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Mathematical Models

What is a mathematical model?

A mathematical model is an abstract, simplified, mathematical
construct related to a part of reality and created for a
particular purpose.

from [E. A. Bender: An Introduction to Mathematical Modeling]

When devising a model, one tries to ignore as much as
possible about the phenomenon under consideration,
abstracting from it only those features that are essential to
understanding its behaviour.

from [T. Gowers: Mathematics: A Very Short Introduction]
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Modeling Growth

Earlier Example: Rabbits

Processes that change over time may be one of the most common
types of modeling problems we encounter in practice.

Such change can happen
at discrete instances, and thus lead to difference equations such
as the recursion

fn = fn−1 + fn−2, for n ≥ 3 and f1 = f2 = 1,

which describes the Fibonacci sequence (growth of a rabbit
population), and can also be written as

∆fn−1 = fn−2, for n ≥ 3 and f1 = f2 = 1,

using forward differences ∆fn−1 = fn − fn−1;
continuously, so that we obtain a differential equation such as

P ′(t) = rP(t), P(0) = P0,

see below.
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Modeling Growth

Types of Growth

We often differentiate between linear and nonlinear models. In
particular, when discussing the growth of a quantity/function/sequence
we may encounter

linear growth of the type
P(t) = at
polynomial growth of the type
P(t) = ta

exponential growth of the type
P(t) = at

sublinear growth of the type
P(t) = loga(t)
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The Modeling Process

The Modeling Process

1 Formulate the problem. What do we want to achieve with our
model? The answer to this question may suggest a specific
mathematical technique to be used.

2 Identify which quantities are known/available, which you want to
compute/predict, i.e., introduce variables and consider how they
are interrelated.

3 Assess the complexity of your model and consider making
simplifying assumptions to ensure that you have a manageable
approach to solving the problem. Possibly iterate steps 1-3.

4 Validate the model. Calibrate parameters if needed by comparing
with available data. Make sure the model works for
simple/standard situations before applying to something more
challenging. Possibly iterate steps 1-4.
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The Modeling Process

An Example: Population Growth

1 Let’s assume we want to model long-term population growth.

2 The quantities of interest are:
(a) Given

r : the net population change per individual (i.e.,
reproduction rate = birth rate− death rate), can be
expressed as

r =
P ′(t)
P(t)

t : time
P0: initial population, i.e., P(0) = P0.

(b) Desired
P(t): population at any given time t , with a special interest

in large values of t
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The Modeling Process

3 Let’s make some assumptions that allow us to solve the problem.
Let’s say that

(a) the growth rate is constant, and
(b) the past has no effect on the future, i.e., the growth process

depends only on the current population P(t) and its rate of growth
P ′(t).

The resulting differential equation

P ′(t) = rP(t)

has general solution
P(t) = cert ,

where the constant of integration c is obtained using the initial
condition, i.e.,

P(0) = cer ·0 !
= P0 =⇒ c = P0,

so that we get the specific solution

P(t) = P0ert , for all t ≥ 0.
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The Modeling Process

4 In order to validate our model, let’s consider what happens for
large values of t :

(a) For r > 0 we have

lim
t→∞

P(t) = lim
t→∞

P0ert =∞,

so the population grows without bounds for any (positive) initial
population P0 and any positive growth rate r . This is unrealistic.

(b) For r < 0 we have

lim
t→∞

P(t) = lim
t→∞

P0ert = 0,

so the species becomes extinct for any (positive) initial population
P0 and any negative growth rate r . This is also unrealistic.

It seems virtually impossible to make a prediction of a reasonable
population size. Moreover, the growth behavior depends
dramatically on (the sign of) the growth rate r .
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The Modeling Process

5 This model may still be (and in fact is) useful for relatively
short-term growth predictions.

For example, we can apply it to interest calculations in finance:
see compound interest

see student loan

However, for biological populations and long-term predictions we
need to rethink/refine our model!
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The Modeling Process

Solving an ODE in MATLAB

We can solve many kinds of ODE initial value problems using, e.g.,
ode23() in MATLAB.
Here’s the solution of

P ′(t) = rP(t), with r = 0.3 and P0 = 1000

r = .3; % i.e., 30% growth rate
P0 = 1000; % initial population
tend = 5; % final time for simulation
timespan = [0 tend]; % time interval to simulate
tt = linspace(0,tend,100); % for plotting
ode23(@(t,P) r*P, timespan, P0) % MATLAB ODE solver
Pexact = @(t) P0*exp(r*t) % analytical solution
hold on
plot(tt,Pexact(tt),’r.’)
hold off
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The Modeling Process

Refined Population Growth Models

For example, we might consider a model in which:
The growth rate depends on the size of the population, i.e.,
r = r(P), so that growth slows down when things get crowded and
resources become sparse.

A popular such model is the logistic differential equation

P ′(t) =

(
r − r

P(t)
C

)
︸ ︷︷ ︸

r=r(P)

P(t).

Here C denotes the carrying capacity of the environment.
This equation can also be solved analytically (a little bit harder, but
still basic Calculus), so that we get the solution

P(t) =
CP0ert

C + P0(ert − 1)
, for all t ≥ 0,

where P0 is again the initial population.
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The Modeling Process

MATLAB Solution of Logistic Equation

We solve

P ′(t) =

(
r − r

P(t)
C

)
P(t), with r = 1, C = 1500 and P0 = 1000

again using ode23().

r = 1; % i.e., 100% growth rate
P0 = 1000; % initial population
tend = 5; % final time for simulation
timespan = [0 tend]; % time interval to simulate
tt = linspace(0,tend,100); % for plotting
C = 1500; % capacity
ode23(@(t,P) r*P*(1-P/C), timespan, P0) % MATLAB soln
Pexact = @(t) C*P0*exp(r*t)./(C+P0*(exp(r*t)-1))
hold on
plot(tt,Pexact(tt),’r.’)
hold off
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The Modeling Process

Alternatively, we might consider a model in which:
The mortality rate depends on the current population, but the birth
rate depends on the population that was mature some time earlier.

This leads to a delay differential equation of the type

P ′(t) = −mP(t) + bP(t − `),

where the mortality rate m and birth rate b are both positive
quantities, and time lag ` tells us how far to go back to account for
maturity2.
This problem is much harder to solve. For m = 0, b = 1 and ` = 1,
and initial history P(t) = 1 for t ≤ 0 one gets for t ∈ [0,5]

P(t) =



t + 1 0 ≤ t ≤ 1
t2+3

2 1 ≤ t ≤ 2
t3−3t2+12t+1

6 2 ≤ t ≤ 3
t4−8t3+42t2−60t+85

24 3 ≤ t ≤ 4
t5−15t4+120t3−430t2+980t−599

120 4 ≤ t ≤ 5

2Recall the Fibonacci recursion.
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This leads to a delay differential equation of the type

P ′(t) = −mP(t) + bP(t − `),

where the mortality rate m and birth rate b are both positive
quantities, and time lag ` tells us how far to go back to account for
maturity2.
This problem is much harder to solve. For m = 0, b = 1 and ` = 1,
and initial history P(t) = 1 for t ≤ 0 one gets for t ∈ [0,5]

P(t) =



t + 1 0 ≤ t ≤ 1
t2+3

2 1 ≤ t ≤ 2
t3−3t2+12t+1

6 2 ≤ t ≤ 3
t4−8t3+42t2−60t+85

24 3 ≤ t ≤ 4
t5−15t4+120t3−430t2+980t−599

120 4 ≤ t ≤ 5
2Recall the Fibonacci recursion.
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The Modeling Process

MATLAB Solution of DDE

We solve the delay differential equation

P ′(t) = P(t − 1), with P(t) = 1 for t ≤ 0

using dde23().
tend = 5; % final time for simulation
timespan = [0 tend]; % time interval to simulate
tt = linspace(0,tend,100); % for plotting
lag = 1; % time delay
hist = 1; % initial history
sol = dde23(@(t,P,d) d, lag, hist, timespan)
plot(sol.x,sol.y)
% analytical solution
Pexact = @(t) (tt>=0 & tt<=1).*(tt+1) + (tt>=1 & tt<=2).*(tt.^2+3)/2 +...

(tt>=2 & tt<=3).*(tt.^3-3*tt.^2+12*tt+1)/6 +...
(tt>=3 & tt<=4).*(tt.^4-8*tt.^3+42*tt.^2-60*tt+85)/24 +...
(tt>=4 & tt<=5).*(tt.^5-15*tt.^4+120*tt.^3-430*tt.^2+980*tt-599)/120

hold on
plot(tt,Pexact(tt),’r.’)
hold off

Note the piecewise defined solution using logical indexing.
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The Modeling Process

Other refinements of our population growth model might consider
seasonable variations
random fluctuations
partially discrete models, e.g., depending on age groups or gender
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Other Types of Problems to Model

Other Types of Problems to Model

Many engineering problems, such as in mechanics, electronics, or
in materials science are described by mathematical models –
often involving systems of differential equations describing
change.
Probabilistic/stochastic models are used, e.g., in gambling/games,
or for complicated natural or social phenomena such as weather
prediction, or financial forecasting.
Modeling the behavior of gases uses systems of differential
equations (Boltzmann equations) to describe the kinetics of the
molecules of the gas, but also uses stochastic models since some
quantities can only be described in the average sense (due to the
Heisenberg uncertainty principle) (read
[T. Gowers: Mathematics: A Very Short Introduction, Chapter 1]).
Modeling of scheduling problems uses techniques of discrete
mathematics (such as graphs, and graph coloring), but also
optimization algorithms.
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Other Types of Problems to Model

Other Types of Problems to Model (cont.)

Modeling of complex networks in, e.g., biology or neuroscience
often requires combinations of many different techniques
(discrete, differential equations, probabilistic).
Logic serves as a tool to model many formal systems, such as in
artificial intelligence or formal languages.
Many other situation in everyday life can be subjected to a
mathematical model, e.g., in economics, sociology, politics
(voting), etc.

Just about all complex models are simulated using computational
techniques. The use of (sophisticated) analytical techniques may
greatly improve the efficiency of computational models.
Frequently, we can apply an “abstract” mathematical model to many
different practical applications.
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Modeling and Simulation

The “Third Pillar of Science”

“Together with theory and experimentation, computational
science now constitutes the “third pillar” of scientific inquiry,
enabling researchers to build and test models of complex
phenomena – such as multi-century climate shifts,
multidimensional flight stresses on aircraft, and stellar
explosions – that cannot be replicated in the laboratory, and
to manage huge volumes of data rapidly and economically.”

President’s Information Technology Advisory Committee [PITAC (2005)]
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Modeling and Simulation
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Chapter 8 of Experiments with MATLAB

The simplest differential equation

Investigate the exponential growth model for P(t) = at by playing with
expgui.m from [ExM].

We see that P(t) = P ′(t) when

P(t) = et , where e = 2.71828182845904 . . . is Euler’s number.

This means we have found a solution of the differential equation

P ′(t) = P(t).

This can also be seen from

d
dt

et = et .

The most basic differentiation rule tells us that any constant multiple
P(t) = cet works as well.
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Chapter 8 of Experiments with MATLAB

Using the chain rule we see that

d
dt

ert = rert ,

so that P(t) = cert is the general solution of

P ′(t) = rP(t).

Return
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Chapter 8 of Experiments with MATLAB

Compound interest
1 If your parents had invested $10,000 for your college education at

an average annual interest rate of 5% 20 years ago, how much
would be in the account now?

2 We use t to denote time (measured in years), r = 0.05 as the
annual interest rate and A0 = A(0) = 10000 as the initial amount.
What is A(20), and more generally A(t)?

3 If interest is compounded annually, then

A(1) = A(0) + rA(0) = (1 + r)A(0)

A(2) = A(1) + rA(1) = (1 + r)A(1) = (1 + r)2A(0)

...
A(n) = (1 + r)nA(0)

Using h = 1, this can also be viewed as3

A(t + h) = A(t) + rhA(t).
3Note polynomial growth as for Fibonacci.
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Chapter 8 of Experiments with MATLAB

3 If interest is compounded monthly, then

A( 1
12) = A(0) + r

12A(0) = (1 + r
12)A(0)

A( 2
12) = A( 1

12) + r
12A( 1

12) = (1 + r
12)A( 1

12) = (1 + r
12)2A(0)

...
A(t) = (1 + r

12)12tA(0)

Using h = 1
12 , this can again be viewed as4

A(t + h) = A(t) + rhA(t).

4Also polynomial growth.
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Chapter 8 of Experiments with MATLAB

3 If interest is compounded continuously, then we consider

A(t + h) = A(t) + rhA(t) ⇐⇒ A(t + h)− A(t)
h

= rA(t)

and letting h→ 0 and using the definition of the derivative,

A′(t) = lim
h→0

A(t + h)− A(t)
h

,

we get5

A′(t) = rA(t) =⇒ A(t) = A(0)ert

5Now we have exponential growth.
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Chapter 8 of Experiments with MATLAB

4 For the validation we look at
fprintf(’ t annually’)
fprintf(’ monthly continuously\n’)
format bank
format compact
r = 0.05;
A0 = 10000;
for t = 0:20

A_annual = (1+r)^t*A0;
A_month = (1+r/12)^(12*t)*A0;
A_cont = exp(r*t)*A0;
disp([t A_annual A_month A_cont])

end

and see that the models are reasonable.

Return
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Chapter 8 of Experiments with MATLAB

Student Loan

1 Let’s assume you have a $20,000 student loan at 10% annual
interest, you plan to make monthly payments, and want to pay off
the loan in 3 years. What should your monthly payments be?

2 We use n to denote number of months or number of payments,
r = 0.1 as the annual interest rate and A0 = A(0) = 20000 as the
initial amount. We also use p to denote the monthly payment.

3 Each month your payment reduces the current balance, but
interest is still added until the loan is paid off. Therefore, following
the same line of thought as earlier, after one time period (think
h = 1

12 , i.e., one month) the loan amount has been reduced to

A(h) = A(0) + rhA(0)− p = (1 + rh)A(0)− p.
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Chapter 8 of Experiments with MATLAB

Continuing month for month we get

A(h) = (1 + rh)A(0)− p

A(2h) = (1 + rh)A(h)− p = (1 + rh) ((1 + rh)A(0)− p)− p
= (1 + rh)2A(0)− p ((1 + rh) + 1)

A(3h) = (1 + rh)A(2h)− p = (1 + rh)
(
(1 + rh)2A(0)− p ((1 + rh) + 1)

)
− p

= (1 + rh)3A(0)− p
(
(1 + rh)2 + (1 + rh) + 1

)
...

A(nh) = (1 + rh)nA(0)− p
(
(1 + rh)n−1 + . . . + (1 + rh) + 1

)
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Since
(1 + rh)n−1 + . . . + (1 + rh) + 1

is a geometric sum we have6

(1 + rh)n−1 + . . . + (1 + rh) + 1 =
(1 + rh)n − 1
(1 + rh)− 1

=
(1 + rh)n − 1

rh

and therefore

A(nh) = (1 + rh)nA(0)− p
(

(1 + rh)n−1 + . . . + (1 + rh) + 1
)

= (1 + rh)nA(0)− p
(1 + rh)n − 1

rh
.

6∑n
k=1 qk−1 = qn−1

q−1
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3 Solving

A(nh) = (1 + rh)nA(0)− p
(1 + rh)n − 1

rh
= 0

for p yields

p =
(1 + rh)n

(1 + rh)n − 1
rhA(0).

4 Without validating the model, we evaluate this using MATLAB:
A0 = 20000;
r = .10;
h = 1/12;
n = 36;
p = (1+r*h)^n/((1+r*h)^n-1)*r*h*A0

and see that you should make monthly payments of $645.34.

Return
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