
Chapter 8

Some Issues Related to Practical

Implementations

In this chapter we will collect some information about issues that are important for
the practical use of radial basis function and moving least squares methods. These
issues include stability and conditioning of radial basis function interpolants, the trade-
off principle which explains the trade-off between achievable convergence rates and
numerical stability or efficiency, as well as algorithms for fast solution and evaluation
of radial basis interpolants and moving least squares approximants.

8.1 Stability and Conditioning of Radial Basis Function

Interpolants

A standard criterion to measure the numerical stability of an approximation method
is its condition number. In particular, for radial basis function interpolation we need
to look at the condition number of the interpolation matrix A with entries Aij =
Φ(xi − xj). For any matrix A the `2-condition number of A is given by

cond(A) = ‖A‖2‖A−1‖2 =
σmax

σmin
,

where σmax and σmin are the largest and smallest singular values of A. If we concentrate
on positive definite matrices A, then we can also take the ratio

λmax

λmin

of largest and smallest eigenvalues as an indicator for the condition number of A.
What do we know about these eigenvalues? First, Gershgorin’s Theorem says that

|λmax −Aii| ≤
N
∑

j=1
j 6=i

|Aij |.

Therefore,
λmax ≤ N max

i,j=1,...,N
|Aij | = N max

xi,xj∈X
Φ(xi − xj),

88

which, since Φ is strictly positive definite, becomes

λmax ≤ NΦ(0)

by the properties of positive definite functions listed in Theorem 1.2.6. Now, as long
as the data are not too wildly distributed, N will grow as h−s

X ,Ω which is acceptable.
Therefore, the main work in establishing a bound for the condition number of A lies
in finding lower bounds for λmin (or correspondingly upper bounds for the norm of the
inverse ‖A−1‖2). This is the subject of several papers by Ball, Narcowich, Sivakumar
and Ward [19, 479, 481, 482, 483] who make use of a result by Ball [18] on eigenvalues
of distance matrices. Ball’s result follows from the Rayleigh quotient, which gives the
smallest eigenvalue of a positive definite matrix as

λmin = inf
c∈IRN \0

cTAc

cT c
.

This leads to the following bound for the norm of the inverse of A.

Lemma 8.1.1 Let x1, . . . ,xN , be distinct points in IRs and let Φ : IRs → IR be either
strictly positive definite or strictly conditionally negative definite of order one with
Φ(0) ≤ 0. Also, let A be the interpolation matrix with entries Aij = Φ(xi −xj). If the
inequality

N
∑

i=1

N
∑

j=1

cicjAij ≥ θ‖c‖2
2

is satisfied whenever the components of c satisfy
∑N

j=1 cj = 0, then

‖A−1‖2 ≤ θ−1.

Note that for positive definite matrices the Rayleigh quotient implies θ = λmin which
shows why lower bounds on the smallest eigenvalue correspond to to upper bounds on
the norm of the inverse of A. In order to obtain the bound for conditionally negative
matrices the Courant-Fischer Theorem 3.1.2 needs to be employed.

Narcowich and Ward establish bounds on the norm of the inverse of A in terms of
the separation distance of the data sites

qX =
1

2
min
i6=j

‖xi − xj‖2.

We can picture qX as the radius of the largest ball that can be placed around every
point in X such that no two balls overlap (see Figure 8.1).

The derivation of these bounds is rather technical, and for details we refer to either
the original papers by Narcowich, Ward and co-workers, the more recent paper [557]
by Schaback (who uses a slightly simpler strategy), or Wendland’s book [634]. We now
list several bounds as derived in [634].

Examples: In the examples below the explicit constants

Ms = 12

(

πΓ2(s+2
2)

9

)1/(s+1)

≤ 6.38s and Cs =
1

2Γ(s+2
2)

(

Ms√
8

)s

89

q

Figure 8.1: The separation distance qX for a set of data sites in IR2.

are used. The upper bound for Ms can be obtained using Stirling’s formula (see, e.g.,
[634]).

1. For Gaussians Φ(x) = e−α‖x‖2
one obtains

λmin ≥ Cs(2α)−s/2e−40.71s2/(q2
Xα)q−s

X .

2. For (inverse) multiquadrics Φ(x) =
(

‖x‖2 + α2
)β

, β ∈ IR \ IN0 one obtains

λmin ≥ C(α, β, s)q
β− s

2
+ 1

2
X e−2αMs/qX

with another explicitly known constant C(α, β, s).

3. For thin plate splines Φ(x) = (−1)k+1‖x‖2k log ‖x‖, k ∈ IN, one obtains

λmin ≥ Csck(2Ms)
−s−2kq2k

X

with another explicitly known constant ck.

4. For the powers Φ(x) = (−1)dβ/2e‖x‖β, β > 0, β /∈ 2 IN, one obtains

λmin ≥ Cscβ(2Ms)
−s−βqβ

X

with another explicitly known constant cβ.

5. For the compactly supported functions Φs,k(x) = ϕs,k(‖x‖) of Section 4 one
obtains

λmin ≥ C(s, k)q2k+1
X

with a constant C(s, k) depending on s and k.

By providing matching lower bounds for ‖A−1‖2 Schaback [547] showed that the
upper bounds on the norm of the inverse obtained earlier by Narcowich, Ward and
others are near optimal.

For the infinitely smooth functions of Examples 1 and 2 we see that, for a fixed shape
parameter α, the lower bound for λmin goes exponentially to zero, and therefore the

90

condition number of the interpolation matrix A grows exponentially, as the separation
distance qX decreases. This shows that, if one adds more interpolation points in order
to improve the accuracy of the interpolant (within the same domain Ω), then the
problem becomes increasingly ill-conditioned. Of course one would always expect this
to happen, but here the ill-conditioning grows primarily due to the decrease in the
separation distance qX , and not to the increase in the number N of data points. We will
come back to this observation when we discuss a possible change of basis in Section 8.4.

On the other hand, if one keeps the number of points (or at least the separation
distance) fixed and instead increases (reduces) the value of α for Gaussians (multi-
quadrics), then the condition number of A is improved. This corresponds to the sta-
tionary approximation setting (which we did not discuss in detail earlier). In this case
it is possible to show that the upper bound for the error estimate increases, i.e., the
accuracy of the interpolant deteriorates. Conversely, one can attempt to improve the
accuracy of a radial basis function interpolant by decreasing (increasing) α for Gaus-
sians (multiquadrics). However, this is only possible at the cost of numerical instability
(ill-conditioning of A). This is to be expected since for small (large) values of α the
Gaussians (multiquadrics) more and more resemble a constant function, and therefore
the rows (as well as columns) of the matrix A become more and more alike, so that the
matrix becomes almost singular – even for well separated data sites. In the literature
this phenomenon has been referred to as trade-off or (uncertainty) principle (see, e.g.,
the paper [549] by Schaback). The relation between the power function (as part of
the upper bound on the approximation error) and minimal eigenvalue (as part of the
measure of the condition number) is derived below.

Remarks:

1. This trade-off has led a number of people to search for an “optimal” value of
the shape parameter, i.e., a value that yields maximal accuracy, while still main-
taining numerical stability. For example, in his original work on (inverse) mul-
tiquadric interpolation in IR2 Hardy [286] suggested using α = 0.815d, where
d = 1

N

∑N
i=1 di, and di is the distance from xi to its nearest neighbor. Later

Franke [231] suggested using α = 1.25 D√
N

, where D is the diameter of the small-

est circle containing all data points. Foley [221] based his strategy for finding a
good value for α on the observation that that good value was similar for mul-
tiquadrics and inverse multiquadrics. Other studies were reported in [102] and
[103]. A more recent algorithm was proposed by Rippa in [531]. He suggests
a variant of cross validation known as “leave-one-out” cross validation. This
method is rather popular in the statistics literature where it is also known as
PRESS (Predictive REsidual Sum of Squares). In this algorithm an “optimal”
value of α is selected by minimizing the least squares error for a fit based on the
data for which one of the centers was “left out”. A similar strategy was proposed
earlier in [262] for the solution of elliptic partial differential equations via the dual
reciprocity method based on multiquadric interpolation.

2. More recently, Fornberg and co-workers have investigated the dependence of the
stability on the values of the shape parameter α in a series of papers (e.g.,
[159, 228, 361]). On the one hand, they suggest a way of stably computing very
accurate (inverse) multiquadric and Gaussian interpolants (with extreme values

91

of α) by using a complex Contour-Padé integration algorithm. This algorithm
is rather expensive, and so far only applicable for problems involving no more
than 100 centers. On the other hand, Fornberg and co-workers as well as Sch-
aback [558] have shown that in the limiting case of the shape parameter α, i.e.,
with very “flat” basis functions, the infinitely smooth radial basis function inter-
polants approach multivariate polynomial interpolants. Therefore, Fornberg and
his co-workers suggest using radial basis functions as a generalization of spectral
methods (applicable also in the case of scattered data) for the numerical solution
of partial differential equations. This approach was also taken recently by Sarra
[543].

We can observe that for the functions with finite smoothness (as in Examples 3–5)
the lower bounds for ‖A−1‖2 are of the same order as the upper bounds for the power
function. The following theorem therefore shows that the order of both of these bounds
is optimal. The theorem also provides the foundation for the trade-off principle referred
to above.

Theorem 8.1.2 Let u∗j (x), j = 1, . . . , N , denote the cardinal functions for interpo-
lation with the strictly positive definite function Φ as explained in Chapter 5, and
let λx be the minimal eigenvalue of the (N + 1) × (N + 1) matrix Ax with entries
Ax,ij = Φ(xi − xj), i, j = 0, 1, . . . , N , where we have added the evaluation point to the
set of centers, i.e., x0 = x. Then

λ−1
x P 2

Φ,X (x) ≥ 1 +
N
∑

j=1

[

u∗j (x)
]2
.

Proof: The definition of the power function (with standard interpolation matrix A,
and right-hand side vector b(x) = [Φ(x−x1), . . . ,Φ(x−xN)]T , see Section 5.3) yields

P 2
Φ,X (x) = (u∗(x))TAu∗(x) − 2(u∗(x))T b(x) + Φ(0)

=

N
∑

j=1

N
∑

k=1

u∗j (x)u∗k(x)Φ(xj − xk) − 2

N
∑

j=1

u∗j (x)Φ(x − xj) + Φ(x − x).

If we define u∗0(x) = −1 and x0 = x, then

P 2
Φ,X (x) =

N
∑

j=0

N
∑

k=0

u∗j (x)u∗k(x)Φ(xj − xk).

Finally, by using the Rayleigh quotient to get

λx ≤ cTAxc

cT c

for the (augmented) coefficient vector c = (u∗
x(x)) ∈ IRN+1 and (N + 1) × (N + 1)

matrix Ax, we have

P 2
Φ,X (x) ≥ λx

N
∑

j=0

[

u∗j (x)
]2
,

92

and the statement follows by splitting off the j = 0 term again. �

Theorem 8.1.2 not only implies the uncertainty principle (or trade-off principle)
[549]

λx ≤ P 2
Φ,X (x) or λmin ≤ min

j=1,...,N
P 2

Φ,X\{xj}(x),

which gives the power function as an upper bound for the smallest eigenvalue and vice
versa. The theorem also provides an upper bound on the Lebesgue function, i.e.,

N
∑

j=1

∣

∣u∗j (x)
∣

∣

2 ≤
P 2

Φ,X (x)

λx

− 1.

Since the power function can be bounded in terms of the fill distance hX ,Ω, and the
minimum eigenvalue in terms of the separation distance qX , we see that for quasi-
uniformly distributed data, i.e., if hX ,Ω ' qX , the Lebesgue function will not grow too
rapidly.

There is also a trade-off principle for compactly supported functions. This was
explained theoretically as well as illustrated with numerical experiments by Schaback
[553]. The consequences are as follows. In the case of stationary interpolation, i.e.,
if we scale the support size of the basis functions proportional to the fill distance
hX ,Ω, then the “bandwidth” of the interpolation matrix A is constant. This means
we can apply numerical algorithms (e.g., conjugate gradient) that can be performed
in O(N) computational complexity. The method is numerically stable, but there will
be essentially no convergence (see Table 8.1). In the non-stationary case, i.e., with
fixed support size, the bandwidth of A increases as hX ,Ω decreases. This results in
convergence (i.e., the error decreases) as we showed in Chapter 5, but the interpolation
matrices will become more and more dense as well as ill-conditioned. Therefore, this
approach is not very efficient (see Table 8.2).

In Tables 8.1 and 8.2 we illustrate this behavior. We use the compactly supported
function ϕ3,1(r) = (1 − r)4+ (4r + 1) to interpolate Franke’s function

F (x, y) =
3

4

[

exp

(

−(9x− 2)2

4
− (9y − 2)2

4

)

+ exp

(

−(9x+ 1)2

49
− (9y + 1)2

10

)]

+
1

2
exp

(

−(9x− 7)2

4
− (9y − 3)2

)

− 1

5
exp

(

−(9x− 4)2 − (9y − 7)2
)

on a grid of equally spaced points in the unit square [0, 1]2. In the stationary case (Ta-
ble 8.1) the support of the basis function is scaled to contain 25 grid points. Therefore,
the “bandwidth” of the interpolation matrix A is kept constant (at 25), so that A is
very sparse for finer grids. We can observe convergence for the first few iterations, but
once an `2-error of approximately 2×10−3 is reached, there is no further improvement.
This behavior is not yet fully understood. However, it is similar to what happens in
the approximate approximation method of Maz’ya (see, e.g., [434]). The rate listed in
the table is the exponent β of the observed `2-convergence rate O(hβ). The % nonzero
column indicates the sparsity of the interpolation matrices, and the time is measured
in seconds.

In the non-stationary case (Table 8.2) we used the basis function without adjusting
its support size. This is the situation to which the error bounds of Chapter 5 apply.

93

Mesh `2-error rate % nonzero time

3 × 3 2.367490e-01 100 0
5 × 5 6.572754e-02 1.849 57.8 0
9 × 9 1.740723e-02 1.917 23.2 0

17 × 17 2.362950e-03 2.881 7.47 1
33 × 33 2.060493e-03 0.198 2.13 1
65 × 65 2.012010e-03 0.034 0.06 11

129 × 129 2.007631e-03 0.003 0.01 158

Table 8.1: 2D stationary interpolation with ϕ(r) = (1 − r)4
+(4r + 1), 25 points in

support.

Mesh `2-error rate

3 × 3 2.407250e-01
5 × 5 7.101748e-02 1.761
9 × 9 1.833534e-02 1.954

17 × 17 1.392914e-03 3.718
33 × 33 3.050789e-04 2.191
65 × 65 9.314516e-06 5.034

Table 8.2: 2D non-stationary interpolation with ϕ(r) = (1− r)4
+(4r+ 1), unit support.

We have convergence – although it is not obvious what the rate might be. However,
the matrices become increasingly dense. Therefore, Table 8.2 is missing the entry for
the 129 × 129 case, and even though no times are provided in that table, the time for
the 65 × 65 case is already more than 20 minutes on a standard desktop PC.

8.2 Multilevel Interpolation and Approximation

In order to overcome the problems with both approaches for interpolation with com-
pactly supported radial functions described above, Schaback suggested using a multi-
level stationary scheme. This scheme was implemented first by Floater and Iske [217]
and later studied by a number of other researchers (see, e.g., [115, 209, 281, 297, 318,
478, 630].

The basic idea of the multilevel interpolation algorithm is to scale the size of the
support of the basis function with hX ,Ω, but to interpolate to residuals on progressively
refined sets of centers. This method has all of the combined benefits of the methods
described earlier: it is computationally efficient (can be performed in O(N) operations),
well-conditioned, and convergent.

An algorithm for multilevel interpolation is as follows:

Algorithm: (Multilevel interpolation)

1. Create nested point sets X1 ⊂ · · · ⊂ XK = X ⊂ IRs, and initialize Pf(x) = 0.

2. For k = 1, 2, . . . ,K do

94

Mesh `2-error rate % nonzero time

3 × 3 2.367490e-01 100 0
5 × 5 6.665899e-02 1.828 57.8 0
9 × 9 2.087575e-02 1.675 23.2 0

17 × 17 1.090837e-04 4.258 7.47 0
33 × 33 1.497227e-04 2.865 2.13 6
65 × 65 5.313053e-05 1.495 0.06 37

129 × 129 1.112638e-05 2.256 0.01 212

Table 8.3: 2D (stationary) multilevel interpolation with ϕ(r) = (1 − r)4
+(4r + 1).

(a) Solve u(x) = f(x) − Pf(x) on Xk.

(b) Update Pf(x) = Pf(x) + u(x).

The representation of the update u at step k is of the form

u(x) =
∑

xj∈Xk

c
(k)
j ϕ

(‖x − xj‖
ρk

)

with ρk ' hXk,Ω. This requires the solution of a linear system whose size is determined
by the number of points in Xk.

In the numerical example listed in Table 8.3 we again use the compactly supported
function ϕ3,1(r) = (1 − r)4+ (4r + 1) and Franke’s function.

The initial scale ρ1 was chosen so that the basis function was supported on [−2, 2].
Subsequent scales were successively divided by 2 – just as the fill distance of the com-
putational grids Xk. The rate listed in the table is the exponent β of the observed
`2-convergence rate O(hβ). The % nonzero column indicates the sparsity of the inter-
polation matrices, and the time is measured in seconds.

So far there are only limited theoretical results concerning the convergence of this
multilevel algorithm. Narcowich, Schaback and Ward [478] show that a related algo-
rithm (in which additional boundary conditions are imposed) converges at least linearly,
and Hartmann analyzed the multilevel algorithm in his Ph.D. thesis [297]. He showed
at least linear convergence for multilevel interpolation on a regular lattice for various
radial basis functions. Similar results are obtained by Hales and Levesley [281] for poly-
harmonic splines, i.e., thin plate splines and powers. The main difficulty in proving
the convergence of the multilevel algorithm is the fact that the approximation space
changes from one level to the next. The approximation spaces are not nested (as they
usually are for wavelets). This means that the native space norm changes from one
level to the next. Hales and Levesley avoid this problem by scaling the (uniformly
spaced) data instead of the basis functions. Then the fact that polyharmonic splines
are in a certain sense harmonic (see Section 8.4) simplifies the analysis. This fact was
also used by Wendland [634] to prove linear convergence for multilevel (scattered data)
interpolation based on thin plate splines.

The same basic multilevel algorithm can also be used for other approximation
methods. In [203] the idea was applied to moving least squares methods and ap-
proximate moving least squares methods. Tables 8.4 and 8.5 illustrate the effect of

95

Mesh Shepard linear precision

`2-error rate time `2-error rate time

3 × 3 2.737339e-01 7 2.749670e-01 14
5 × 5 1.100713e-01 1.314 7 1.033060e-01 1.412 13
9 × 9 5.393041e-02 1.029 5 5.242492e-02 0.979 9

17 × 17 1.507797e-02 1.839 3 1.502361e-02 1.803 5
33 × 33 4.124059e-03 1.870 3 4.111092e-03 1.870 4
65 × 65 1.061904e-03 1.957 2 1.047348e-03 1.973 3

129 × 129 2.628645e-04 2.014 2 2.628645e-04 1.994 3

Table 8.4: 2D MLS approximation with weight ϕ(r) = (1 − r)4
+(4r + 1).

the multilevel algorithm for Shepard’s method and a moving least squares approxi-
mation with linear precision, both based on the compactly supported weight function
ϕ3,1(r) = (1 − r)4+(4r + 1). This experiment was conducted with a mollified Franke
function f on the unit square [0, 1]2, i.e.,

F (x, y) =
3

4

[

exp

(

−(9x− 2)2

4
− (9y − 2)2

4

)

+ exp

(

−(9x+ 1)2

49
− (9y + 1)2

10

)]

+
1

2
exp

(

−(9x− 7)2

4
− (9y − 3)2

)

− 1

5
exp

(

−(9x− 4)2 − (9y − 7)2
)

,

f(x, y) = 15 exp

(−1

1 − 4(x− 1/2)2

)

exp

(−1

1 − 4(y − 1/2)2

)

F (x, y) .

The support scaling was as in the previous multilevel example.
One can observe that the basic Shepard’s method actually performs much better

than the predicted O(h) (see Table 8.4). Notice that the multilevel algorithm (illus-
trated in Table 8.5) improves the accuracy considerably at very little extra cost. It
is interesting to note that this effect is much more pronounced for computations in
IR2 than in IR (cf. [202]). The times listed in Tables 8.4 and 8.5 are due only to the
evaluation on a very fine evaluation mesh since the method was coded so that no linear
systems had to be solved. This means that the Lagrange multipliers for the case of
linear precision were determined explicitly by solving the 3 × 3 Gram system analyt-
ically (cf. (7.5)). The resulting generating functions 7.6) were directly coded into the
program.

There seems to be no theoretical investigation of the convergence properties of the
multilevel algorithm for moving least squares approximation.

8.3 Preconditioning

In the first section of this chapter we noted that the system matrices arising in scat-
tered data interpolation with radial basis functions tend to become very ill-conditioned
as the minimal separation distance qX between the data sites x1, . . . ,xN , is reduced.
Therefore it is natural to devise strategies to prevent such instabilities by either pre-
conditioning the system, or by finding a better basis for the approximation space we

96

Mesh Shepard linear precision

`2-error rate time `2-error rate time

3 × 3 2.737339e-01 7 2.749670e-01 14
5 × 5 1.076424e-01 1.347 7 1.013114e-01 1.440 12
9 × 9 3.909725e-02 1.461 5 4.308322e-02 1.234 9

17 × 17 7.327282e-03 2.416 3 8.549613e-03 2.333 6
33 × 33 9.545860e-04 2.940 2 8.937409e-04 3.258 4
65 × 65 1.424136e-04 2.745 2 9.896052e-05 3.175 3

129 × 129 3.946680e-05 1.851 2 1.361339e-05 2.872 2

Table 8.5: 2D multilevel MLS approximation with ϕ(r) = (1 − r)4
+(4r + 1).

are using. The former approach is standard procedure in numerical linear algebra,
and in fact we can use any of the well-established methods (such as preconditioned
conjugate gradient iteration) to improve the stability and convergence of the interpola-
tion systems that arise for strictly positive definite functions. In particular, the sparse
systems that arise in (multilevel) interpolation with compactly supported radial basis
functions can be efficiently solved with the preconditioned conjugate gradient method,
and in fact the examples reported in the previous section were implemented using the
conjugate gradient method with a diagonal (Jacobi) preconditioner.

The idea of using a more stable basis is well known from univariate polynomial and
spline interpolation. The Lagrange basis functions for univariate polynomial interpola-
tion are of course the ideal basis if we are interested in stably solving the interpolation
equations since the resulting interpolation matrix is the identity matrix (which is cer-
tainly much better conditioned than, e.g., the Vandermonde matrix that we get if we
use a monomial basis). Similarly, B-splines give rise to diagonally dominant, sparse
system matrices which are much easier to deal with than the matrices we would get if
we were to represent a spline interpolant using the alternative truncated power basis.
Both of these examples are studied in great detail in standard numerical analysis texts
(see, e.g., [350]) or in the literature on splines (see, e.g., [574]). We will address an
analogous approach for radial basis functions in the next section.

Before we describe any of the specialized preconditioning procedures for radial basis
function interpolation matrices we give two examples presented by Jackson [326] to
illustrate the effects of and motivation for preconditioning in the context of radial basis
functions.

97

8.3.1 Two Simple Examples

Example 1: (Uniform data) Let s = 1 and ϕ(r) = r with no polynomial terms added.
As data sites we choose X = {1, 2, . . . , 10}. This leads to the system matrix

A =



















0 1 2 3 . . . 9
1 0 1 2 . . . 8
2 1 0 1 . . . 7
3 2 1 0 . . . 6
...

...
...

...
. . .

...
9 8 7 6 . . . 0



















with `2-condition number cond(A) ≈ 67. Instead of solving the linear system Ac = y,
where y = [y1, . . . , y10]

T ∈ IR10 is a vector of given real numbers (data values), we can
find a suitable matrix B to premultiply both sides of the equation such that the system
is simpler to solve. Ideally, the new system matrix BA should be the identity matrix,
i.e., B should be an approximate inverse of A. Thus, having found an appropriate
matrix B, we must now solve the linear system BAc = By. For the matrix A above
we can choose a preconditioner B as

B =























1 0 0 0 . . . 0 0
1
2 −1 1

2 0 . . . 0 0
0 1

2 −1 1
2 . . . 0 0

0 0 1
2 −1 . . . 0 0

...
...

...
...

. . .
...

...
0 0 0 0 . . . −1 1

2
0 0 0 0 . . . 0 1























.

This leads to the following preconditioned system matrix BA in the system



















0 1 2 . . . 8 9
0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 0
9 8 7 . . . 1 0



















c = By,

which is almost an identity matrix. Now cond(BA) ≈ 45.

The motivation for this choice of B is the following. The function ϕ(r) = r or
Φ(x) = |x| is a fundamental solution of the Laplacian ∆, i.e.,

∆Φ(x) =
d2

dx2
|x| =

1

2
δ0(x),

where δ0 is the Dirac delta function. Thus, B is chosen as a discretization of the
Laplacian with special choices at the endpoints of the data set.

98

Remark: One can also verify that the function Φ(x) = |x| minimizes the functional

∫

IR

[

f ′(x)
]2
dx

over all functions interpolating data sampled from a function in the space

F = {f ∈ C(IR), f ′ ∈ L2(IR)}.

Therefore, the radial basis function ϕ(r) = r is a linear (natural) spline. An analogous
argument can be used to show that the function ϕ(r) = r3 in IR is nothing but a
cubic natural spline. This is in agreement with the variational theory presented earlier
according to which every radial basis function represents the minimum norm interpolant
in its native space.

Example 2: (Nonuniform data) For nonuniformly distributed data we can use a dif-
ferent discretization of the Laplacian ∆ for each row of B. To see this, let s = 1, and
X = {1, 3

2 ,
5
2 , 4,

9
2}, and again consider the radial function ϕ(r) = r. Then

A =















0 1
2

3
2 3 7

2
1
2 0 1 5

2 3
3
2 1 0 3

2 2

3 5
2

3
2 0 1

2
7
2 3 2 1

2 0















with cond(A) ≈ 18.15, and if we choose

B =















1 0 0 0 0

1 −3
2

1
2 0 0

0 1
2 −5

6
1
3 0

0 0 1
3 −4

3 1

0 0 0 0 1















,

based on second-order backward differences of the points in X , then the preconditioned
system to be solved becomes















0 1
2

3
2 3 7

2

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0
7
2 3 2 1

2 0















c = By.

Once more, this system is almost trivial to solve and has an improved condition number
of cond(BA) ≈ 8.94.

99

8.3.2 Early Preconditioners

Ill-conditioning of the interpolation matrices was identified as a serious problem very
early, and Nira Dyn along with some of her co-workers (see, e.g., [172], [173], [178], or
[180]) provided some of the first preconditioning strategies tailored especially to radial
basis functions.

For the following discussion we consider the general interpolation problem which
includes polynomial reproduction. Therefore, we have to solve the following system of
linear equations

[

A P
P T 0

] [

c

d

]

=

[

y

0

]

, (8.1)

with the individual pieces given by Ajk = ϕ(‖xj − xk‖), j, k = 1, . . . , N , Pj` = p`(xj),
j = 1, . . . , N , ` = 1, . . . ,M , c = [c1, . . . , cN]T , d = [d1, . . . , dM]T , y = [y1, . . . , yN]T ,
and 0 a zero vector of length M with M = dimΠs

m−1. Here, as discussed earlier, ϕ
should be strictly conditionally positive definite of order m and radial on IRs and the
set X = {x1, . . . ,xN} should be (m− 1)-unisolvent.

The preconditioning scheme proposed by Dyn and her co-workers is a generalization
of the simple differencing scheme discussed above. It is motivated by the fact that the
polyharmonic splines

ϕ(r) =

{

r2k−s log r, s even,
r2k−s, s odd,

2k > s, are fundamental solutions of the k-th iterated Laplacian in IRs, i.e.,

∆kϕ(‖x‖) = cδ0(x),

where δ0 is the Dirac delta function, and c is an appropriate constant. For the (inverse)
multiquadrics ϕ(r) = (r2 + α2)±1/2, which are also discussed in the papers mentioned
above, application of the Laplacian yields a similar limiting behavior, i.e.,

lim
r→∞

∆kϕ(r) = 0,

and for r → 0
∆kϕ(r) � 1.

One now wants to discretize the Laplacian on the (irregular) mesh given by the
(scattered) data sites in X . To this end Dyn, Levin, and Rippa [180] suggest the
following procedure for the case of scattered data interpolation over IR2.

1. Start with a triangulation of the set X , e.g., the Delaunay triangulation will do.
This triangulation can be visualized as follows.

(a) Begin with the points in X and construct their Dirichlet tesselation. The
Dirichlet tile of a particular point x is that subset of points in IR2 which are
closer to x than to any other point in X . The left part of Figure 8.2 shows
the Dirichlet tesselation for a given set of 6 points.

(b) Construct the Delaunay triangulation, which is the dual of the Dirichlet
tesselation, i.e., connect all strong neighbors in the Dirichlet tesselation, i.e.,
points whose tiles share a common edge. The right part of Figure 8.2 shows
the corresponding Delaunay triangulation of the 6 points.

100

Figure 8.2: Dirichlet tesselation (left) and corresponding Delaunay triangulation (right)
of the points ◦.

2. Discretize the Laplacian on this triangulation. In order to also take into account
the boundary points Dyn, Levin and Rippa instead use a discretization of an iter-
ated Green’s formula which has the space Π2

m−1 as its null space. The necessary
partial derivatives are then approximated on the triangulation using certain sets
of vertices of the triangulation. (3 points for first order partials, 6 for second
order).

The discretization described above yields the matrix B = (bji)
N
j,i=1 as the precon-

ditioning matrix in an analogous to the previous section. We now obtain

(BA)jk =
N
∑

i=1

bjiϕ(‖xi − xk‖) ≈ ∆mϕ(‖ · −xk‖)(xj), j, k = 1, . . . , N, (8.2)

which has the property that the entries close to the diagonal are large compared to
those away from the diagonal, which decay to zero as the distance between the two
points involved goes to infinity. Since the part BP = 0 by step 2 of the construction,
one must now solve the system

BAc = By

P T c = 0.

Actually, the system BAc = By is singular, but it is shown in the paper [180] that the
additional constraints P T c = 0 guarantee existence of a unique solution. Furthermore,
the coefficients d in the original expansion of the interpolant s can be obtained by
solving

Pd = y −Ac,

i.e., by fitting the polynomial part of the expansion to the residual y −Ac.
The approach just described leads to localized basis functions ψ which are linear

combinations of the original basis functions ϕ. More precisely,

ψj(x) =
N
∑

i=1

bjiϕ(‖x − xi‖) ≈ ∆mϕ(‖ · −xj‖)(x), (8.3)

101

ϕ N Grid I orig. Grid I precond. Grid II orig. Grid II precond.

TPS 49 1181 4.3 1885 3.4
121 6764 5.1 12633 3.9

MQ 49 7274 69.2 17059 222.8
121 10556 126.0 107333 576.0

Table 8.6: Condition numbers without and with preconditioning.

where the coefficients bji are those determined in the discretization above.

Remarks:

1. The localized basis functions ψj , j = 1, . . . , N , (see (8.3)) can be viewed as an
alternative (better conditioned) basis for the approximation space spanned by
the functions ϕj = ϕ(‖ · −xj‖).

2. In [180] it is described how the preconditioned matrices can be used efficiently
with various iterative schemes such as Chebyshev iteration or a version of the
conjugate gradient method. The authors also mention smoothing of noisy data,
or low-pass filtering as another application for this preconditioning scheme.

The effectiveness of the above preconditioning strategy was illustrated with some
numerical examples in [180]. We list some of their results in Table 8.6. Thin plate
splines and multiquadrics were tested on two different data sets (grid I and grid II) in
IR2. The shape parameter α for the multiquadrics was chosen to be the average mesh
size. A linear term was added for thin plate splines, and a constant for multiquadrics.

One can see that the most dramatic improvement is achieved for the thin plate
splines. This is to be expected since the method is tailored to them. As noted earlier,
for the multiquadrics an application of the Laplacian does not yield the delta function,
but for values of r close to zero gives just relatively large values.

Remarks:

1. Another early preconditioning strategy was suggested by Powell [516]. Powell uses
Householder transformations to convert the matrix of the interpolation system
(8.1) to a symmetric positive definite matrix, and then uses the conjugate gradient
method. However, Powell reports that this method is not particularly effective
for large thin plate spline interpolation problems in IR2.

2. Baxter [27, 30] discusses the use of a preconditioned conjugate gradient method
for solving the interpolation problem in the case when Gaussians or multiquadrics
are used on a regular grid. The resulting matrices are Toeplitz matrices, and a
large body of literature exists for dealing with this special case (see, e.g., [110]).

102

8.3.3 Preconditioned GMRES via Approximate Cardinal Functions

More recently, Beatson, Cherrie and Mouat [34] have proposed a preconditioner for
the iterative solution of radial basis function interpolation systems using the GMRES
method of Saad and Schultz [538]. The GMRES method is a general purpose iterative
solver that can be applied to nonsymmetric (nondefinite) systems. For fast convergence
the matrix should be preconditioned such that its eigenvalues are clustered around 1
and away from the origin. Obviously, if the basis functions for the radial basis function
space were cardinal functions, then the matrix would be the identity matrix with all
its eigenvalues equal to 1. Therefore, the GMRES method would converge in a single
iteration. Consequently, the preconditioning strategy for the GMRES method is to
obtain a preconditioning matrix B that is close to the inverse of A.

Since it is too expensive to find the true cardinal basis (this would involve at least
as much work as solving the interpolation problem), the idea pursued in [34] (and
suggested earlier in [36, 46]) is to find approximate cardinal functions similar to the
functions ψj in the previous subsection. Now, however, there is also an emphasis on
efficiency, i.e., we are interested in local approximate cardinal functions, if possible.
Several different strategies were suggested in [34]. We will now explain the basic idea.

Given the centers x1, . . . ,xN , the j-th approximate cardinal function is given as a
linear combination of the basis functions ϕi = ϕ(‖ · −xi‖), where i runs over (some
subset of) {1, . . . , N}, i.e.,

ψj =

N
∑

i=1

bjiϕ(‖ · −xi‖) + pj , (8.4)

where (for the conditionally positive definite case) pj is a polynomial in Πs
m−1 and the

coefficients bji satisfy the usual conditions

N
∑

i=1

bjipj(xi) = 0 for all pj ∈ Πs
m−1. (8.5)

The key feature in designing the approximate cardinal functions is to have only a few
n � N coefficients in (8.4) to be nonzero. In that case the functions ψj are found
by solving small n × n linear systems, which is much more efficient than dealing with
the original N ×N system. For example, in [34] the authors use n ≈ 50 for problems
involving up to 10,000 centers. The resulting preconditioned system is of the same
form as the earlier preconditioner (8.2), i.e., we now have to solve the preconditioned
problem

(BA)c = By,

where the entries of the matrix BA are just ψj(xk), j, k = 1, . . . , N .
The simplest strategy for determining the coefficients bji is to select the n nearest

neighbors of xj , and to find bji by solving the (local) cardinal interpolation problem

ψj(xi) = δij , i = 1, . . . , n,

subject to the moment constraint (8.5) listed above. Here δij is the Kronecker-delta,
and the points xi are the nearest neighbors selected above.

103

ϕ N unprecond. local precond. local precond. w/special

TPS 289 4.005e06 1.464e03 5.721e00
1089 2.753e08 6.359e05 1.818e02
4225 2.605e09 2.381e06 1.040e06

MQ 289 1.506e08 3.185e03 2.639e02
1089 2.154e09 8.125e05 5.234e04
4225 3.734e10 1.390e07 4.071e04

Table 8.7: Condition numbers without and with preconditioning.

This basic strategy is improved by adding so-called special points that are dis-
tributed (very sparsely) throughout the domain.

A few numerical results for thin plate spline and multiquadric interpolation in IR2

from [34] are listed in Table 8.7. The condition numbers are `2-condition numbers, and
the points were randomly distributed in the unit square. The “local precond.” column
uses the n = 50 nearest neighbors to determine the approximate cardinal functions,
whereas the right-most column uses the 41 nearest neighbors plus 9 special points placed
uniformly in the unit square. The effect of the preconditiong on the performance of
the GMRES algorithm was, e.g., a reduction from 103 to 8 iterations for the 289 point
data set for thin plate splines, or from 145 to 11 for multiquadrics.

Remark: An extension of the ideas of Beatson, Cherrie and Mouat [34] to linear sys-
tems arising in the collocation solution of partial differential equations (see Chapter 9)
was explored in Mouat’s Ph.D. thesis [468] and also in the recent paper by Ling and
Kansa [395].

8.4 Change of Basis

Another idea that can be used to obtain a “better” basis for conditionally positive
definite radial basis functions is closely connected to finding the reproducing kernel
of the associated native space. Since we did not elaborate on the construction of the
native spaces for conditionally positive definite functions earlier, we will now present
the relevant formulas (without going into the details). In particular, for polyharmonic
splines we will be able to find a basis that is in a certain sense homogeneous, and
therefore the condition number of the related interpolation matrix will depend only on
the number N of data points, but not on their separation distance.

This approach was suggested by Beatson, Light and Billings [42], and has its roots
in work by Sibson and Stone [582].

Let Φ be a strictly conditionally positive definite kernel of order m, and X =
{x1, . . . ,xN} ⊂ Ω ⊂ IRs be an (m− 1)-unisolvent set of centers. Then the reproducing
kernel for the native space NΦ(Ω) is given by

K(x,y) = Φ(x,y) −
M
∑

k=1

pk(x)Φ(xk,y) −
M
∑

`=1

p`(y)Φ(x,x`)

104

+
M
∑

k=1

M
∑

`=1

pk(x)p`(y)Φ(xk,x`) +
M
∑

`=1

p`(x)p`(y),

where the points x1, . . . ,xM are an (m−1)-unisolvent subset of X and the polynomials
pk, k = 1, . . . ,M , form a cardinal basis for Πs

m−1 whose dimension is M =
(

s+m−1
m−1

)

,
i.e.,

p`(xk) = δk,`, k, ` = 1, . . . ,M.

An immediate consequence is that we can express the radial basis function interpolant
to values of some function f given on X in the form

Pf(x) =
N
∑

j=1

cjK(x,xj), x ∈ IRs .

The coefficients cj are determined by satisfying the interpolation conditions

Pf(xi) = f(xi), i = 1, . . . , N.

We will see below (in Tables 8.8 and 8.9) that this basis already performs “better” than
the standard basis {Φ(·,x1), . . . ,Φ(·,xN)} if we keep the number of centers fixed, and
vary only their separation distance.

To obtain the homogeneous basis referred to above we modify K by subtracting the
tensor product polynomial, i.e.,

κ(x,y) = K(x,y) −
M
∑

`=1

p`(x)p`(y).

Now, if y is one of the points x1, . . . ,xM in the (m−1)-unisolvent subset of X mentioned
above, then

κ(·,y) = Φ(·,y) −
M
∑

k=1

pk(·)Φ(xk,y) −
M
∑

`=1

p`(y)Φ(·,x`) +

M
∑

k=1

M
∑

`=1

pk(·)p`(y)Φ(xk,x`)

= Φ(·,y) −
M
∑

k=1

pk(·)Φ(xk,y) − Φ(·,y) +

M
∑

k=1

pk(·)Φ(xk,y) = 0.

This means that the functions κ(·,xj), j = 1, . . . , N , cannot be used as a basis of
our approximation space. However, it turns out that the matrix C with entries Ci,j =
κ(xi,xj), i, j = M+1, . . . , N , is positive definite, and therefore we obtain the following
basis

{p1, . . . , pM} ∪ {κ(·,xM+1), . . . , κ(·,xN)},
and the interpolant can be represented in the form

Pf(x) =
M
∑

j=1

djpj(x) +
N
∑

k=M+1

ckκ(x,xk), x ∈ IRs .

105

Spacing h Standard matrix Reproducing kernel Homogeneous matrix

1/8 3.5158e03 1.8930e04 7.5838e03
1/16 3.8938e04 2.6514e05 1.1086e05
1/32 5.1363e05 4.0007e06 1.6864e06
1/64 7.6183e06 6.2029e07 2.6264e07

Table 8.8: Condition numbers for different thin plate spline bases on [0, 1]2 with in-
creasing number of points and varying separation distance.

Since the polynomials pk are cardinal on {x1, . . . ,xM} the coefficients are determined
by solving the linear system

[

I 0
P T C

] [

d

c

]

= y, (8.6)

with I an M × M identity matrix, C as above, Pij = pj(xi), j = 1, . . . ,M , i =
M + 1, . . . , N , c = [cM+1, . . . , cN]T , d = [d1, . . . , dM]T , and the right-hand side y =
[f(x1), . . . , f(xM), f(xM+1), . . . , f(xN)]T . The identity block (cardinality of the poly-
nomial basis functions) implies that the coefficient vector d is given by

dj = f(xj), j = 1, . . . ,M,

and therefore the system (8.6) can be solved as

Cc = ỹ − P T d,

where ỹ = [f(xM+1), . . . , f(xN)]T and the matrix C is symmetric and positive definite.
Finally, for polyharmonic splines, the `2-condition number of the matrix C is invariant
under a uniform scaling of the centers, i.e., if Ch = (κ(hxi, hxj)), then cond(Ch) =
cond(C). This is proved to varying degrees in the paper [42] by Beatson, Light and
Billings, the book [634] by Wendland, and the paper [320] by Iske.

We close with some numerical experiments from [42]. They use thin plate splines in
IR2. In the first experiment (illustrated in Table 8.8) the problem is formulated on the
unit square [0, 1]2. Here both the number of points and the separation distance vary
from one row in the table to the next. The three different columns list the `2-condition
numbers of the interpolation matrix for the three different approaches mentioned above,
i.e., using the standard basis consisting of functions Φ(·,xj) and monomials, using the
reproducing kernels K(·,xj), and using the matrix C. The three polynomial cardinal
functions are based on the three corners (0, 0), (0, 1), and (1, 0). With this setup all
three methods perform comparably.

In the second experiment (shown in Table 8.9) the number of points is kept fixed at
5×5 equally spaced points. However, the domain is scaled to the square [0, a]2 with scale
parameter a, so that only the separation distance qX changes from one row to the next.
Now, clearly the two new methods show less dependence on the separation distance,
with the homogeneous matrix C being completely insensitive as claimed earlier.

Remark: Iske takes advantage of the scale invariance of polyharmonic splines (and
thin plate splines in particular) in the construction of a numerical multiscale solver for
transport problems (see, e.g., [47]).

106

Scale parameter Standard matrix Reproducing kernel Homogeneous matrix

0.001 2.4349e08 8.4635e08 5.4938e02
0.01 2.4364e06 8.4640e06 5.4938e02
0.1 2.5179e04 8.5134e04 5.4938e02
1.0 3.6458e02 1.3660e03 5.4938e02
10 1.8742e06 1.2609e03 5.4938e02
100 1.1520e11 1.1396e05 5.4938e02
1000 3.4590e15 1.1386e07 5.4938e02

Table 8.9: Condition numbers for different thin plate spline bases on [0, a]2 with fixed
number of points and varying separation distance.

8.5 Special Numerical Algorithms

Since the use of radial basis functions for interpolation of scattered data leads to (large)
linear systems that are frequently ill-conditioned it is important to devise algorithms
that can

1. efficiently solve the interpolation system (preferably in O(N) operations), and

2. efficiently evaluate a radial basis function expansion once its coefficients have
been determined (preferably in a constant number of operations – independent
of N).

The second goal is also important for approximation via the moving least squares
method or by quasi-interpolation.

All of the work described below is very recent, and it is quite likely that much more
insight can be gained, and many improvements are still possible.

8.5.1 Iterative Algorithms

This section is based on the contents of the papers [562, 563] by Schaback and Wend-
land, the book [634] by Wendland, and the papers [212, 213] by Faul and Powell.

We concentrate on systems for strictly positive definite functions (variations for
strictly conditionally positive definite functions also exist). One of the central ingredi-
ents is the native space inner product discussed in Chapter 5. As always we assume
that our data sites are X = {x1, . . . ,xN}, but now we also consider a second set Y ⊆ X .

If we consider PYf to be the interpolant to f on Y ⊆ X , then 〈f−PYf,PYf〉NΦ(Ω) =
0 and we obtain the energy split (see Corollary 5.5.3)

‖f‖2
NΦ(Ω) = ‖f − PYf‖2

NΦ(Ω) + ‖PYf‖2
NΦ(Ω).

One possible point of view is now to consider an iteration on residuals. To this end
we start with our desired interpolant r0 = PX f on the entire set X , and an appropriate
sequence of sets Yk, k = 0, 1, . . . (we will discuss some possible choices later). Then,
we iteratively define

rk+1 = rk − PYk
rk, k = 0, 1, (8.7)

107

Now, the energy splitting identity with f = rk gives us

‖rk‖2
NΦ(Ω) = ‖rk − PYk

rk‖2
NΦ(Ω) + ‖PYk

rk‖2
NΦ(Ω) (8.8)

or, using the iteration formula (8.7),

‖rk‖2
NΦ(Ω) = ‖rk+1‖2

NΦ(Ω) + ‖rk − rk+1‖2
NΦ(Ω). (8.9)

Therefore,

K
∑

k=0

‖PYk
rk‖2

NΦ(Ω) =
K
∑

k=0

‖rk − rk+1‖2
NΦ(Ω)

=
K
∑

k=0

{

‖rk‖2
NΦ(Ω) − ‖rk+1‖2

NΦ(Ω)

}

= ‖r0‖2
NΦ(Ω) − ‖rK+1‖2

NΦ(Ω) ≤ ‖r0‖2
NΦ(Ω),

which shows that the sequence of partial sums is monotone increasing and bounded,
and therefore convergent – even for a poor choice of the sets Yk. If we can show that
the residuals rk converge to zero, then we would have that the iteratively computed
approximation

sK+1 =
K
∑

k=0

PYk
rk =

K
∑

k=0

(rk − rk+1) = r0 − rK+1 (8.10)

converges to the original interpolant r0 = PX f .

Remark: While this residual iteration algorithm has some structural similarities with
the multilevel algorithm of Section 8.2 we now are considering a way to efficiently
compute the interpolant PX f on some fine set X based on a single function Φ, whereas
earlier, our final interpolant was the result of using the spaces

⋃K
k=1 NΦk

(Ω), where Φk

was an appropriately scaled version of the basis function Φ. And the goal there was to
approximate f .

In order to prove convergence of the residual iteration let us assume that we can
find sets of points Yk such that at step k at least some fixed percentage of the energy
of the residual is picked up by its interpolant, i.e.,

‖PYk
rk‖2

NΦ(Ω) ≥ γ‖rk‖2
NΦ(Ω) (8.11)

with some fixed γ ∈ (0, 1]. Then (8.9) and the iteration formula (8.7) imply

‖rk+1‖2
NΦ(Ω) = ‖rk‖2

NΦ(Ω) − ‖PYk
rk‖2

NΦ(Ω),

and therefore

‖rk+1‖2
NΦ(Ω) ≤ ‖rk‖2

NΦ(Ω) − γ‖rk‖2
NΦ(Ω) = (1 − γ)‖rk‖2

NΦ(Ω).

Applying this bound recursively yields (see [562])

108

Theorem 8.5.1 If the choice of sets Yk satisfies (8.11), then the residual iteration
(8.10) converges linearly in the native space norm, and after K steps of iterative re-
finement there is an error bound

‖r0 − sK‖2
NΦ(Ω) = ‖rK‖2

NΦ(Ω) ≤ (1 − γ)K‖r0‖2
NΦ(Ω).

This theorem has various limitations. In particular, the norm involves the function
Φ which makes it difficult to find sets Yk that satisfy (8.11). Moreover, the native space
norm of the initial residual r0 is not known, either. Therefore, using an equivalent
discrete norm on the set X , Schaback and Wendland establish an estimate of the form

‖r0 − sK‖2
X ≤ C

c

(

1 − δ
c2

C2

)K/2

‖r0‖2
X ,

where c and C are constants denoting the norm equivalence, i.e.,

c‖s‖X ≤ ‖s‖NΦ(Ω) ≤ C‖s‖X

for any s ∈ NΦ(Ω), and where δ is a constant analogous to γ (but based on use of the
discrete norm ‖ · ‖X in (8.11)).

In [563] a basic version of this algorithm – where the sets Yk consist of a single point
– is described and tested. The resulting approximation yields the best K-term approx-
imation to the interpolant. This idea is related to the concept of greedy approximation
algorithms (see, e.g., [607]) and sparse approximation (see, e.g., [252]).

If the set Yk consists only of a single point yk, then the partial interpolant PYk
rk

is particularly simple, namely

PYk
rk = βΦ(·,yk)

with

β =
rk(yk)

Φ(yk,yk)
.

The point yk is picked to be the point in X where the residual is largest, i.e., |rk(yk)| =
‖rk‖∞. For this choice of “set” Yk we certainly satisfy the constraint (8.11). Moreover,
the interpolation problem is (approximately) solved without having to invert any linear
systems. The algorithm can be summarized as

Algorithm (Greedy one-point algorithm)

Input data locations X , associated values of f , tolerance ε > 0

Set initial residual r0 = PX f , initialize s0 = 0, e = ∞, k = 0

Choose starting point yk ∈ X

While e > ε do

Set β =
rk(yk)

Φ(yk,yk)

For 1 ≤ i ≤ N do

109

rk+1(xi) = rk(xi) − βΦ(xi,yk)

sk+1(xi) = sk(xi) + βΦ(·,yk)

Find e = max
X

|rk+1| and the point yk+1 where it occurs

end

Increment k = k + 1

end

Remarks:

1. One advantage of this very simple (but fairly slow) algorithm is that no linear sys-
tems need to be solved. Nor are any matrix-vector multiplications required. This
can be beneficial for problems that are very large (and possibly ill-conditioned),
since in that situation the conjugate gradient method (which does use matrix-
vector multiplications) may take very long.

2. For practical situations, e.g., for smooth radial basis functions and densely dis-
tributed points in X the convergence can be rather slow. In order to speed up
the algorithm one should couple it with an algorithm that efficiently evaluates
the residuals. If the basis functions are compactly supported, then a fast tree
code algorithm can be used. Otherwise, fast multipole or fast Fourier transforms
for non-uniform data can be used (see below for more details on these methods).

3. Schaback and Wendland [563] extend the simple greedy algorithm described above
to a version that adaptively uses basis functions of varying scales.

Another iterative algorithm was suggested by Faul and Powell [212, 213]. From
our earlier discussions we know that it is possible to express the radial basis function
interpolant in terms of cardinal functions u∗j (x), j = 1, . . . , N , i.e.,

Pf(x) =
N
∑

j=1

f(xj)u
∗
j (x).

The basic idea of the Faul-Powell algorithm is to use approximate cardinal functions
instead. Of course, this will only give an approximate value for the interpolant, and
therefore an iteration on the residuals is suggested to improve the accuracy of this
approximation. As done several times before, the approximate cardinal functions ψj ,
j = 1, . . . , N , are determined as linear combinations of the basis functions Φ(·,xi), i.e.,

ψj =
∑

i∈Lj

bjiΦ(·,xi), (8.12)

where Lj is an index set consisting of n (n ≈ 50) indices that are used to determine
the approximate cardinal function. For example, the n nearest neighbors of xj with
some additional special points (as in Section 8.3.3) will do. For every j = 1, . . . , N , the
coefficients bji found as solution of the linear system

ψj(xk) = δjk, k ∈ Lj . (8.13)

110

These approximate cardinal functions are computed in a pre-processing step.
In its simplest form the residual iteration can be formulated as

s(0)(x) =
N
∑

j=1

f(xj)ψj(x)

s(k+1)(x) = s(k)(x) +
N
∑

j=1

[

f(xj) − s(k)(xj)
]

ψj(x), k = 0, 1,

Instead of adding the contribution of all approximate cardinal functions at the same
time, this is done in a three-step process in the Faul-Powell algorithm. To this end
index sets Lj , j = 1, . . . , N − n, are chosen so that Lj ⊆ {j, j + 1, . . . , N} making
sure that j ∈ Lj . Also, one needs to ensure that the corresponding centers form an
(m− 1)-unisolvent set.

Now, in the first step we define s
(k)
0 = s(k), and then iterate

s
(k)
j = s

(k)
j−1 + θ

(k)
j ψj , j = 1, . . . , N − n, (8.14)

with

θ
(k)
j =

〈Pf − s
(k)
j−1, ψj〉NΦ(Ω)

〈ψj , ψj〉NΦ(Ω)
. (8.15)

The stepsize θ
(k)
j is chosen so that the native space best approximation to the residual

Pf − s
(k)
j−1 from the space span{ψj} is added. Using the representation (8.12) of ψj in

terms of the basis {Φ(·,xi) : i = 1, . . . , N}, the reproducing kernel property of Φ, and
the (local) cardinality property (8.13) of ψj we can calculate

〈ψj , ψj〉NΦ(Ω) = 〈ψj ,
∑

i∈Lj

bjiΦ(·,xi)〉NΦ(Ω)

=
∑

i∈Lj

bji〈ψj ,Φ(·,xi)〉NΦ(Ω)

=
∑

i∈Lj

bjiψj(xi) = bjj .

Similarly, we get

〈Pf − s
(k)
j−1, ψj〉NΦ(Ω) = 〈Pf − s

(k)
j−1,

∑

i∈Lj

bjiΦ(·,xi)〉NΦ(Ω)

=
∑

i∈Lj

bji〈Pf − s
(k)
j−1,Φ(·,xi)〉NΦ(Ω)

=
∑

i∈Lj

bji

(

Pf − s
(k)
j−1

)

(xi)

=
∑

i∈Lj

bji

(

f(xi) − s
(k)
j−1(xi)

)

.

Therefore (8.14) and (8.15) can be written as

s
(k)
j = s

(k)
j−1 +

ψj

bjj

∑

i∈Lj

bji

(

f(xi) − s
(k)
j−1(xi)

)

, j = 1, . . . , N − n.

111

In the second step the residual is interpolated on the remaining n points (collected
via the index set L∗). Thus, we find a function σ(k) such that

σ(k)(xi) = f(xi) − s
(k)
N−n(xi), i ∈ L∗,

and the approximation is updated, i.e.,

s(k+1) = s
(k)
N−n + σ(k).

In the third step the residuals are updated, i.e.,

r
(k+1)
i = f(xi) − s(k+1)(xi), i = 1, . . . , N.

The outer iteration (on k) is now repeated unless the largest of these residuals is small
enough.

We can summarize this algorithm as

Algorithm (Faul-Powell algorithm)

Input data locations X , associated values of f , tolerance ε > 0

Set k = 0 and s
(k)
0 = 0

Compute residuals r
(k)
i = f(xi)−s(k)(xi), i = 1, . . . , N , and set e = max

i=1,...,N
|r(k)

i |.

While e > ε do

For 1 ≤ j ≤ N − n do

Update

s
(k)
j = s

(k)
j−1 +

ψj

bjj

∑

i∈Lj

bji

(

f(xi) − s
(k)
j−1(xi)

)

end

Solve the interpolation problem

σ(k)(xi) = f(xi) − s
(k)
N−n(xi), i ∈ L∗

Update the approximation

s
(k+1)
0 = s

(k)
N−n + σ(k)

Compute new residuals and new value for e

Increment k = k + 1

end

112

Faul and Powell prove that this algorithm converges to the solution of the origi-
nal interpolation problem. Similar to some of the other algorithms (greedy one-point
or preconditioned GMRES) one needs to make sure that the residuals are evaluated
efficiently by using a fast multipole expansion, fast Fourier transform, or compactly
supported functions. Since the approximate cardinal functions can be computed in a
preprocessing step this evaluation along with the determination of the sets Lj is the
most expensive operation in the algorithm.

Remark: In its most basic form the Krylov subspace algorithm of Faul and Powell
can also be explained via a dual approach to the greedy residual iteration algorithm of
Schaback and Wendland. Instead of defining appropriate sets of points Yk, in the Faul
and Powell algorithm one picks certain subspaces Sk of the native space. In particular,
if Sk is the one-dimensional space Sk = span{ψk} (where ψk is a local Lagrange function
as in Section 8.3.3) we get the algorithm described above. For more details see [563].

8.5.2 Fast Fourier Transforms

In the recent papers [354, 490, 508] by Kunis, Nieslony, Potts and Steidl use of the fast
Fourier transform at nonuniformly spaced points was suggested as an efficient way to
solve and evaluate radial basis function problems. The software package NFFT by the
authors is available for free download [353]. A discussion of the actual NFFT software
would go beyond the scope of this manuscript. Instead, we briefly describe how to use
NFFTs and FFTs to evaluate expansions of the form

Pf(yj) =
N
∑

k=1

f(xk)Φ(yj − xk) (8.16)

simultaneously at many evaluation points yj , j = 1, . . . ,M . Direct summation requires
O(MN) operations, while it can be shown that use of the NFFT reduces the cost to
O(M + N) operations. Therefore, as is always the case with fast Fourier transforms,
use of the algorithm will pay off for sufficiently many evaluations.

In their papers Nieslony, Potts and Steidl distinguish between kernels Φ that are
singular and those that are non-singular. Singular kernels are C∞ everywhere except
at the origin and include examples such as

1

r
,

1

r2
, log r, r2 log r,

where r = ‖ · ‖. Non-singular kernels are smooth everywhere such as Gaussians and
(inverse) multiquadrics. We will restrict our discussion to this latter class.

The basic idea for the following algorithm is remarkably simple. It relies on the fact
that the exponential e−α(yj−xk) can be written as e−αyjeαxk . Moreover, the method
applies to arbitrary kernels (which is in strong contrast to the fast multipole type
methods discussed in the next section). One starts out by approximating the (arbitrary,
but smooth) kernel using standard Fourier series, i.e.,

Φ(x) ≈
∑

`∈In

b`e
2πi`x

113

with index set In =
[

−n
2 ,

n
2

)s
. The coefficients b` are found by the discrete inverse

Fourier transform

b` =
1

ns

∑

k∈In

Φ

(

k

n

)

e−2πik`/n.

Numerically, this task is accomplished with software for the standard (inverse) FFT
(e.g., [245]).

Remark: Note that this definition of the Fourier transform (as well as the one below)
is different from the one used in Chapter 2. However, in order to stay closer to the
software packages, we adopt the notation used there.

Therefore,

Pf(yj) ≈
N
∑

k=1

f(xk)
∑

`∈In

b`e
2πi`(yj−xk)

=
∑

`∈In

b`

N
∑

k=1

f(xk)e
2πi`(yj−xk)

Now, the exponential is split using the above mentioned property, i.e.,

Pf(yj) ≈
∑

`∈In

b`

N
∑

k=1

f(xk)e
−2πi`xke2πi`yj .

This, however, can be viewed as a fast Fourier transform at non-uniformly spaced
points, i.e.,

Pf(yj) ≈
∑

`∈In

c`e
2πi`yj .

where the coefficients c` = b`a` with

a` =
N
∑

k=1

f(xk)e
−2πi`xk

which is nothing but an inverse discrete Fourier transform at non-uniformly spaced
points. These latter two transforms are dealt with numerically using the NFFT soft-
ware.

Together, for the case of non-singular kernels Φ we have the following algorithm.

Algorithm (Fast Fourier transform evaluation)

For ` ∈ In

Compute the coefficients

b` =
1

ns

∑

k∈In

Φ

(

k

n

)

e−2πik`/n

by inverse FFT.

114

Compute the coefficients

a` =
N
∑

k=1

f(xk)e
−2πi`xk

by inverse NFFT.

Compute the coefficients c` = a`b`.

end

For 1 ≤ j ≤M

Compute the values

Pf(yj) ≈
∑

`∈In

d`e
2πi`yj

by NFFT.

end

Remarks:

1. In the papers [354, 490, 508] the authors also suggest a special boundary regu-
larization in case the kernel does not decay fast enough, i.e., the kernel is large
near the boundary of the domain.

2. Of course, this method will only provide an approximation of the expansion (8.16)
and error estimates are provided in the literature (see, e.g., [490]).

3. While we only illustrated the use of (N)FFTs for the evaluation of radial sums it
should be clear that this method can also be coupled with the algorithms of the
previous sections (such as preconditioned GMRES, the “greedy” algorithm, or
the Faul-Powell algorithm) to efficiently solve radial basis function interpolation
systems.

A few examples of the use of fast Fourier transforms for the evaluation of ap-
proximate moving least squares approximations (quasi-interpolants) are given in Fig-
ures 8.3–8.5. The graphs on the left indicate `∞ approximation errors for a Franke-type
function. The graphs on the right show the execution times in seconds for direct sum-
mation (solid lines) and FFT summations (dashed lines). The colors correspond to the
three different types of kernels listed in Table 8.10 below. The red curves correspond to
the Gaussians (listed in the O(h2) column), green curves to the function in the O(h4)
column (Gaussian multiplied by a linear Laguerre polynomial), and blue curves to those
in the O(h6) column (Gaussian multiplied by a quadratic Laguerre polynomial).

The evaluation of the results listed in Figures 8.3–8.5 occurs at 10,001, 16,641,
and 2,146,689 randomly distributed points in the unit square, respectively. The 3D
experiments show that there is a cross-over value of about 1,000 evaluations at which
the FFT approach becomes faster than the direct approach. For the one and two-
dimensional experiments this cross-over point occurs much earlier and is not detectable
in the figures.

115

3 5 9 17 33 65 129 257 513 1025 2049 4097
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

N

er
ro

rs

3 5 9 17 33 65 129 257 513 1025 2049 4097
0

5

10

15

20

25

30

35

40

N

tim
es

Figure 8.3: Convergence and execution times for 1D example.

9 25 81 289 1089 4225 16641 66049 263169 4198401
10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

N

er
ro

rs

9 25 81 289 1089 4225 16641 66049 263169 4198401
0

50

100

150

200

250

300

N

tim
es

Figure 8.4: Convergence and execution times for 2D example.

The polynomial terms in Table 8.10 are given by generalized Laguerre polynomials

with radial arguments. In general one can show (see, e.g., [434]) that if L
s/2
d is used

to denote the generalized Laguerre polynomial of degree d, then the smooth function
f in IRs can be approximated with approximate approximation order O(h2d+2) by an
expansion of the form

Pf(x) =
1

(πD)s/2

N
∑

k=1

f(xk)L
s/2
d

(‖x − xk‖2

Dh2

)

exp

(

−‖x − xk‖2

Dh2

)

.

Here D is a parameter that controls a so-called saturation error, i.e., the predicted ap-
proximation order is achieved only up to some user-controllable threshold (and there-
fore referred to as approximate approximation). This threshold is clearly visible in the
convergence graphs.

8.5.3 The Fast Multipole Method

Another quite popular strategy for dealing with fast summation problems is known as
the fast multipole method. This method was first suggested by Greengard and Rokhlin
in 1987 (see, e.g., the original paper [269], the popular discussion [268], or the short

116

27 125 729 4913 35937 274625 2146689
10−4

10−3

10−2

10−1

100

101

N

er
ro

rs

27 125 729 4913 35937 274625 2146689
0

1000

2000

3000

4000

5000

6000

7000

N

tim
es

Figure 8.5: Convergence and execution times for 3D example.

s O(h2) O(h4) O(h6)

1 e−|x|2
(

3

2
− |x|2

)

e−|x|2
(

15

8
− 5

2
|x|2 +

1

2
|x|4
)

e−|x|2

2 e−‖x‖2 (

2 − ‖x‖2
)

e−‖x‖2

(

3 − 3‖x‖2 +
1

2
‖x‖4

)

e−‖x‖2

3 e−‖x‖2

(

5

2
− ‖x‖2

)

e−‖x‖2

(

35

8
− 7

2
‖x‖2 +

1

2
‖x‖4

)

e−‖x‖2

Table 8.10: Generating functions for approximate MLS approximation in IRs.

course tailored to radial basis functions [37]). It has quickly become very popular in
the computational sciences. The breakthrough accomplishment of this algorithm was
the ability to perform fast evaluations of sums of the type

Pf(x) =
N
∑

k=1

ckΦ(x,xk), x ∈ IRs .

In particular, M such evaluations can be performed in O(M logN) (or even O(M))
operations instead of the standard O(MN) operations. The nonuniform fast Fourier
transform of the previous section was able to do this also, and in a fairly general way for
a very large class of kernels Φ, but the fast multipole method is a little older and may
be more efficient since special expansions are used that are chosen with the particular
kernel Φ in mind. We will now outline the basic idea of the fast Gauss transform
[270]. This transform can be applied directly to the approximate moving least squares
approximands based on Gaussians used in the previous section (see the numerical
experiments reported in Table 8.11 below). The higher-order kernels consisting of
Gaussians times Laguerre polynomials, however, require a completely new derivation.

Thus, using the abbreviation ρ =
√
Dh, we are now interested in a fast summa-

tion technique for M evaluations of the Gaussian quasi-interpolant (or discrete Gauss
transform)

Gf(yj) =
N
∑

k=1

f(xk)e
−‖(yj−xk)/ρ‖2

, j = 1, . . . ,M. (8.17)

117

In [270] such an algorithm was developed, and in [591] a modification was suggested to
cover also the case of variable scales ρk as needed for use with quasi-interpolation at
scattered sites or with variable scales.

One of the central ingredients for the fast Gauss transform are the multivariate
Hermite functions

hα(x) = (−1)|α|Dαe−‖x‖2
, (8.18)

which are related to the (multivariate) Hermite polynomials via

Hα(x) =
s
∏

i=1

Hαi
(xi) = e‖x‖

2
hα(x) (8.19)

(see, e.g., the univariate formula (6.1.3) in [5]). It is beneficial that the Hermite func-
tions can be evaluated recursively using the (univariate) recurrence relation

hn+1(x) = 2xhn(x) − 2nhn−1(x), n = 1, 2, . . . ,

h0(x) = e−|x|2 , h1(x) = 2xe−|x|2 ,

which follows immediately from (8.19) and the recursion relation for Hermite polyno-
mials (see, e.g., formula (6.1.10) in [5]).

The algorithm of Greengard and Strain is based on three basic expansions which we
list below as Theorems 8.5.2–8.5.4 (see [270, 271]). The main effect of these expansions
is the fact that the variables yj and xk will be separated (this is the fundamental “trick”
used with all fast summation algorithms). This will allow for the pre-computation and
storage of certain moments below.

The first step in the algorithm is to scale the problem to the unit box [0, 1]s, and
then subdivide the unit box into smaller boxes B and C which usually coincide. They
can, however, also differ. The boxes B contain the sources xk, and the boxes C the
targets yj . For each source box B one then determines its interaction region IR(B).
The interaction region of B is a set of nearest neighbors of B such that the error of
truncating the sum over all boxes is below a certain threshold. Due to the fast decay
of the Gaussians it is suggested (see [271]) to use the 9s nearest neighbors for single
precision and the 13s nearest neighbors for double precision.

Theorem 8.5.2 Let IB be the index set denoting the sources xk which lie in a box B
with center xB and side length ρ, and let yC be the center of the target box C (∈ IR(B))
of radius rc containing the targets yj. Then the Gaussian field due to the sources in
B,

G(B)f(yj) =
∑

k∈IB

f(xk)e
−‖(yj−xk)/ρ‖2

,

has the following Taylor expansion about yC :

G(B)f(yj) =
∑

α≥0

A
(B)
α

(

yj − yC

ρ

)α

, (8.20)

where the coefficients A
(B)
α are given by

A
(B)
α =

(−1)|α|

α!

∑

k∈IB

f(xk)hα

(

xk − yC

ρ

)

.

118

The error ET (p) due to truncating the series (8.20) after the p-th order terms satisfies
the bound

|ET (p)| = |
∑

α>p

A
(B)
α

(

yj − yC

ρ

)α

| ≤ (1.09)sF (B) 1
√

(p+ 1)!
s







(

rc

ρ

)p+1

1 − rc

ρ







s

,

where F (B) =
∑

k∈IB
|f(xk)|.

Remark: Here we used the multi-index notation α ≥ 0 to denote the constraints
αi ≥ 0 for all i = 1, . . . , s. More generally, for some integer p α ≥ p if αi ≥ p for all
i = 1, . . . , s. This implies α > p for some integer p if α ≥ p and αi > p for some i. We
also use α ≥ β if αi ≥ βi for all i = 1, . . . , s.

The expansion (8.20) will be used in the case when the source box B contains
relatively few sources, but the target box C contains many targets.

By reversing the role of the Hermite functions and the shifted monomials one can
write a single Gaussian as a multivariate Hermite expansion about a point z0 ∈ IRs,
i.e.,

e−‖(yj−xk)/ρ‖2
=
∑

α≥0

1

α!

(

xk − z0

ρ

)α

hα

(

yj − z0

ρ

)

. (8.21)

This is used in

Theorem 8.5.3 (Far-field expansion) Let IB be the index set denoting the sources xk

which lie in a box B with center xB and side length ρ. Then the Gaussian field due to
the sources in B,

G(B)f(yj) =
∑

k∈IB

f(xk)e
−‖(yj−xk)/ρ‖2

,

is equal to an Hermite expansion about xB:

G(B)f(yj) =
∑

α≥0

B
(B)
α hα

(

yj − xB

ρ

)

. (8.22)

The moments B
(B)
α are given by

B
(B)
α =

1

α!

∑

k∈IB

f(xk)

(

xk − xB

ρ

)α

.

The error EH(p) due to truncating the series (8.22) after p-th order terms satisfies the
bound

|EH(p)| = |
∑

α>p

B
(B)
α hα

(

yj − xB

ρ

)

| ≤ (1.09)sF (B) 1
√

(p+ 1)!
s







(

rc

ρ

)p+1

1 − rc

ρ







s

.

Theorem 8.5.3 is used when B contains many sources, but C only few targets.
Finally, in the case when both B and C contain relatively many points we use

119

Theorem 8.5.4 (Translation operation) Let the sources xk lie in a box B with center
xB and side length ρ and let yj be an evaluation point in a box C with center yC . Then
the corresponding truncated Hermite expansion (8.22) can be expanded as a Taylor
series of the form

G(BC)f(yj) =
∑

β≥0

Cβ

(

yj − yC

ρ

)β

. (8.23)

The coefficients Cβ are given by

Cβ =
(−1)|β|

β!

∑

α≤p

B
(B)
α hα+β

(

xB − yC

ρ

)

,

with B
(B)
α as in Theorem 8.5.3. The error ET (p) due to truncating the series (8.23)

after p-th order terms satisfies the bound

|ET (p)| = |
∑

β>p

B
(B)
β

(

x − yC

ρ

)β

| ≤ (1.09)sF (B) 1
√

(p+ 1)!
s







(

rc

ρ

)p+1

1 − rc

ρ







s

.

Theorem 8.5.4 is based on the multivariate Taylor series expansion of the Hermite
functions hα

hα

(

yj − xB

ρ

)

=
∑

β≥0

(−1)|β|

β!

(

yj − yC

ρ

)β

hα+β

(

xB − yC

ρ

)

.

Remarks:

1. The error estimates in the original paper on the fast Gauss transform [270] were
incorrect. In the mean time a number of other authors have provided alternate
error bounds in their papers (see, e.g., [31, 225, 271, 637]).

2. For 1D calculations on the order of p = 20 terms are required to achieve double
precision accuracy. For the 2D one can get by with a smaller value of p (about
15), but the number of terms is of course much higher (on the order of ps for
s-dimensional problems).

The basic outline of the algorithm is as follows:

Algorithm:

1. If necessary, scale the problem so that the coarsest box B0 = [0, 1]s. Subdivide
B0 into smaller boxes with side length ρ parallel to the axes. Assign each source
xk to the box B in which it lies and each evaluation point yj to the box C in
which it lies.

2. Choose p so that the truncation error satisfies the desired accuracy, and for each
box B compute and store the coefficients (or moments)

B
(B)
α =

1

α!

∑

k∈IB

f(xk)

(

xk − xB

ρ

)α

, α ≤ p,

of its Hermite expansion (8.22).

120

3. For each evaluation box C, determine its interaction region IR(C).

4. For each evaluation box C transform all Hermite expansions in source boxes
within the interaction region IR(C) into a single Taylor expansion using (8.23),
i.e.,

Gf(yj) ≈
∑

β≤p

Cβ

(

yj − yC

ρ

)β

,

where

Cβ =
(−1)|β|

β!

∑

B∈IR(C)

∑

α≤p

B
(B)
α hα+β

(

xB − yC

ρ

)

.

For a small number of points direct summation is more efficient than the fast trans-
form. For the case s = 1 the fast Gauss transform should be preferable to direct
summation for N ≈ 1000 (with M ≈ 2000 evaluation points). The break-even point
in IR2 is at about N = 12000 (with M = 24000). In particular, in IR3, it is rather
disappointing that the break-even point may not occur until about N = 270000 data
sites (with M = 2.16 × 106 evaluation points). This makes fast Gauss transform in its
basic form virtually unusable for 3D applications.

Note that this algorithm does not use a hierarchical decomposition of space as
is typical for so-called tree codes, as well as many other more general fast multipole
algorithms. In this algorithm the interaction region is determined simply based on the
fast decay of the Gaussian.

Clearly, the most work is involved in step 4. The performance of this step can be
improved by using plane wave expansions to diagonalize the translation operators (see
[271]). In order to keep matters as simple as possible, we will not discuss this feature.

A more complete algorithm (designed for radial basis function interpolation) has
been developed by Beatson and co-workers (see, e.g., [43, 137]).

The numerical experiments in Table 8.11 were conducted by performing quasi-
interpolation of the form

Qhf(x) = D−1/2
N
∑

k=1

f(xk)ψ

(

x− xk√
Dh

)

,

with a Gaussian ψ on N = 2κ + 1 equally spaced points in [0, 1] with the mollified test
function

f(x) = 15e
−.25

.25−(x−.5)2

[

3

4
e−(x−2)2/4 +

3

4
e−(x+1)2/49 +

1

2
e−(x−7)2/4 − 1

5
e−(x−4)2

]

.

All errors were computed on M = 524289 equally spaced points in [0, 1]. In the
“order” column we list the number order = ln(eκ−1/eκ)/ ln 2 corresponding to the
exponent in the O(horder) notation. Other parameters were D = 4, and the default
values for the code of [225] (i.e., R = 0.5). All times are measured in seconds.

The asterisk ∗ on the entries in the lower part of the direct column indicate estimated
times. The fast Gauss transform yields a speedup of roughly a factor of 300. Another
way to interpret these results is that for roughly the same amout of work we can obtain

121

direct fast

N `∞ error order time `∞ error order time speedup

5 3.018954e-00 1.93 5.495125e-00 1.07 1.80
9 2.037762e-00 0.57 3.40 2.037762e-00 1.43 5.31 0.64
17 9.617170e-01 1.08 6.39 9.617170e-01 1.08 5.33 1.20
33 3.609205e-01 1.41 12.28 3.609205e-01 1.41 5.35 2.30
65 1.190192e-01 1.60 24.72 1.190192e-01 1.60 5.39 4.59
129 3.354132e-02 1.83 53.38 3.354132e-02 1.83 5.46 10.14
257 8.702868e-03 1.95 113.35 8.702868e-03 1.95 5.61 20.20
513 2.196948e-03 1.99 226.15 2.196948e-03 1.99 5.94 38.07
1025 450∗ 5.505832e-04 2.00 6.67 67.47
2049 900∗ 1.377302e-04 2.00 7.87 114.36
4097 1800∗ 3.443783e-05 2.00 10.56 170.45
8193 3600∗ 8.609789e-06 2.00 15.78 228.14
16385 7200∗ 2.152468e-06 2.00 26.27 274.08
32769 14400∗ 5.381182e-07 2.00 47.39 303.86
65537 28800∗ 1.345296e-07 2.00 89.91 320.32
131073 57600∗ 3.363241e-08 2.00 174.74 329.63
262145 115200∗ 8.408103e-09 2.00 343.59 335.28

Table 8.11: 1D quasi-interpolation using fast Gauss transform.

an answer which is about 100000 times more accurate. The O(h2) convergence of the
Gaussian quasi-interpolant is perfectly illustrated by the entries in the “order” columns.

An alternative to fast multipole methods are so-called fast tree codes. These kind
of algorithms originated in computational chemistry. We recommend recent papers by
Krasny and co-workers (e.g., [160, 385]). The advantage of these kinds of methods is
that they make use of standard Taylor expansions instead of the specialized expansions
(such as, e.g, in terms of Hermite functions, spherical harmonics, spherical Hankel
functions, plane waves, or hypergeometric functions [137]). This simplifies their imple-
mentation. However, their convergence properties are probably not as good as for fast
mutipole expansions.

We now present a very general discussion of fast summation via Taylor expansions.
The presentation of this material is motivated by the work of Krasny and co-workers
(see, e.g., [160, 385]) as well as the algorithm for the fast Gauss transform reviewed
above. Since we are interested in many evaluations of our quasi-interpolants (or other
radial basis function expansion), we split the set of M evaluation points yj into groups
(contained in boxes C with centers yC). We also split the N data locations xk into
boxes B with center xB, and use the index set IB to denote the points in B.

In order to set the stage for a fast summation of the quasi-interpolant

Qf(yj) =
N
∑

k=1

f(xk)Φ(yj − xk)

=
∑

B

∑

k∈IB

f(xk)Φ(yj − xk) (8.24)

122

with generating function Φ we require the multivariate Taylor expansion of Φ about a
point z0 ∈ IRs, i.e.,

Φ(z) =
∑

α≥0

DαΦ(z)|z=z0

(z − z0)
α

α!
, (8.25)

where α is a multi-index. Now – as for the fast Gauss transform – we consider three
basic expansions.

Theorem 8.5.5 (Taylor Series Expansion about Centers of Target Boxes) Let IB be
the index set denoting the sources xk which lie in a box B with center xB, and let
yC be the center of the target box C containing an evaluation point yj. Then the
quasi-interpolant due to sources in B

Q(B)f(yj) =
∑

k∈IB

f(xk)Φ(yj − xk)

can be written as a Taylor expansion about yC :

Q(B)f(yj) =
∑

α≥0

A
(B)
α (yj − yC)α,

where

A
(B)
α =

(−1)|α|

α!

∑

k∈IB

f(xk)Tα(yC ,xk)

with Tα(yC ,xk) = (−1)|α|DαΦ(z)|z=yC−xk
.

Proof: We combine the contribution for the source box B of (8.24) with (8.25), and
let z = yj − xk and z0 = yC − xk. Then (8.24) becomes

Q(B)f(yj) =
∑

k∈IB

f(xk)
∑

α≥0

DαΦ(z)|z=yC−xk

(yj − yC)α

α!
.

Using the abbreviation Tα(yC ,xk) = (−1)|α|DαΦ(z)|z=yC−xk
we can rewrite this as

Q(B)f(yj) =
∑

α≥0

A
(B)
α (yj − yC)α,

where

A
(B)
α =

(−1)|α|

α!

∑

k∈IB

f(xk)Tα(yC ,xk).

�

Example : If we take Φ(x) = e−‖x‖2
then

Tα(yC ,xk) = hα(yC − xk) = hα(xk − yC),

and Theorem 8.5.5 is equivalent to Theorem 8.5.2 given above.

Remark: We can see that the Taylor expansion has allowed us to separate the evalu-
ation points yj from the data points xk.

123

Theorem 8.5.6 (Reversed Taylor Series Expansion about Centers of Source Boxes)
Let IB be the index set denoting the sources xk which lie in a box B with center xB.
Then the quasi-interpolant due to sources in B

Q(B)f(yj) =
∑

k∈IB

f(xk)Φ(yj − xk)

can be written as a reversed Taylor expansion about xB:

Q(B)f(yj) =
∑

α≥0

B
(B)
α Tα(yj ,xB),

with the moments B
(B)
α given by

B
(B)
α =

1

α!

∑

k∈IB

f(xk)(xk − xB)α,

and Tα(yj ,xB) = (−1)|α|DαΦ(z)|z=yj−xB
.

Proof: We combine the contribution for the source box B of (8.24) with (8.25), and
let z = yj − xk and z0 = yj − xB. Then (8.24) becomes

Q(B)f(yj) =
∑

k∈IB

f(xk)
∑

α≥0

DαΦ(z)|z=yj−xB
(−1)|α| (xk − xB)α

α!
.

Using the abbreviation Tα(yj ,xB) = (−1)|α|DαΦ(z)|z=yj−xB
we can reverse the role

of the Taylor coefficients and the polynomials to write this as

Q(B)f(yj) =
∑

α≥0

B
(B)
α Tα(yj ,xB),

with

B
(B)
α =

1

α!

∑

k∈IB

f(xk)(xk − xB)α.

�

Example: Using Φ(x) = e−‖x‖2
this is equivalent to Theorem 8.5.3.

Remark: The moments can be pre-computed and stored during the setup phase of
the algorithm.

Theorem 8.5.7 (Conversion of Taylor Series Expansions about Source Centers to
Series about Target Centers) Let IB be the index set denoting the sources xk which lie
in a box B with center xB, and let yC be the center of the target box C containing yj.
Then a fast summation formula for the quasi-interpolant

Qf(yj) =

N
∑

k=1

f(xk)Φ(yj − xk)

124

can be given as an expansion about yC :

Qf(yj) ≈
∑

β≤p

Cβ(yj − yC)β,

where

Cβ =
(−1)|β|

β!

∑

α+β≤p

∑

B

Tα+β(yC ,xB)B
(B)
α ,

Tα+β(yC ,xB) = (−1)|α+β|Dα+βΦ(z)|z=yC−xB
, and the moments B

(B)
α are as in The-

orem 8.5.6.

Proof: We combine (8.24) with (8.25), and now replace z by yj − xk and z0 by
yC − xB. Then (8.24) becomes

Qf(yj) =
∑

B

∑

k∈IB

f(xk)
∑

α≥0

DαΦ(z)|z=yC−xB

(yj − xk − (yC − xB))α

α!
.

Using the abbreviation Tα(yC ,xB) = (−1)|α|DαΦ(z)|z=yC−xB
along with the multi-

variate binomial theorem we can rewrite this as

Qf(yj) =
∑

B

∑

k∈IB

f(xk)
∑

α≥0

(−1)|α|Tα(yC ,xB)

α!

∑

β≤α

(

α

β

)

(−1)|β|(yj − yC)α−β(xk − xB)β

=
∑

α≥0

∑

B

(−1)|α|Tα(yC ,xB)
∑

β≤α

(−1)|β| (yj − yC)α−β

(α − β)!

∑

k∈IB

f(xk)
(xk − xB)β

β!
.

In fact, we can introduce the moments of Theorem 8.5.6 and write

Qf(yj) =
∑

α≥0

∑

B

(−1)|α|Tα(yC ,xB)
∑

β≤α

(−1)|β| (yj − yC)α−β

(α − β)!
B

(B)
β ,

where

B
(B)
β =

1

β!

∑

k∈IB

f(xk)(xk − xB)β.

A fast algorithm is now obtained by truncating the infinite series after the p-th order
terms, i.e.,

Qf(yj) ≈
∑

α≤p

∑

B

(−1)|α|Tα(yC ,xB)
∑

β≤α

(−1)|β| (yj − yC)α−β

(α − β)!
B

(B)
β .

Using the fact that
∑

α≤p

aα

∑

β≤α

bα−β =
∑

α≤p

bα
∑

α≤β≤p

aβ =
∑

α≤p

bα
∑

α+β≤p

aα+β,

which can be verified by a simple rearrangement of the summations and an index trans-
formation, we obtain (interchanging the role of α and β) the following fast summation
formula:

Qf(yj) ≈
∑

β≤p

∑

α+β≤p

(−1)|α| 1

β!

∑

B

(−1)|α+β|Tα+β(yC ,xB)B
(B)
α (yj − yC)β.

125

This is equivalent to the statement of the theorem. �

Example: Using Φ(x) = e−‖x‖2
this is almost equivalent to Theorem 8.5.3. However,

our alternate formula is more efficient since only Hermite functions up to order p
are required (as opposed to order 2p in the Greengard/Strain version). This gain is
achieved by using the binomial theorem instead of a second Taylor expansion (the
Hermite series expansion used in the traditional fast Gauss transform is equivalent to
a Taylor expansion).

Remarks:

1. Note that the Taylor coefficients Tα(yC ,xB) depend only on the box centers yC

and xB.

2. In order to make the algorithm efficient one will use a decision rule (as in Strain’s
code for the fast Gauss transform) to decide when to use which of the three
expansions. Error estimation is very similar to Greengard/Strain. The only dif-
ference is that one needs bounds on the Taylor coefficients instead of the Hermite
functions.

3. In order to adapt this fast transform to Gauss-Laguerre generating functions of
the previous sections (or any other generating function) one needs to compute
the required Taylor coefficients. This is a task that goes beyond the scope of this
manuscript.

8.6 Domain Decomposition

Finally, another method commonly used to deal with large computational problems is
the domain decomposition method. The domain decomposition method is frequently
implemented on parallel computers in order to speed up the computation even more.
A standard reference (based mostly on finite difference and finite element methods) is
the book by Smith, Bjørstad and Gropp [584]. For radial basis functions there is a
recent paper by Beatson, Light and Billings [42].

The main aim of the paper [42] is to solve the radial basis function interpolation
problem discussed multiple times in previous sections. In particular, a so-called multi-
plicative Schwarz algorithm (which is analogous to Gauss-Seidel iteration) is presented,
and linear convergence of the algorithm is proved. A section with numerical experi-
ments reports results for an additive Schwarz method (which is analogous to Jacobi
iteration).

In particular, the authors implemented polyharmonic radial basis functions, and
used the scale invariant basis discussed in Section 8.4.

The classical additive Schwarz algorithm is usually discussed in the context of par-
tial differential equations, and it is known that one should add a coarse level correction
in order to ensure convergence and to filter out some of the low-frequency oscillations
(see, e.g., [584]).

In [42] a two-level additive algorithm for interpolation problems was presented.
One begins by subdividing the set on interpolation point X into M smaller sets Xi,
i = 1, . . . ,M , whose pairwise intersection is non-empty. The points that belong to one

126

set Xi only are called inner points of Xi. Those points in the intersection of more than
one set need to be assigned in some way as inner points to only one of the subsets Xi

so that the collection of all inner points yields the entire set X . This corresponds to
the concept of overlapping domains. One also needs to choose a coarse grid Y that
contains points from all of the inner point sets.

In the setup phase of the algorithm the radial basis function interpolation matrices
for the smaller problems on each of the subsets Xi, i = 1, . . . ,M , are computed and
factored. At this point one can use the homogeneous basis of Section 8.4 to ensure
numerical stability. Now the algorithm proceeds as follows:

Algorithm:

Input: Data f , point sets Xi and factored interpolation matrices Ai, i = 1, . . . ,M ,
tolerance ε

Initialize r = f , s = 0

While ‖r‖ > ε do

For i = 1 to m (i.e., for each subset Xi) do

Determine the coefficients ci of the interpolant to the residual r|Xi
on

Xi.

end

Make c orthogonal to Πs
m−1.

Assemble an intermediate approximation s1 =

N
∑

j=1

cjΦ(·,xj).

Compute the residual on the coarse grid, i.e.,

r1 = r − s1|Y .

Interpolate to r1 on the coarse grid Y using a radial basis function expansion
s2.

Update s = s+ s1 + s2.

Reevaluate the global residual r = f − s on the whole set X

end

Remarks:

1. In [42] it is proved that a multiplicative version of this algorithm converges at
least linearly. However, the additive version can be more easily implemented on
a parallel computer.

2. If strictly positive definite kernels such as Gaussians are used, then it is not
necessary to make the coefficients c orthogonal to polynomials.

3. As in many algorithms before, the evaluation of the residuals needs to be made
“fast” using either a fast multipole method or a version of the fast Fourier trans-
form.

127

4. In the case of very large data sets it may be necessary to use more than two levels
so that one ends up with a multigrid algorithm.

5. The authors of [42] report having solved interpolation problems with several mil-
lions of points using the domain decomposition algorithm above.

6. A number of other papers discussing domain decomposition methods for radial
basis functions have recently appeared in the literature (see, e.g., [166, 306, 313,
379, 396, 647]). However, most of these papers contain little theory, focussing
mostly on numerical experiments.

128

