monotone Functions

We now introduce a class of functions which is very closely related to positive definite
radial functions and leads to a simple characterization of such functions.

Definition 2.5.1 A function ϕ : [0,∞) → IR which is in C[0,∞) ∩ C∞(0,∞) and
which satisfies

(−1)`ϕ(`)(r) ≥ 0, r > 0, ` = 0, 1, 2, . . . ,

is called completely monotone on [0,∞).

Example: Some examples of completely monotone functions are

1. ϕ(r) = α, α ≥ 0,

2. ϕ(r) = e−αr, α ≥ 0,

3. ϕ(r) =
α

r1−α
, α ≤ 1,

4. ϕ(r) =
1

(r + α2)β
, α > 0, β ≥ 0.

The following theorem gives an integral characterization of completely monotone
functions.

Theorem 2.5.2 (Hausdorff-Bernstein-Widder Theorem) A function ϕ : [0,∞) → IR
is completely monotone on [0,∞) if and only if it is the Laplace transform of a finite
non-negative Borel measure µ on [0,∞), i.e., ϕ is of the form

ϕ(r) = Lµ(r) =

∫ ∞

0
e−rtdµ(t).

Remark: Widder’s proof of this theorem can be found in [644], p. 160, where he reduces
the proof of this theorem to another theorem by Hausdorff on completely monotone
sequences. A detailed proof can also be found in the books by Cheney and Light [132]
and Wendland [634]. �

Remark: Some properties of completely monotone functions are:

1. A non-negative finite linear combination of completely monotone functions is
completely monotone.

2. The product of two completely monotone functions is completely monotone.

The following connection between positive definite radial and completely monotone
functions was first pointed out by Schoenberg in 1938.

Theorem 2.5.3 A function ϕ is completely monotone on [0,∞) if and only if Φ =
ϕ(‖ · ‖2) is positive definite and radial on IRs for all s.
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Remark: Note that the function Φ is now defined via the square of the norm. This is
different from our earlier definition of radial functions (see Definition 1.2.8).

Proof: One possibility is to use a change of variables to combine Schoenberg’s charac-
terization of functions that are positive definite and radial on any IRs, Theorem 2.4.2,
with the Hausdorff-Bernstein-Widder characterization of completely monotone func-
tions. To get more insight we present an alternative proof of the claim that the com-
pletely monotone function ϕ gives rise to a Φ that is positive definite and radial on any
IRs. Details for the other direction can be found, e.g., in [634].

The Hausdorff-Bernstein-Widder Theorem implies that we can write ϕ as

ϕ(r) =

∫ ∞

0
e−rtdµ(t)

with a finite non-negative Borel measure µ. Therefore, Φ(x) = ϕ(‖x‖2) has the repre-
sentation

Φ(x) =

∫ ∞

0
e−‖x‖2tdµ(t).

To see that this function is positive definite on any IRs we consider the quadratic form

N
∑

j=1

N
∑

k=1

cjckΦ(xj − xk) =

∫ ∞

0

N
∑

j=1

N
∑

k=1

cjcke
−t‖xj−xk‖

2

dµ(t).

Since we saw earlier that the Gaussians are strictly positive definite and radial on any
IRs it follows that the quadratic form is non-negative. �.

We can see from the previous proof that if the measure µ is not concentrated in the
origin, then Φ is even strictly positive definite and radial on any IRs. This condition on
the measure is equivalent with φ not being constant. With this additional restriction
on ϕ we can apply the notion of a completely monotone function to the scattered
data interpolation problem. The following interpolation theorem was already proved
by Schoenberg in 1938 ([569], p. 823).

Theorem 2.5.4 If the function ϕ : [0,∞) → IR is completely monotone but not con-
stant, then ϕ(‖ · ‖2) is strictly positive definite and radial on IRs for any s.

Proof: Very similar to earlier proofs. We obtain strictness by using the measure
condition, i.e., the property that ϕ is not constant. �

Example: The following functions are completely monotone and not constant. There-
fore, they lead to strictly positive definite radial functions on any IRs, and can be used
as basic functions to generate bases for (1.5).

1. The functions ϕ(r) = (r + α2)−β , α, β > 0, are completely monotone and not
constant since

(−1)`ϕ(`)(r) = (−1)2`β(β + 1) · · · (β + `− 1)(r + α2)−β−` ≥ 0, ` = 0, 1, 2, . . . .

Thus

Pf(x) =
N

∑

j=1

cj

(

‖x − xj‖2 + α2
)−β

, x ∈ IRs,
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can be used to solve the scattered data interpolation problem. The associated
interpolation matrix is guaranteed to be positive definite. These functions are
the inverse multiquadrics encountered earlier. Now it is clear that the earlier
restriction β > s

2 is no longer required.

2. The functions ϕ(r) = e−αr, α > 0, are completely monotone and not constant
since

(−1)`ϕ(`)(r) = α`e−αr ≥ 0, ` = 0, 1, 2, . . . .

Thus

Pf(x) =

N
∑

j=1

cje
−α‖x−xj‖

2

, x ∈ IRs,

corresponds to interpolation with Gaussian radial basis functions.

Remarks:

1. A complete characterization of strictly positive definite functions in terms of
completely monotone functions, i.e., the converse of Schoenberg’s Theorem 2.5.4,
is given in Wendland’s book [634].

2. We just saw (for the second time) that Gaussians are strictly positive definite and
radial on all IRs. Also, Theorem 1.2.6 stating basic properties of positive definite
functions shows us that (positive) linear combinations of (strictly) positive defi-
nite functions are (strictly) positive definite. The Schoenberg characterization of
functions that are (strictly) positive definite and radial on any IRs, Theorem 2.4.2,
shows that all such functions are given as linear combinations of Gaussians.

2.6 Multiply Monotone Functions

As we will see below, another interesting class of functions is given by

Definition 2.6.1 A function ϕ : (0,∞) → IR which is in Ck−2(0,∞) (k ≥ 2), and for
which (−1)lϕ(l)(r) is non-negative, non-increasing, and convex for l = 0, 1, 2, . . . , k − 2
is called k-times monotone on (0,∞). In case k = 1 we only require ϕ ∈ C(0,∞) to be
non-negative and non-increasing.

Since convexity of ϕ means that ϕ( r1+r2

2 ) ≤ ϕ(r1)+ϕ(r2)
2 , or simply ϕ′′(r) ≥ 0 if ϕ′′

exists, a multiply monotone function is in essence just a completely monotone function
whose monotonicity is “truncated”.
Examples:

1. The truncated power function

ϕ`(r) = (1 − r)`
+

is `-times monotone for any `.
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2. If we define the integral operator I by

(If)(r) =

∫ ∞

r
f(s)ds, r ≥ 0,

and f is `-times monotone, then If is ` + 1-times monotone.

Remark: The operator I plays an important role in the construction of compactly
supported radial basis functions (more later).

An integral representation for the class of multiply monotone functions was given
by Williamson [645] but apparently already known to Schoenberg in 1940.

Theorem 2.6.2 A continuous function ϕ : (0,∞) → IR is k-times monotone on (0,∞)
if and only if it is of the form

ϕ(r) =

∫ ∞

0
(1 − rt)k−1

+ dµ(t), (2.7)

where µ is a non-negative Borel measure on (0,∞).

Proof: To see that a function of the form 2.7 is indeed multiply monotone we just need
to differentiate under the integral (since derivatives up to order k− 2 of (1− rt)k−1

+ are
continuous and bounded). The other direction can be found in [645]. �

For k → ∞ this characterization is equivalent to the Hausdorff-Bernstein-Widder
characterization Theorem 2.5.2. Williamson also shows that the product of multiply
monotone functions is multiply monotone.

We can see from the Examples 1 and 2 of Section 2.4 that certain multiply monotone
functions give rise to positive definite radial functions. Such a connection was first noted
by Askey [10] using the truncated power functions of Example 1 in Section 2.4 (and in
the one-dimensional case by Pólya). In the RBF literature the following theorem was
stated in Micchelli’s paper [456], and then refined by Buhmann [79]:

Theorem 2.6.3 Let k = bs/2c + 2 be a positive integer. If ϕ : (0,∞) → IR is k-times
monotone on (0,∞) but not constant, then ϕ(‖ · ‖2) is strictly positive definite and
radial on IRs.

Remark: Most versions of Theorem 2.6.3 contain misprints in the literature. The
correct form should be as stated above.

Wu [655] states

Theorem 2.6.4 A function ϕ : [0,∞) → IR is strictly positive definite and radial on
IRs for s ≤ 2k + 1 if and only if ϕ(r)r2k ∈ L1(0,∞) ∩ C[0,∞) and F1ϕ(‖ · ‖2/2) is
k-times monotone.

Using this theorem he starts with the truncated power function fk(r) = (1 − 2r)k
+

(which is k-times monotone) and obtains functions of the form

ϕk(r) = F1fk(·2/2)(r) =

√

2

π

∫ ∞

0
(1 − t2)k

+ cos(rt)dt
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which are strictly positive definite and radial in IR2k+1 and for which F1ϕk(‖ · ‖2/2) is
multiply monotone, i.e.,

(−1)` d`

dr`

(

F1ϕk(·2/2)
)

(r) =
2k−`k!

(k − `)!
fk−`(r) ≥ 0, 0 ≤ ` ≤ k.

The special case k = 0 yields

ϕ0(r) =

√

2

π
sinc(r),

and the family of functions {ϕk} generalizes the sinc function used in sampling theory.
These functions have a compactly supported Fourier transform.

However, if we start with the truncated power function ϕ(r) = (1 − 2r)k+1
+ , which

we know to be strictly positive definite and radial in IRs for s ≤ 2k +1, then (as above)

F1ϕ(·2/2)(r) =

√

2

π

∫ ∞

0
(1 − t2)k+1

+ cos(rt)dt.

In fact, Wu gives the explicit formula

√

2

π

∫ ∞

0
(1 − t2)k+1

+ cos(rt)dt = 2k+1Γ(k + 2)r−k−3/2Jk+3/2(r).

Clearly, these functions are not monotone. This seems to present a contradict the
statement of Theorem 2.6.4.

Remark: As a final remark in this chapter we mention we are a long way from having
a complete characterization of (radial) functions for which the scattered data interpo-
lation problem has a unique solution. As we will see later, such a characterization will
involve also functions which are not strictly positive definite. For example, we will men-
tion a result of Micchelli’s according to which conditionally positive definite functions
of order one can be used for the scattered data interpolation problem. Furthermore,
all of the results dealt with so far involve radial basis functions which are centered at
the given data sites. There are only limited results addressing the situation in which
the centers for the basis functions and the data sites may differ.
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