
Chapter 3

Scattered Data Interpolation

with Polynomial Precision and

Conditionally Positive Definite

Functions

3.1 Scattered Data Interpolation with Polynomial Preci-

sion

Sometimes the assumption on the form (1.1) of the solution to the scattered data
interpolation Problem 1.2.1 is extended by adding certain polynomials to the expansion,
i.e., Pf is now assumed to be of the form

Pf(x) =
N∑

k=1

ckBk(x) +
M∑

l=1

dlpl(x), x ∈ IRs, (3.1)

where p1, . . . , pM form a basis for the M =
(
s+m−1
m−1

)
-dimensional linear space Πs

m−1 of
polynomials of total degree less than or equal to m− 1 in s variables.

Since enforcing the interpolation conditions Pf(xi) = f(xi), i = 1, . . . , N , leads to
a system of N linear equations in the N +M unknowns ck and dl one usually adds the
M additional conditions

N∑

k=1

ckpl(xk) = 0, l = 1, . . . ,M,

to ensure a unique solution.

Example: For m = s = 2 we add the space of bivariate linear polynomials, i.e.,
Π2

1 = span{1, x, y}. Using the notation x = (x, y) we get the expansion

Pf(x, y) =
N∑

k=1

ckBk(x, y) + d1 + d2x+ d3y, x = (x, y) ∈ IR2,
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which we use to solve

Pf(xi, yi) = f(xi, yi), i = 1, . . . , N,

together with the three additional conditions

N∑

k=1

ck = 0,

N∑

k=1

ckxk = 0,

N∑

k=1

ckyk = 0.

Remark: While the use of polynomials is somewhat arbitrary (any other set of M
linearly independent functions could be used), it is obvious that the addition of poly-
nomials of total degree at most m− 1 guarantees polynomial precision, i.e., if the data
come from a polynomial of total degree less than or equal to m− 1 they are fitted by
that polynomial.

In general, solving the interpolation problem based on the extended expansion (3.1)
now amounts to solving a system of linear equations of the form

[
A P
P T 0

] [
c

d

]
=

[
y

0

]
, (3.2)

where the pieces are given by Ajk = Bk(xj), j, k = 1, . . . , N , Pjl = pl(xj), j = 1, . . . , N ,
l = 1, . . . ,M , c = [c1, . . . , cN ]T , d = [d1, . . . , dM ]T , y = [y1, . . . , yN ]T , and 0 is a zero
vector of length M .

It is possible to formulate a theorem concerning the well-posedness of this inter-
polation problem. As in the previous chapter we begin with an appropriate definition
from the linear algebra literature. This, however, covers only the case m = 1.

Definition 3.1.1 A real symmetric matrix A is called conditionally positive semi-
definite of order one if its associated quadratic form is non-negative, i.e.,

N∑

j=1

N∑

k=1

cjckAjk ≥ 0 (3.3)

for all c = [c1, . . . , cN ]T ∈ IRN which satisfy

N∑

j=1

cj = 0.

If c 6= 0 implies strict inequality in (3.3) then A is called conditionally positive definite
of order m.
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Remarks:

1. In the linear algebra literature the definition usually uses “≤”, and then A is
referred to as (conditionally or almost) negative definite.

2. Obviously, conditionally positive definite matrices of order one exist only for
N > 1.

3. Conditional positive definiteness of order one of a matrix A can also be interpreted
as A being positive definite on the space of vectors c such that

N∑

j=1

cj = 0.

Thus, in this sense, A is positive definite on the space of vectors c “perpendicular”
to constant functions.

Since anN×N matrix which is conditionally positive definite of order one is positive
definite on a subspace of dimension N − 1 it has the interesting property that at least
N−1 of its eigenvalues are positive. This follows immediately from the Courant-Fischer
Theorem of linear algebra (see e.g., [431], Thm. 5.8(a)):

Theorem 3.1.2 Let A be a symmetric N ×N matrix with eigenvalues

λ1 ≥ λ2 ≥ · · · ≥ λN .

Let 1 ≤ k ≤ N and for each subspace W with dimW = N − k + 1 set

ck(W ) = max
x∈W,‖x‖=1

xTAx

and
dk(W ) = min

x∈W,‖x‖=1
xTAx.

Then
ck(W ) ≥ λk, dk(W ) ≤ λN−k+1, k = 1, . . . , N.

With an additional hypothesis on A we can make an even stronger statement.

Theorem 3.1.3 An N ×N matrix A which is conditionally positive definite of order
one and has a non-positive trace has 1 negative and N − 1 positive eigenvalues.

Proof: From the Courant-Fischer Theorem we get that A has at least N − 1 positive
eigenvalues. But since tr(A) =

∑N
i=1 λi ≤ 0, where the λi denote the eigenvalues of A,

A also must have at least one negative eigenvalue. �

23



3.2 Conditionally Positive Definite Functions

In analogy to the earlier discussion of interpolation with positive definite functions
we will now introduce conditionally positive definite and strictly conditionally positive
definite functions of order m.

Definition 3.2.1 A complex-valued continuous function Φ is called conditionally pos-
itive definite of order m on IRs if

N∑

j=1

N∑

k=1

cjckΦ(xj − xk) ≥ 0 (3.4)

for any N points x1, . . . ,xN ∈ IRs, and c = [c1, . . . , cN ]T ∈ C|| N satisfying

N∑

j=1

cjp(xj) = 0,

for any complex-valued polynomial p of degree at most m− 1. The function Φ is called
strictly conditionally positive definite of order m on IRs if the points x1, . . . ,xN ∈ IRs

are distinct, and c 6= 0 implies strict inequality in (3.4).

An immediate observation is that a function which is conditionally positive definite
of orderm on IRs also is conditionally positive definite of any higher order. In particular,
this definition is more general than that for positive definite functions since the casem =
0 yields that class of functions, i.e., (strictly) conditionally positive definite functions
of order zero are (strictly) positive definite, and therefore a (strictly) positive definite
function is always (strictly) conditionally positive definite of any order.

As for positive definite functions earlier, we can restrict ourselves to real-valued,
even functions Φ and real coefficients. A detailed discussion is presented in [634].

Theorem 3.2.2 A real-valued continuous even function Φ is called conditionally pos-
itive definite of order m on IRs if

N∑

j=1

N∑

k=1

cjckΦ(xj − xk) ≥ 0 (3.5)

for any N points x1, . . . ,xN ∈ IRs, and c = [c1, . . . , cN ]T ∈ IRN satisfying

N∑

j=1

cjx
α
j = 0, |α| < m, α ∈ INs

0 .

The function Φ is called strictly conditionally positive definite of order m on IRs if the
points x1, . . . ,xN ∈ IRs are distinct, and c 6= 0 implies strict inequality in (3.5).
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Here we have used the usual multi-integer notation, i.e.,

α ∈ INs
0, |α| =

s∑

i=1

αi, and xα = xα1

1 xα2

2 · · ·xαs
s .

Remarks:

1. The matrix A with entries Ajk = Φ(xj − xk) corresponding to a real and even
strictly conditionally positive definite function of order m can also be interpreted
as being positive definite on the space of vectors c such that

N∑

j=1

cjx
α = 0, |α| < m.

Thus, in this sense, A is positive definite on the space of vectors c “perpendicular”
to polynomials of degree at most m− 1.

2. The Courant-Fischer Theorem now implies that A has at least N −m positive
eigenvalues.

Using Theorem 3.1.3 we can see that interpolation with strictly conditionally posi-
tive definite functions of order one is possible even without adding a polynomial term.
This was first observed by Micchelli [456].

Theorem 3.2.3 Suppose Φ is strictly conditionally positive definite of order one and
that Φ(0) ≤ 0. Then for any distinct points x1, . . . ,xN ∈ IRs the matrix A with entries
Ajk = Φ(xj − xk) has N − 1 positive and 1 negative eigenvalue, and is therefore non-
singular.

Proof: Clearly, the matrix A is conditionally positive definite. Moreover, the trace of
A is given by tr(A) = NΦ(0) ≤ 0. Therefore, Theorem 3.1.3 applies. �

As we will see below, this theorem covers the multiquadrics Φ(x) = −(‖x‖2 +α2)β ,
α ≥ 0, 0 < β < 1.

Another special property of a conditionally positive definite function of order one
is

Lemma 3.2.4 If C is an arbitrary real constant and the real even function Φ is
(strictly) conditionally positive definite of order one, then Φ +C is also (strictly) con-
ditionally positive definite of order one.

Proof: Simply consider

N∑

j=1

N∑

k=1

cjck[Φ(xj − xk) + C] =
N∑

j=1

N∑

k=1

cjckΦ(xj − xk) +
N∑

j=1

N∑

k=1

cjckC.

The second term on the right is zero since Φ is conditionally positive definite of order
one, i.e.,

∑N
j=1 cj = 0, and thus the statement follows. �

Before we formulate the theorem about the uniqueness of the solution to the inter-
polation problem based on expansion (3.1), we define a property which forms a very
mild restriction on the location of the data sites.
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Definition 3.2.5 We call a set of points X = {x1, . . . ,xN} ⊂ IRs m-unisolvent if
the only polynomial of total degree at most m interpolating zero data on X is the zero
polynomial.

This definition comes from polynomial interpolation, in which case it guarantees a
unique solution for interpolation to given data at a subset of the points x1, . . . ,xN by
a polynomial of degree m. A sufficient condition (to be found in [140], Ch. 9) on the
points x1, . . . ,xN to form an m-unisolvent set in IR2 is

Theorem 3.2.6 Suppose {L0, . . . , Lm} is a set of m+1 distinct lines in IR2, and that
U = {u1, . . . ,uM} is a set of M = (m+ 1)(m+ 2)/2 distinct points such that the first
point lies on L0, the next two points lie on L1 but not on L0, and so on, so that the
last m + 1 points lie on Lm but not on any of the previous lines L0, . . . , Lm−1. Then
there exists a unique interpolation polynomial of total degree at most m to arbitrary
data given at the points in U . Furthermore, if the data sites {x1, . . . ,xN} contain U
as a subset then they form an m-unisolvent set on IR2.

Proof: We use induction on m. For m = 0 the result is trivial. Take R to be the
matrix arising from polynomial interpolation at the points in U , i.e.,

Rjk = pk(uj), j, k = 1, . . . ,M,

where the pk form a basis of Π2
m. We want to show that the only possible solution to

Rc = 0 is c = 0. This is equivalent to showing that if p ∈ Π2
m satisfies

p(ui) = 0, i = 1, . . . ,M,

then p is the zero polynomial.
For each i = 1, . . . ,m, let the equation of the line Li be given by

αix1 + βix2 = γi.

Suppose now that p interpolates zero data at all the points ui as stated above.
Since p reduces to a univariate polynomial of degree m on Lm which vanishes at m+ 1
distinct points on Lm, it follows that p vanishes identically on Lm, and so

p(x1, x2) = (αmx1 + βmx2 − γm)q(x1, x2),

where q is a polynomial of degree m−1. But now q satisfies the hypothesis of the theo-
rem with m replaced by m− 1 and U replaced by Ũ consisting of the first

(
m+1

2

)
points

of U . By induction, therefore q ≡ 0, and thus p ≡ 0. This establishes the uniqueness
of the interpolation polynomial. The last statement of the theorem is obvious. �

Remarks:

1. This theorem can be generalized to IRs by using hyperplanes in IRs, and induction
on s. Chui also gives an explicit expression for the determinant of the interpola-
tion matrix associated with polynomial interpolation at the set of points U .
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2. A theorem similar to Theorem 3.2.6 is already proved by Chung and Yao [143].

3. (m − 1)-unisolvency of the points x1, . . . ,xN is equivalent to the fact that the
matrix P with

Pjl = pl(xj), j = 1, . . . , N, l = 1, . . . ,M,

where M and N are chosen as in (3.1), has full (column-)rank.

Example: As can easily be verified, three collinear points in IR2 are not 1-unisolvent,
since a linear interpolant, i.e., a plane through three arbitrary heights at these 3
collinear points is not uniquely determined. On the other hand, if a set of points
in IR2 contains 3 non-collinear points, then it is 1-unisolvent.

Now we are ready to formulate and prove

Theorem 3.2.7 If the real-valued even function Φ is strictly conditionally positive
definite of order m on IRs and the points x1, . . . ,xN form an (m − 1)-unisolvent set,
then the system of linear equations (3.2) is uniquely solvable.

Proof: Assume [c,d]T is a solution of the homogeneous linear system, i.e., y = 0. We
show that [c,d]T = 0 is the only possible solution.

Multiplication of the top block by cT yields

cTAc + cTPd = 0.

From the bottom block of (3.2) we know cTP = 0, and therefore

cTAc = 0.

Since the matrix A is conditionally positive definite by assumption we get that c = 0.
The unisolvency of the data sites, i.e., the linear independence of the columns of P ,
and the fact that c = 0 guarantee d = 0 from the top block

Ac + Pd = 0

of (3.2). �

3.3 An Analog of Bochner’s Theorem

In order to give an analog of Bochner’s theorem for conditionally positive definite
functions we have to introduce a few concepts from distribution theory. The approach
described in this section is essentially due to Madych and Nelson [417].

For the definition of generalized Fourier transforms required below we have to define
the Schwartz space of rapidly decreasing test functions

S = {γ ∈ C∞(IRs) : lim
‖x‖→∞

xα(Dβγ)(x) = 0, α,β ∈ INs
0},

where

Dβ =
∂|β|

∂xβ1

1 · · · ∂xβs
s

, |β| =
s∑

i=1

βi.
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Remarks:

1. The space S consists of all those functions γ ∈ C∞(IRs) which, together with all
their derivatives, decay faster than any power of 1/‖x‖.

2. The space S contains the space C∞
0 (IRs), the space of all infinitely differentiable

functions on IRs with compact support. We also note that C∞
0 (IRs) is a true

subspace of S since, e.g., the function γ(x) = e−‖x‖2

belongs to S but not to
C∞

0 (IRs).

3. A remarkable fact about the Schwartz space is that γ ∈ S has a classical Fourier
transform γ̂ which is also in S.

Of particular importance will be the following subspace Sm of S

Sm = {γ ∈ S : γ(x) = O(‖x‖m) for ‖x‖ → 0, m ∈ IN0}.

Furthermore, the set B of slowly increasing functions is given by

B = {f ∈ C(IRs) : |f(x)| ≤ |p(x)| for some polynomial p ∈ Πs}.

The generalized Fourier transform is now given by

Definition 3.3.1 Let Φ ∈ B be complex-valued. A continuous function Φ̂ : IRs \{0} →
C|| is called the generalized Fourier transform of Φ if there exists an integer m ∈ IN0

such that ∫

IRs

Φ(x)γ̂(x)dx =

∫

IRs

Φ̂(x)γ(x)dx

is satisfied for all γ ∈ S2m. The smallest such integer m is called the order of Φ̂.

Remarks:

1. Since one can show that the generalized Fourier transform of an s-variate polyno-
mial of degree at most 2m is zero, it follows that the inverse generalized Fourier
transform is only unique up to addition of such a polynomial.

2. Various definitions of the generalized Fourier transform exist in the literature. A
classical reference is the book by Gelfand and Vilenkin [250].

3. The order of the generalized Fourier transform is nothing but the order of the
singularity at the origin of the generalized Fourier transform.

4. For functions in L1(IR
s) the generalized Fourier transform coincides with the

classical Fourier transform, and for functions in L2(IR
s) it coincides with the

distributional Fourier transform.

We now immediately give a characterization of strictly conditionally positive definite
functions on IRs due to Iske (see [314] or [634] for details).
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Theorem 3.3.2 Suppose the complex-valued function Φ ∈ B possesses a generalized
Fourier transform Φ̂ of order m which is continuous on IRs \{0}. Then Φ is strictly
conditionally positive definite of order m if and only if Φ̂ is non-negative and non-
vanishing.

Remarks:

1. Theorem 3.3.2 states that strictly conditionally positive definite functions on
IRs are characterized by the order of the singularity of their generalized Fourier
transform at the origin, provided that this generalized Fourier transform is non-
negative and non-zero.

2. An integral characterization of conditionally positive definite functions of order
m also exists. It can be found in a paper by Sun [597] (see also [634]).

Examples: Wendland [634] explicitly computes the generalized Fourier transforms for
various popular basis functions.

1. The multiquadrics

Φ(x) = (‖x‖2 + α2)β , x ∈ IRs, α > 0, β ∈ IR \ IN0,

have generalized Fourier transforms

Φ̂(ω) =
21+β

Γ(−β)

(‖ω‖
α

)−β−s/2

Kβ+s/2(α‖ω‖), ω 6= 0,

of order m = max(0, dβe). Here Kν is the modified Bessel function of the sec-
ond kind (sometimes also called modified Bessel function of the third kind, or
MacDonald’s function) of order ν. Therefore, the functions

Φ(x) = (−1)dβe(‖x‖2 + α2)β , β > 0, β /∈ IN,

are strictly conditionally positive definite of order m = dβe (and higher). In
particular, we can use

Pf(x) =
N∑

k=1

ck
√
‖x − xk‖2 + α2 + d, x ∈ IRs, α > 0,

together will the constraint
N∑

k=1

ck = 0

to solve the scattered data interpolation problem. The resulting interpolant will
be exact for constant data. By Theorem 3.2.3 we can also use

Pf(x) =

N∑

k=1

ck
√
‖x − xk‖2 + α2, x ∈ IRs, α > 0.
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Also, the inverse multiquadrics

Φ(x) = (‖x‖2 + α2)β , β < 0,

are again shown to be strictly conditionally positive definite of order m = 0, i.e.,
strictly positive definite.

2. The powers
Φ(x) = ‖x‖β , x ∈ IRs, β > 0, β /∈ 2 IN,

have generalized Fourier transforms

Φ̂(ω) =
2β+s/2Γ( s+β

2 )

Γ(−β/2) ‖ω‖−β−s, ω 6= 0,

of order m = dβ/2e. Therefore, the functions

Φ(x) = (−1)dβ/2e‖x‖β , β > 0, β /∈ 2 IN,

are strictly conditionally positive definite of order m = dβ/2e (and higher).

3. The thin plate splines (or surface splines)

Φ(x) = ‖x‖2k log ‖x‖, x ∈ IRs, k ∈ IN,

have generalized Fourier transforms

Φ̂(ω) = (−1)k+122k−1+s/2Γ(k + s/2)k!‖ω‖−s−2k

of order m = k + 1. Therefore, the functions

Φ(x) = (−1)k+1‖x‖2k log ‖x‖, k ∈ IN,

are strictly conditionally positive definite of order m = k + 1. In particular, we
can use

Pf(x) =
N∑

k=1

ck‖x − xk‖2 log ‖x − xk‖ + d1 + d2x+ d3y, x = (x, y) ∈ IR2,

together will the constraints

N∑

k=1

ck = 0,

N∑

k=1

ckxk = 0,

N∑

k=1

ckyk = 0,

to solve the scattered data interpolation problem provided the data sites are not
all collinear. The resulting interpolant will be exact for data coming from a linear
function.

Remark: As for strictly positive definite radial functions, we will be able to connect
strictly conditionally positive definite radial functions to completely monotone func-
tions, and thus be able to obtain a simpler criterion for checking conditional positive
definiteness.
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3.4 Conditionally Positive Definite Radial Functions

In analogy to the discussion in Chapter 2 we now focus on conditionally positive definite
functions which are radial on IRs for all s. The paper [273] by Guo, Hu and Sun contains
an integral characterization for such functions. This characterization is too technical
to be included here.

The main result in [273] is a characterization of conditionally positive definite radial
functions on IRs for all s in terms of completely monotone functions.

Theorem 3.4.1 Let ϕ ∈ C[0,∞) ∩ C∞(0,∞). Then the function Φ = ϕ(‖ · ‖2) is
conditionally positive definite of order m and radial on IRs for all s if and only if
(−1)mϕ(m) is completely monotone on (0,∞).

Proof: Micchelli [456] proved that complete monotonicity implies conditional positive
definiteness. He also conjectured that the converse holds, and gave a simple proof for
this in the case m = 1. For m = 0 this is Schoenberg’s characterization of positive
definite radial functions on IRs for all s in terms of completely monotone functions
(Theorem 2.5.3). The remaining part of the theorem is shown in [273]. �

In order to get strict conditional positive definiteness we need to generalize Theo-
rem 2.5.4, i.e., the fact that ϕ not be constant.

Theorem 3.4.2 If ϕ is as in Theorem 3.4.1 and not a polynomial of degree at most
m, then Φ is strictly conditionally positive definite of order m and radial on IRs for all
s.

Examples: We can now more easily verify the conditional positive definiteness of the
functions listed in the previous example.

1. The functions

ϕ(r) = (−1)dβe(r + α2)β , α > 0, β > 0, β /∈ IN

imply
ϕ(k)(r) = (−1)dβeβ(β − 1) · · · (β − k + 1)(r + α2)β−k

so that

(−1)dβeϕ(dβe)(r) = β(β − 1) · · · (β − dβe + 1)(r + α2)β−dβe

is completely monotone. Moreover, m = dβe is the smallest possible m such that
(−1)mϕ(m) is completely monotone. Therefore, the multiquadrics

Φ(r) = (−1)dβe(r2 + α2)β , α > 0, β > 0,

are strictly conditionally positive definite of order m ≥ dβe and radial on IRs for
all s.

31



2. The functions
ϕ(r) = (−1)dβ/2erβ/2, β > 0, β /∈ 2 IN,

imply

ϕ(k)(r) = (−1)dβ/2eβ

2

(
β

2
− 1

)
· · ·

(
β

2
− k + 1

)
rβ/2−k

so that (−1)dβ/2eϕ(dβ/2e) is completely monotone and m = dβ/2e is the smallest
possible m such that (−1)mϕ(m) is completely monotone. Therefore, the powers

Φ(r) = (−1)dβ/2erβ, β > 0, β /∈ 2 IN,

are strictly conditionally positive definite of order m ≥ dβ/2e and radial on IRs

for all s.

3. The thin plate splines

Φ(‖x‖) = (−1)k+1‖x‖2k log ‖x‖, k ∈ IN,

are strictly conditionally positive definite of order m ≥ k + 1 and radial on IRs

for all s. To see this we observe that

2Φ(‖x‖) = (−1)k+1‖x‖2k log(‖x‖2).

Therefore, we let
ϕ(r) = (−1)k+1rk log r, k ∈ IN,

and get

ϕ(`)(r) = (−1)k+1k(k − 1) · · · (k − `+ 1)rk−` log r + p`(r), 1 ≤ ` ≤ k,

with p` a polynomial of degree k − `. Therefore,

ϕ(k)(r) = (−1)k+1k! log r + C

and

ϕ(k+1)(r) = (−1)k+1 k!

r
,

which is completely monotone on (0,∞).

We can also apply the integral representation of completely monotone functions
from the Hausdorff-Bernstein-Widder Theorem to the previous result. Then we get

Theorem 3.4.3 A necessary and sufficient condition that the function Φ = ϕ(‖ · ‖2)
be conditionally positive definite of order m and radial on IRs for all s is that its ϕ(m)

satisfy

(−1)mϕ(m)(r) =

∫ ∞

0
e−rtdµ(t), r > 0,

where µ is a non-negative Borel measure on (0,∞) such that

∫ 1

0
dµ(t) <∞ and

∫ ∞

1

dµ(t)

tm
<∞.
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The following examples of functions which are conditionally positive definite of
order m = 0 or m = 1 and radial on IRs for all s are taken from [521]. They are listed
with the associated measures corresponding to the formulation of Theorem 3.4.3.

Example:

1. Φ(r) = −r: m = 1, dµ(t) = − 1

2
√
πt
dt,

2. Φ(r) = −
√

1 + r2: m = 1, dµ(t) = − e−t

2
√
πt
dt,

3. Φ(r) =
1√

1 + r2
: m = 0, dµ(t) =

e−t

√
πt
dt,

4. Φ(r) = e−αr2

, α > 0: m = 0, dµ(t) = δ(t− ρ)dt, i.e., point evaluation at ρ.

Finally, Micchelli proved a more general version of Theorem 2.6.3 theorem relating
conditionally positive definite radial functions of order m on IRs and multiply mono-
tone functions. We state a stronger version due to Buhmann [79] which ensures strict
conditional positive definiteness.

Theorem 3.4.4 Let k = bs/2c−m+2 be a positive integer, and suppose ϕ ∈ Cm−1[0,∞)
is not a polynomial of degree at most m. If (−1)mϕ(m) is k-times monotone on (0,∞)
but not constant, then Φ = ϕ(‖ · ‖2) is strictly conditionally positive definite of order
m and radial on IRs.

Remark: The converse of the above result is open.

Just as we showed earlier that compactly supported radial function cannot be
strictly positive definite on IRs for all s, it is important to note that there are no
truly conditionally positive definite functions with compact support. More precisely,

Theorem 3.4.5 Assume that the complex-valued function Φ ∈ C(IRs) has compact
support. If Φ is strictly conditionally positive definite of (minimal) order m, then m is
necessarily zero, i.e., Φ is already strictly positive definite.

Proof: The hypotheses on Φ ensure that it is integrable, and therefore it possesses a
classical Fourier transform Φ̂ which is continuous. For integrable functions the gener-
alized Fourier transform coincides with the classical Fourier transform. Theorem 3.3.2
ensures that Φ̂ is non-negative in IRs \ {0} and not identically equal to zero. By conti-
nuity we also get Φ̂(0) ≥ 0, and Theorem 2.3.3 shows that Φ is strictly positive definite.
�.

Remark: Theorem 3.4.4 together with Theorem 3.4.5 implies that if we perform m-
fold anti-differentiation on a non-constant k-times monotone function, then we obtain
a function that is strictly positive definite and radial on IRs for s ≤ 2(k +m) − 3.
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Example: The function ϕk(r) = (1−r)k
+ is k-times monotone. To avoid the integration

constant for the compactly supported truncated power function we compute the anti-
derivative via

Iϕk(r) =

∫ ∞

r
ϕk(s)ds =

∫ ∞

r
(1 − s)k

+ds =
(−1)k

k + 1
(1 − r)k+1

+ .

m-fold anti-differentiation yields

Imϕk(r) = IIm−1ϕk(r) =
(−1)mk

(k + 1)(k + 2) · · · (k +m)
(1 − r)k+m

+ .

Therefore, by the Buhmann-Micchelli Theorem, the function

ϕ(r) = (1 − r)k+m
+

is strictly conditionally positive definite of orderm and radial on IRs for s ≤ 2(k+m)−3,
and by Theorem 3.4.5 it is even strictly positive definite and radial on IRs. This was
also observed in Example 1 at the end of Section 2.4. In fact, we saw there that ϕ is
strictly positive definite and radial on IRs for s ≤ 2(k +m) − 1.

We see that we can construct strictly positive definite compactly supported radial
functions by anti-differentiating the truncated power function. This is essentially the
approach taken by Wendland to construct his popular compactly supported radial basis
functions. We describe this construction in the next chapter.

3.5 Composition of Conditionally Positive Definite Func-

tions

When Schoenberg first studied conditionally positive definite matrices of order one it
was in connection with isometric embeddings. Based on earlier work by Karl Menger
[453] he had the following result characterizing a conditionally positive definite matrix
as a certain distance matrix (see [568]).

Theorem 3.5.1 Let A be a real symmetric N × N matrix with all diagonal entries
zero and all other elements positive. Then −A is conditionally positive semi-definite if
and only if there exist N points y1, . . . ,yN ∈ IRN for which

Ajk = ‖yj − yk‖2.

These points are the vertices of a simplex in IRN .

There is also a close connection between conditionally positive semi-definite matrices
and those which are positive semi-definite. This is a classical result from linear algebra
called Schur’s theorem. We state a stronger version due to Micchelli [456] that also
covers the strict case.
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Theorem 3.5.2 A symmetric matrix −A is conditionally positive semi-definite if and
only if the Schur exponential (e−αAjk)N

j,k=1 is positive semi-definite for all α > 0. More-
over, it is positive definite if and only if

Ajk >
Ajj +Akk

2
, j 6= k.

A proof of the classical (non-strict) Schur Theorem can be found, e.g., in the book
by Horn and Johnson [308].

As an immediate corollary we get an earlier result by Schoenberg (see [569], Thm. 5).
We have translated Schoenberg’s embedding language into that of conditionally positive
definite and completely monotone functions.

Corollary 3.5.3 A function ϕ(·) is conditionally positive definite of order one and
radial on IRs for all s if and only if the functions e−αϕ(·2) are positive definite and
radial on IRs for all s and for all α > 0, i.e., e−αϕ(·) is completely monotone for all
α > 0.

Example: The matrix B defined by

Bjk = e−‖xj−xk‖
α

, 0 < α ≤ 2, j, k = 1, . . . , N,

is positive semi-definite, and if the points x1, . . . ,xN are distinct B is positive definite.
This is true since Schoenberg [569] showed that the matrix A defined by

Ajk = −‖xj − xk‖α, 0 < α ≤ 2, j, k = 1, . . . , n,

is conditionally positive semi-definite, and conditionally positive definite for distinct
points.

A more general result regarding the composition of conditionally positive definite
functions is given by Baxter [26].

Theorem 3.5.4 Suppose ϕ and ψ are functions that are conditionally positive definite
of order one are radial on IRs with ϕ(0) = 0. Then ψ ◦ ϕ is also conditionally positive
definite of order one and radial on IRs. Indeed, if ψ is strictly conditionally positive
definite of order one and radial and ϕ vanishes only at zero, then ψ ◦ ϕ is strictly
conditionally positive definite of order one and radial.

We close with some remarks.

Remarks:

1. More results with a similar flavor can be found in [26], [456], and [445].

2. Many of the results given in the previous sections can be generalized to vector-
valued or even matrix-valued functions. Some work is done in [407, 408], [474],
[484], and [548].
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3. Another possible generalization is to consider (strictly) (conditionally) positive
definite kernels on X × X, where X is some abstract point set and k1, . . . , km

are given real-valued functions governing the order m of conditional positive def-
initeness.

4. We point out that the approach to solving the interpolation problems taken in the
previous section always assumes that the knots, i.e., the points xk, k = 1, . . . , N ,
at which the basis functions are centered, coincide with the data sites. This is
a fairly severe restriction, and it has been shown in examples in the context of
least squares approximation of scattered data (see e.g., [237, 238], or [192]) that
better results can be achieved if the knots are chosen different from the data sites.
Theoretical results in this direction are very limited, and are reported in [521]
and in [596].
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