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Chapter 15 of Experiments with MATLAB Differential Equations

What is a Differential Equation?

Answer
Unlike an algebraic equation such as

2x = x2 + 1 ⇔ x2 − 2x + 1 = 0 ⇔ (x − 1)2 = 0 ⇔ x = 1,

or a transcendental equation such as

x = cos(x)
fixed point iteration

=⇒ x = 0.7390851332151606416553 . . . ,

where the unknown quantities are given by a number, x , and algebraic
or transcendental expressions in terms of x , the unknown quantity in a
differential equation is a function along with some of its derivatives,
and therefore the solution is also a function. For example, we saw
earlier that

P ′(t) = rP(t), P(0) = P0 ⇐⇒ P(t) = P0ert , t > 0.
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Chapter 15 of Experiments with MATLAB Differential Equations

Since derivatives can be interpreted as rates of change, differential
equations are used to express problems such as

change in account balance in relation to the amount of money in
an account (as a function of time)

A′(t) = rA(t) =⇒ A(t) = . . .

population growth rate in relation to the size of a population (as a
function of time)

P ′(t) =
(

1− P(t)
C

)
P(t) =⇒ P(t) = . . .

acceleration of a body in relation to the position of the body (as a
function of time)

x ′′(t) = −x(t) =⇒ x(t) = . . .

change in temperature of a body (as a function of location and
time)

∂T (x , t)
∂t

= −k2∂
2T (x , t)
∂x2 =⇒ T (x , t) = . . .
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Chapter 15 of Experiments with MATLAB Slope Fields

Visualizing Differential Equations

Slope fields are a great way to visualize what’s
going on in a differential equation.

A differential equation by itself does not
constitute a well-posed problem. There are
graphs of many different functions that fit into any
given slope field.
A slope field usually represents a family of
infinitely many solutions to the differential
equation.
In order to guarantee a unique solution (and
make the problem well-posed) we need to specify
an initial condition (or initial point).
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Chapter 15 of Experiments with MATLAB Slope Fields

We can use the Mathematica Demo
SlopeFieldsEdited.cdf to illustrate, e.g.,

y ′ = 3y (i.e., A′(t) = rA(t))

y ′ =
(
1− y

3

)
y (i.e., P ′(t) =

(
1− P(t)

C

)
P(t))

Other examples of “real life” slope fields are
grade markers along a road [ExM]
speed sensors along a highway (group
project)
complex flow visualization
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Chapter 15 of Experiments with MATLAB A “Real” Slope Field

Shock wave on I-680 in Walnut Creek, CA, during rush hour [Coifman].
The graph shows distance traveled (vertical axis) as a function of time
(horizontal axis).
Each yellow line describes the path of an individual vehicle. Line
slopes correspond to vehicle speed at any position and time
(background color ranges from black=0 mph to blue=40 mph).
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Chapter 15 of Experiments with MATLAB Space Orbits via Differential Equations

What should a slope field for a circular orbit look like?

Point (x(t), y(t)) Tangent (x ′(t), y ′(t))
(1,0)

(0,1)

(0,1)

(-1,0)

(-1,0)

(0,-1)

(0,-1)

(1,0)

Differential equations:

x ′(t) = − y(t)
y ′(t) = x(t)

Which functions x = x(t) and y = y(t) satisfy this system of differential
equations? x(t) = cos(t), y(t) = sin(t)

Remark
In more realistic applications these orbits are derived based on
physical laws (such as Kepler’s or Newton’s laws of motion).
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Chapter 15 of Experiments with MATLAB Space Orbits via Differential Equations

Standard form of first-order ODE systems

Instead of

x ′(t) = −y(t)
y ′(t) = x(t)

one usually changes over to vector notation.

We introduce
y(t) = [y1(t), y2(t)]T = [x(t), y(t)]T , so that the circle orbit is described
by

y ′
1(t) = −y2(t)

y ′
2(t) = y1(t) .

If we abbreviate f (t ,y(t)) = [−y2(t), y1(t)]T , then we get

y ′(t) = f (t ,y(t)) .

This is the standard form of a (system of) ordinary differential equation,
and also the way MATLAB expects to get an ODE.
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Chapter 15 of Experiments with MATLAB Space Orbits via Differential Equations

Orbits via ode23

The system

y ′
1(t) = −y2(t)

y ′
2(t) = y1(t)

with f (t ,y(t)) = [−y2(t), y1(t)]T can be implemented in MATLAB:

mycircle = @(t,y) [-y(2); y(1)]; % f(t,y(t))
tspan = [0 2*pi]; % range for t
y0 = [1; 0]; % starting point
[t y] = ode23(mycircle,tspan,y0);
plot(y(:,1),y(:,2),’-o’)
axis(1.1*[-1 1 -1 1])
axis square

An alternate form using a MATLAB function M-file is described in [ExM].
fasshauer@iit.edu MATH 100 – ITP 9
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Chapter 15 of Experiments with MATLAB Space Orbits via Differential Equations

What does the following change1 do?

y ′
1(t) = −y2(t)

y ′
2(t) = y1(t)

−→
y ′

1(t) = y2(t)
y ′

2(t) = −y1(t)

We have y ′ −→ −y ′.
The orientation of the orbit is reversed (counterclockwise −→
clockwise).
The solution is given by

y1(t) = cos(t)
y2(t) = sin(t)

−→
y1(t) = sin(t)
y2(t) = cos(t)

Try this out in MATLAB.

1This is how the circular orbit is described in [ExM], but standard mathematical
positive orientation is counterclockwise.
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What does the following change1 do?

y ′
1(t) = −y2(t)
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Let’s try some other problems

Example
The following should result in a spiral-shaped orbit:

x ′(t) = −x(t) + y(t), x(0) = 1
y ′(t) = −x(t)− y(t), y(0) = 1

Fill in the blanks (xxxxx) in the MATLAB code:

myorbit = @(t,y) [xxxxx; xxxxx]; % f(t,y(t))
tspan = [0 10]; % range for t
y0 = [xxxxx; xxxxx]; % starting point
[t y] = ode23(myorbit,tspan,y0);
plot(y(:,1),y(:,2),’-o’)
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Example
The following should result in an attracting circular orbit:
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y ′(t) = −x(t) + y(t)− x2(t)y(t)− y3(t), y(0) = 0

Fill in the blanks (xxxxx) in the MATLAB code:

myorbit = @(t,y) [xxxxx; xxxxx]; % f(t,y(t))
tspan = [0 10]; % range for t
y0 = [xxxxx; xxxxx]; % starting point
[t y] = ode23(myorbit,tspan,y0);
plot(y(:,1),y(:,2),’-o’)

Try different starting points!
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The topics we have discussed up to now will come up in later MATH
classes such as

MATH 152 (Calculus II): polar coordinates, curves in parametric
form
MATH 251 (Multivariable Calculus): functions in vector form
MATH 252 (Introduction to Differential Equations): (systems of)
differential equations
MATH 350 (Introduction to Computational Mathematics):
numerical methods like ode23
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Chapter 15 of Experiments with MATLAB Forward Differences

Approximating Derivatives

Recall the definition of the derivative:

y ′(t) = lim
h→0

y(t + h)− y(t)
h

.

We can easily turn this into a numerical method by dropping the limit:

y ′(t) ≈ y(t + h)− y(t)
h

,

a so-called forward difference approximation.

Example
While this is in general only an approximation, it is exact for linear
functions.
Let y(t) = mt + b so that y ′(t) = m. Then

y(t + h)− y(t)
h

=
[m(t + h) + b]− [mt + b]

h
=

mh
h

= m.
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Chapter 15 of Experiments with MATLAB Forward Differences

Circular Space Orbit Revisited

We now construct our own method to follow the circular orbit (a simple
differential equation solver).

Remember the system of ODEs:

x ′(t) = −y(t)
y ′(t) = x(t)

Using the forward difference approximation we get

x(t + h)− x(t)
h

= −y(t)

y(t + h)− y(t)
h

= x(t)
⇐⇒

x(t + h) = x(t)− h y(t)
y(t + h) = y(t) + h x(t)

If we start at any point (x(t), y(t)), then we can get a new point
(x(t + h), y(t + h)) near the orbit by using the above formulas with a
small stepsize h.
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Chapter 15 of Experiments with MATLAB

Space War Orbit [ExM]

x = 1; y = 0; % starting point
h = 1/4; % small stepsize
n = 2*pi/h; % to get one full revolution
plot(x,y,’.’)
hold on
for k = 1:n % compute new points near orbit

x = x - h*y;
y = y + h*x;
plot(x,y,’.’)

end
hold off
axis([-1.1 1.1 -1.1 1.1])
axis square

This algorithm is known as Euler’s method.
Repeat with h = 1/32 and explain.
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Chapter 15 of Experiments with MATLAB

Important questions to be investigated in later classes:
How accurate is Euler’s method? (→ MATH 350, uses Taylor
series from MATH 152)
Are there other more accurate or more efficient methods to solve
ODEs? (→ MATH 350)
How does one solve differential equations analytically? (→
MATH 152, MATH 252, MATH 461, MATH 488, MATH 489)
Learn about other kinds of differential equations problems:

we looked only at initial value problems
there are also boundary value problems
differential equations involving derivatives with respect to more than
one independent variables become partial differential equations

How sensitive are differential equations to their initial conditions?
(→ MATH 488, dynamical systems and chaos)
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Chapter 15 of Experiments with MATLAB

Second-order ODEs as Systems of First-order ODEs

Consider the simple mathematical model for a falling body (see, e.g.,
[Gowers, Ch. 1]):

x ′′(t) = −g

integrate
=⇒ x ′(t) = −gt+v0

integrate
=⇒ x(t) = −gt2

2
+v0t+x0.

Let’s pretend we can’t integrate this equation, and use MATLAB

instead.
We need to convert this second-order ODE to a system of first-order
ODEs (since that’s all that MATLAB understands, and since this
corresponds to standard form).
If we introduce a second unknown function, v(t) = x ′(t), then we have

x ′(t) = v(t)
v ′(t) = −g
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Solving the Falling Rock Problem

From the previous slide we know that the system

x ′(t) = v(t)
v ′(t) = −g

has solution x(t) = −gt2

2 + v0t + x0, where x0 and v0 are the initial
height and initial velocity, respectively.

myrock = @(t,y) [y(2); -9.81]; % f(t,y(t))
tspan = [0 2]; % range for t
y0 = [20; 0]; % starts at height 20, 0 velocity
[t y] = ode23(myrock,tspan,y0);
plot(t,y(:,1),’-o’) % MATLAB’s solution
hold on % analytical solution from integration
tt = linspace(0,2,100);
plot(tt, -9.81*tt.^2/2 + y0(2)*tt + y0(1),’r’)
hold off
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Chapter 15 of Experiments with MATLAB

A Simple Spring-Mass Model

Hooke’s law states that

F = −kx ,

i.e., the force required to restore a spring from
a displacement of x units out of equilibrium is
proportional (with spring constant k ) to the
displacement.

Since, from Newton’s second law of motion, we also know that F = ma
(mass × acceleration), and a(t) = x ′′(t), we get the following basic
mathematical model for a spring-mass system2:

x ′′(t) = −x(t).

2For simplicity we set m = k = 1
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Chapter 15 of Experiments with MATLAB

We actually can’t solve
x ′′(t) = −x(t).

by simple integration, so we again use MATLAB (in MATH 252 you
learn how to do this analytically as well).

Introducing v(t) = x ′(t) as a second unknown function we get

x ′(t) = v(t)
v ′(t) = −x(t)

This looks suspiciously like our earlier orbit system! We have periodic
motion, a so-called harmonic oscillator.
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Solving the Spring Problem

We might be able to guess that

x ′′(t) = −x(t)

can be satisfied by x(t) = cos(t), or by x(t) = sin(t).
Again, the ODE by itself is not a well-posed problem. Additional initial
conditions will give us a unique solution:

myspring = @(t,y) [y(2); -y(1)]; % f(t,y(t))
tspan = [0 10]; % range for t
y0 = [2; 0]; % initial displacement 2, velocity 0
[t y] = ode23(myspring,tspan,y0);
plot(t,y(:,1),’-o’) % MATLAB’s solution

fasshauer@iit.edu MATH 100 – ITP 22

http://math.iit.edu/~fass


Chapter 15 of Experiments with MATLAB

Solving the Spring Problem

We might be able to guess that

x ′′(t) = −x(t)

can be satisfied by x(t) = cos(t), or by x(t) = sin(t).
Again, the ODE by itself is not a well-posed problem. Additional initial
conditions will give us a unique solution:

myspring = @(t,y) [y(2); -y(1)]; % f(t,y(t))
tspan = [0 10]; % range for t
y0 = [2; 0]; % initial displacement 2, velocity 0
[t y] = ode23(myspring,tspan,y0);
plot(t,y(:,1),’-o’) % MATLAB’s solution

fasshauer@iit.edu MATH 100 – ITP 22

http://math.iit.edu/~fass


Chapter 15 of Experiments with MATLAB Let’s try another problem

Example

If we add a damping term to the spring equations, then we get the so-called
damped harmonic (van der Pol) oscillator:

x ′′(t) = µ(1− x(t)2)x ′(t)− x(t), x(0) = 2, x ′(0) = 0.

Convert to a first-order system:

x ′(t) = v(t), x(0) = 2

v ′(t) = µ(1− x(t)2)v(t)− x(t), v(0) = 0

Fill in the blanks (xxxxx) in the MATLAB code. Experiment with different values
of µ = 0.01,0.1,1,10,100:

mu = xxxxx;
vanderPol = @(t,y) [xxxxx; xxxxx]; % f(t,y(t))
tspan = [0 1000]; % range for t
y0 = [xxxxx; xxxxx]; % starting point
[t y] = ode23(vanderPol,tspan,y0);
plot(y(:,1),y(:,2),’-o’)
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Stiff ODEs

The van der Pol problem becomes very stiff for large values of the
damping parameter µ.

For such cases, there are special ODE solvers.

Try ode23s instead of ode23 in those cases.

More about the complicated phenomenon of stiffness is discussed in
MATH 350 and MATH 478.
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Connection to Matrices

Linear constant coefficient homogeneous ODEs (such as those we
looked at above) can be written in matrix-vector form.

Example
The system

y ′
1(t) = −y2(t)

y ′
2(t) = y1(t)

⇐⇒
y ′

1(t) = 0y1(t)− 1y2(t)
y ′

2(t) = 1y1(t) + 0y2(t)
is equivalent to

y ′(t) =
[

0 −1
1 0

]
y(t), where y(t) = [y1(t), y2(t)]T .

To solve this system analytically we then need to find the eigenvalues
and eigenvectors of the matrix (→ MATH 252, MATH 332).
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