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Spaces and Subspaces

Spaces and Subspaces

While the discussion of vector spaces can be rather dry and abstract,
they are an essential tool for describing the world we work in, and to
understand many practically relevant consequences.

After all, linear algebra is pretty much the workhorse of modern applied
mathematics.

Moreover, many concepts we discuss now for traditional “vectors”
apply also to vector spaces of functions, which form the foundation of
functional analysis.
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Spaces and Subspaces

Vector Space

Definition
A set V of elements (vectors) is called a vector space (or linear space)
over the scalar field F if

(A1) x + y ∈ V for any x ,y ∈ V
(closed under addition),

(A2) (x + y) + z = x + (y + z) for all
x ,y , z ∈ V,

(A3) x + y = y + x for all x ,y ∈ V,

(A4) There exists a zero vector 0 ∈ V
such that x + 0 = x for every
x ∈ V,

(A5) For every x ∈ V there is a
negative (−x) ∈ V such that
x + (−x) = 0,

(M1) αx ∈ V for every α ∈ F and
x ∈ V (closed under scalar
multiplication),

(M2) (αβ)x = α(βx) for all αβ ∈ F ,
x ∈ V,

(M3) α(x + y) = αx + αy for all α ∈ F ,
x ,y ∈ V,

(M4) (α+ β)x = αx + βx for all
α, β ∈ F , x ∈ V,

(M5) 1x = x for all x ∈ V.
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Spaces and Subspaces

Examples of vector spaces

V = Rm and F = R (traditional real vectors)
V = Cm and F = C (traditional complex vectors)
V = Rm×n and F = R (real matrices)
V = Cm×n and F = C (complex matrices)

But also
V is polynomials of a certain degree with real coefficients, F = R
V is continuous functions on an interval [a,b], F = R
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Spaces and Subspaces

Subspaces

Definition
Let S be a nonempty subset of V. If S is a vector space, then S is
called a subspace of V.

Q: What is the difference between a subset and a subspace?
A: The structure provided by the axioms (A1)–(A5), (M1)–(M5)

Theorem
The subset S ⊆ V is a subspace of V if and only if

αx + βy ∈ S for all x ,y ∈ S, α, β ∈ F . (1)

Remark
Z = {0} is called the trivial subspace.
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Spaces and Subspaces

Proof.
“=⇒”: Clear, since we actually have

(1) ⇐⇒ (A1) and (M1)

“⇐=”: Only (A1), (A4), (A5) and (M1) need to be checked (why?).

In fact, we see that (A1) and (M1) imply (A4) and (A5):

If x ∈ S, then — using (M1) — −1x = −x ∈ S, i.e., (A5) holds.

Using (A1), x + (−x) = 0 ∈ S, so that (A4) holds.
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Spaces and Subspaces

Definition
Let S = {v1, . . . ,v r} ⊆ V. The span of S is

span(S) =

{
r∑

i=1

αiv i : αi ∈ F

}
.

Remark
span(S) contains all possible linear combinations of vectors in S.
One can easily show that span(S) is a subspace of V.

Example (Geometric interpretation)
1 If S = {v1} ⊆ R3, then span(S) is the line through the origin with

direction v1.
2 If S = {v1,v2 : v1 6= αv2, α 6= 0} ⊆ R3, then span(S) is the

plane through the origin “spanned by” v1 and v2.
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Spaces and Subspaces

Definition
Let S = {v1, . . . ,v r} ⊆ V. If spanS = V then S is called a spanning
set for V.

Remark
A spanning set is sometimes referred to as a (finite) frame.
A spanning set is not the same as a basis since the spanning set
may include redundancies.

Example
1

0
0

 ,

0
1
0

 ,

0
0
1

 is a spanning set for R3.


1

0
0

 ,

0
1
0

 ,

0
0
1

 ,

2
0
0

 ,

0
2
0

 ,

0
0
2

 is also a spanning set

for R3.
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Spaces and Subspaces

Connection to linear systems

Theorem
Let S = {a1,a2, . . . ,an} be the set of columns of an m × n matrix A.
span(S) = Rm if and only if for every b ∈ Rm there exists an x ∈ Rn

such that Ax = b (i.e., if and only if Ax = b is consistent for every
b ∈ Rm).

Proof.
By definition, S is a spanning set for Rm if and only if for every b ∈ Rm

there exist α1, . . . , αn ∈ R such that

b = α1a1 + . . .+ αnan = Ax ,

where A =

a1 a2 · · · an


m×n

and x =

α1
...
αn

.
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Spaces and Subspaces

Remark
The sum

X + Y = {x + y : x ∈ X , y ∈ Y}

is a subspace of V provided X and Y are subspaces.

If SX and SY are spanning sets for X and Y, respectively, then SX ∪ SY
is a spanning set for X + Y.
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Four Fundamental Subspaces

Four Fundamental Subspaces
Recall that a linear function f : Rn → Rm satisfies

f (αx + βy) = αf (x) + βf (y) ∀α, β ∈ R, x ,y ∈ Rn.

Example
Let A be a real m × n matrix and

f (x) = Ax , x ∈ Rn.

The function f is linear since A(αx + βy) = αAx + βAy .
Moreover, the range of f ,

R(f ) = {Ax : x ∈ Rn} ⊆ Rm,

is a subspace of Rm since for all α, β ∈ R and x ,y ∈ Rn

α( Ax︸︷︷︸
∈R(f )

) + β( Ay︸︷︷︸
∈R(f )

) = A(αx + βy) ∈ R(f ).
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Four Fundamental Subspaces

Remark
For the situation in this example we can also use the terminology
range of A (or image of A), i.e.,

R(A) = {Ax : x ∈ Rn} ⊆ Rm

Similarly,
R(AT ) =

{
AT y : y ∈ Rm

}
⊆ Rn

is called the range of AT .
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Four Fundamental Subspaces

Column space and row space

Since
Ax = α1a1 + . . .+ αnan,

we have R(A) = span{a1, . . .an}, i.e.,

R(A) is the column space of A.

Similarly,
R(AT ) is the row space of A.
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Four Fundamental Subspaces

Example
Consider

A =

1 2 3
4 5 6
7 8 9


By definition

the columns of A span R(A), i.e., they form a spanning set of
R(A),
the rows of A span R(AT ), i.e., they form a spanning set of R(AT ),

However, since

(A)∗3 = 2(A)∗2 − (A)∗1 and (A)3∗ = 2(A)2∗ − (A)1∗

we also have
R(A) = span{(A)∗1, (A)∗2}
R(AT ) = span{(A)1∗, (A)2∗}
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Four Fundamental Subspaces

In general, how do we find such minimal spanning sets as in the
previous example?

An important tool is

Lemma
Let A,B be m × n matrices. Then

(1) R(AT ) = R(BT ) ⇐⇒ A row∼ B (⇐⇒ EA = EB).

(2) R(A) = R(B) ⇐⇒ A col∼ B (⇐⇒ EAT = EBT ).
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Four Fundamental Subspaces

Proof

1 “⇐=”: Assume A row∼ B, i.e., there exists a nonsingular matrix P
such that

PA = B ⇐⇒ AT PT = BT .

Now a ∈ R(AT )⇐⇒ a = AT y for some y .
We rewrite this as

a = AT PT︸ ︷︷ ︸
=BT

P−T y

⇐⇒ a = BT x for x = P−T y

⇐⇒ a ∈ R(BT ).

fasshauer@iit.edu MATH 532 19

http://math.iit.edu/~fass


Four Fundamental Subspaces

(cont.)

“=⇒”: Assume R(AT ) = R(BT ), i.e.,

span{(A)1∗, . . . , (A)m∗} = span{(B)1∗, . . . , (B)m∗},

i.e., the rows of A are linear combinations of rows of B and vice
versa.
Now apply row operations to A (all collected in P) to obtain

PA = B, i.e., A row∼ B.

2 Let A = AT and B = BT in (1). �
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Four Fundamental Subspaces

Theorem
Let A be an m× n matrix and U any row echelon form obtained from A.
Then

1 R(AT ) = span of nonzero rows of U.
2 R(A) = span of basic columns of A.

Remark
Later we will see that any minimal span of the columns of A forms a
basis for R(A).
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Four Fundamental Subspaces

Proof

1 This follows from (1) in the Lemma since A row∼ U.

2 Assume the columns of A are permuted (with a matrix Q1) such
that

AQ1 =
(
B N

)
,

where B contains the basic columns, and N the nonbasic columns.

By definition, the nonbasic columns are linear combinations of the
basic columns, i.e., there exists a nonsingular Q2 such that(

B N
)

Q2 =
(
B O

)
,

where O is a zero matrix.
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Four Fundamental Subspaces

(cont.)
Putting this together, we have

A Q1Q2︸ ︷︷ ︸
=Q

=
(
B O

)
,

so that A col∼
(
B O

)
.

(2) in the Lemma says that

R(A) = span{B∗1, . . . ,B∗r},

where r = rank(A). �
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Four Fundamental Subspaces

So far, we have two of the four fundamental subspaces:

R(A) and R(AT ).

Third fundamental subspace: N(A) = {x : Ax = 0} ⊆ Rn,

N(A) is the nullspace of A

(also called the kernel of A)

Fourth fundamental subspace: N(AT ) = {y : AT y = 0} ⊆ Rm,

N(AT ) is the left nullspace of A

Remark
N(A) is a linear space, i.e., a subspace of Rn.

To see this, assume x ,y ∈ N(A), i.e., Ax = Ay = 0.
Then

A(αx + βy) = αAx + βAy = 0,

so that αx + βy ∈ N(A).
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Four Fundamental Subspaces

How to find a (minimal) spanning set for N(A)

Find a row echelon form U of A and solve Ux = 0.

Example

We can compute A =

1 2 3
4 5 6
7 8 9

 −→ U =

1 2 3
0 −3 −6
0 0 0

.

So that Ux = 0 =⇒

{
x2 = −2x3

x1 = −2x2 − 3x3 = x3
, or

x1
x2
x3

 =

 x3
−2x3

x3

 = x3

 1
−2
1

 .

Therefore

N(A) = span


 1
−2
1

 .
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Four Fundamental Subspaces

Remark
We will see later that — as in the example — if rank(A) = r , then N(A)
is spanned by n − r vectors.

Theorem
Let A be an m × n matrix. Then

1 N(A) = {0} ⇐⇒ rank(A) = n.
2 N(AT ) = {0} ⇐⇒ rank(A) = m.

Proof.
1 We know rank(A) = n ⇐⇒ Ax = 0, but that implies x = 0.
2 Repeat (1) with A = AT and use rank(AT ) = rank(A).
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Four Fundamental Subspaces

How to find a spanning set of N(AT )

Theorem
Let A be an m × n matrix with rank(A) = r , and let P be a nonsingular
matrix so that PA = U (row echelon form). Then the last m − r rows of
P span N(AT ).

Remark

We will later see that this spanning set is also a basis for N(AT ).
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Four Fundamental Subspaces

Proof

Partition P as P =

(
P1
P2

)
, where P1 is r ×m and P2 is m − r ×m.

The claim of the theorem implies that we should show that
R(PT

2 ) = N(AT ).

We do this in two parts:
1 Show that R(PT

2 ) ⊆ N(AT ).
2 Show that N(AT ) ⊆ R(PT

2 ).

fasshauer@iit.edu MATH 532 28

http://math.iit.edu/~fass


Four Fundamental Subspaces

(cont.)

1 Partition Um×n =

(
C
O

)
with C ∈ Rr×n and O ∈ Rm−r×n (a zero

matrix).
Then

PA = U ⇐⇒
(

P1
P2

)
A =

(
C
O

)
=⇒ P2A = O.

This also means that
AT PT

2 = OT ,

i.e., every column of PT
2 is in N(AT ) so that R(PT

2 ) ⊆ N(AT ).
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Four Fundamental Subspaces

(cont.)
2 Now, show N(AT ) ⊆ R(PT

2 ).
We assume y ∈ N(AT ) and show that then y ∈ R(PT

2 ).
By definition,

y ∈ N(AT ) =⇒ AT y = 0 ⇐⇒ yT A = 0T .

Since PA = U =⇒ A = P−1U, and so

0T = yT P−1U = yT P−1
(

C
O

)
or

0T = yT Q1C, where P−1 =

(
Q1︸︷︷︸
m×r

Q2︸︷︷︸
m×m−r

)
.
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Four Fundamental Subspaces

(cont.)

However, since rank(C) = r and C is m × n we get (using m = r in our
earlier theorem)

N(CT ) = {0}

and therefore yT Q1 = 0T .

Obviously, this implies that we also have

yT Q1P1 = 0T (2)
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Four Fundamental Subspaces

(cont.)

Now P =

(
P1
P2

)
and P−1 =

(
Q1 Q2

)
so that

I = P−1P = Q1P1 + Q2P2

or
Q1P1 = I−Q2P2. (3)

Now we insert (3) into (2) and get

Therefore y ∈ R(PT
2 ). �
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Four Fundamental Subspaces

Finally,

Theorem
Let A,B be m × n matrices.

1 N(A) = N(B) ⇐⇒ A row∼ B.

2 N(AT ) = N(BT ) ⇐⇒ A col∼ B.

Proof.
See [Mey00, Section 4.2].
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Linear Independence

Linear Independence

Definition
A set of vectors S = {v1, . . . ,vn} is called linearly independent if

α1v1 + α2v2 + . . .+ αnvn = 0 =⇒ α1 = α2 = . . . = αn = 0.

Otherwise S is linearly dependent.

Remark
Linear independence is a property of a set, not of vectors.
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Linear Independence

Example

Is S =


1

4
7

 ,

2
5
8

 ,

3
6
9

 linearly independent?

Consider

α1

1
4
7

+ α2

2
5
8

+ α3

3
6
9

 =

0
0
0


⇐⇒ Ax = 0, where A =

1 2 3
4 5 6
7 8 9

 , x =

α1
α2
α3


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Linear Independence

Example ((cont.))
Since

A row∼ EA =

1 2 3
0 1 2
0 0 0


we know that N(A) is nontrivial,
i.e., the system Ax = 0 has a nonzero solution, and therefore S is
linearly dependent.
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Linear Independence

More generally,

Theorem
Let A be an m × n matrix.

1 The columns of A are linearly independent if and only if
N(A) = {0} ⇐⇒ rank(A) = n.

2 The rows of A are linearly independent if and only if
N(AT ) = {0} ⇐⇒ rank(A) = m.

Proof.
See [Mey00, Section 4.3].
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Linear Independence

Definition
A square matrix A is called diagonally dominant if

|aii | >
n∑

j=1
j 6=i

|aij |, i = 1, . . . ,n.

Remark
Aside from being nonsingular (see next slide), diagonally
dominant matrices are important since they ensure that Gaussian
elimination will succeed without pivoting.
Also, diagonally dominance ensures convergence of certain
iterative solvers (more later).
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Linear Independence

Theorem
Let A be an n × n matrix. If A is diagonally dominant then A is
nonsingular.

Proof
We will show that N(A) = {0} since then we know that rank(A) = n
and A is nonsingular.

We will do this with a proof by contradiction.

We assume that there exists an x( 6= 0) ∈ N(A) and we will conclude
that A cannot be diagonally dominant.
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Linear Independence

(cont.)

If x ∈ N(A) then Ax = 0.

Now we take k so that xk is the maximum (in absolute value)
component of x and consider

Ak∗x = 0.

We can rewrite this as

n∑
j=1

akjxj = 0 ⇐⇒ akkxk = −
n∑

j=1
j 6=k

akjxj .
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Linear Independence

(cont.)
Now we take absolute values:

|akkxk | =

∣∣∣∣∣∣∣
n∑

j=1
j 6=k

akjxj

∣∣∣∣∣∣∣ ≤
n∑

j=1
j 6=k

∣∣akj
∣∣ ∣∣xj

∣∣
≤ |xk |︸︷︷︸

max. component

n∑
j=1
j 6=k

∣∣akj
∣∣

Finally, dividing both sides by |xk | yields

|akk | ≤
n∑

j=1
j 6=k

∣∣akj
∣∣ ,

which shows that A cannot be diagonally dominant (which is a
contradiction since A was assumed to be diagonally dominant). �
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Linear Independence

Example
Consider m real numbers x1, . . . , xm such that xi 6= xj , i 6= j .
Show that the columns of the Vandermonde matrix

V =


1 x1 x2

1 · · · xn−1
1

1 x2 x2
2 · · · xn−1

2
...

1 xm x2
m · · · xn−1

m


form a linearly independent set provided n ≤ m.
From above, the columns of V are linearly independent if and only if
N(V) = {0}

⇐⇒ Vz = 0 =⇒ z = 0, z =

 α0
...

αn−1

 .
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Linear Independence

Example
(cont.)
Now Vz = 0 if and only if

α0 + α1xi + α2x2
i + . . .+ αn−1xn−1

i = 0, i = 1, . . . ,m.

In other words, x1, x2, . . . , xm are all (distinct) roots of

p(x) = α0 + α1x + α2x2 + . . .+ αn−1xn−1.

This is a polynomial of degree at most n − 1.

It can have m distinct roots only if m ≤ n − 1.

Otherwise, p is the zero polynomial, i.e., α0 = α1 = . . . = αn−1 = 0, so
that the columns of V are linearly dependent.
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Linear Independence

The example implies that in the special case m = n there is a unique
polynomial of degree (at most) m − 1 that interpolates the data
{(x1, y1), (x2, y2), . . . , (xm, ym)} ⊂ R2.
We see this by writing the polynomial in the form

`(t) = α0 + α1t + α2t2 + . . .+ αm−1tm−1.

Then, interpolation of the data implies

`(xi) = yi , i = 1, . . . ,m

or 
1 x1 x2

1 · · · xm−1
1

1 x2 x2
2 · · · xm−1

2
...

1 xm x2
m · · · xm−1

m




α0
α1
...

αm−1

 =


y1
y2
...

ym

 .

Since the columns of V are linearly independent it is nonsingular, and
the coefficients α0, . . . , αm−1 are uniquely determined.
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Linear Independence

In fact,

`(t) =
m∑

i=1

yiLi(t) (Lagrange interpolation polynomial)

with Li(t) =
m∏

k=1
k 6=i

(t − xk )/
m∏

k=1
k 6=i

(xi − xk ) (Lagrange functions).

To verify (4) we note that the degree of ` is m − 1 (since each Li is of
degree m − 1) and

Li(xj) = δij , i , j = 1, . . . ,m,

so that

`(xj) =
m∑

i=1

yi Li(xj)︸ ︷︷ ︸
=δij

= yj , j = 1, . . . ,m.
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Linear Independence

Theorem
Let S = {u1,u2 . . . ,un} ⊆ V be nonempty. Then

1 If S contains a linearly dependent subset, then S is linearly
dependent.

2 If S is linearly independent, then every subset of S is also linearly
independent.

3 If S is linearly independent and if v ∈ V, then Sext = S ∪ {v} is
linearly independent if and only if v /∈ span(S).

4 If S ⊆ Rm and n > m, then S must be linearly dependent.
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Linear Independence

Proof
1 If S contains a linearly dependent subset, {u1, . . . ,uk} say, then

there exist nontrivial coefficients α1, . . . , αk such that

α1u1 + . . .+ αkuk = 0.

Clearly, then

α1u1 + . . .+ αkuk + 0uk+1 + . . .+ 0un = 0

and S is also linearly dependent.
2 Follows from (1) by contraposition.
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Linear Independence

(cont.)
3 “=⇒”: Assume Sext is linearly independent. Then v can’t be a

linear combination of u1, . . . ,un.

“⇐=”: Assume v /∈ span(S) and consider

α1u1 + α2u2 + . . .+ αnun + αn+1v = 0.

First, αn+1 = 0 since otherwise v ∈ span(S).
That leaves

α1u1 + α2u2 + . . .+ αnun = 0.

However, the linear independence of S implies αi = 0,
i = 1, . . . ,n, and therefore Sext is linearly independent.
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Linear Independence

(cont.)
4 We know that the columns of an m × n matrix A are linearly

independent if and only if rank(A) = n.

Here A =
(
u1 u2 · · · un

)
with ui ∈ Rm.

If n > m, then rank(A) ≤ m and S must be linearly dependent. �
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Bases and Dimension

Bases and Dimension

Earlier we introduced the concept of a spanning set of a vector space
V, i.e.,

V = span{v1, . . . ,vn}

Now

Definition
Consider a vector space V with spanning set S. If S is also linearly
independent then we call it a basis of V.

Example
1 {e1, . . . ,en} is the standard basis for Rn.
2 The columns/rows of an n × n matrix A with rank(A) = n form a

basis for Rn.
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Bases and Dimension

Remark
Linear algebra deals with finite-dimensional linear spaces.

Functional analysis can be considered as infinite-dimensional linear
algebra, where the linear spaces are usually function spaces such as

infinitely differentiable functions with Taylor (polynomial) basis

{1, x , x2, x3, . . .}

square integrable functions with Fourier basis

{1, sin(x), cos(x), sin(2x), cos(2x), . . .}
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Bases and Dimension

Earlier we mentioned the idea of minimal spanning sets.

Theorem
Let V be a subspace of Rm and let

B = {b1,b2, . . . ,bn} ⊆ V.

The following are equivalent:
1 B is a basis for V.
2 B is a minimal spanning set for V.
3 B is a maximal linearly independent subset of V.

Remark
We say “a basis” here since V can have many different bases.
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Bases and Dimension

Proof
Since it is difficult to directly relate (2) and (3), our strategy will be to
prove

Show (1) =⇒ (2) and (2) =⇒ (1), so that (1)⇐⇒ (2).

Show (1) =⇒ (3) and (3) =⇒ (1), so that (1)⇐⇒ (3).

Then — by transitivity — we will also have (2)⇐⇒ (3).
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Bases and Dimension

Proof (cont.)
(1) =⇒ (2): Assume B is a basis (i.e., a linearly independent spanning
set) of V and show that it is minimal.
Assume B is not minimal, i.e., we can find a smaller spanning set
{x1, . . . ,xk} for V with k ≤ n elements.
But then

bj =
k∑

i=1

αijx i , j = 1, . . . ,n,

or
B = XA,

where

B =
(
b1 b2 · · · bn

)
∈ Rm×n,

X =
(
x1 x2 · · · xk

)
∈ Rm×k ,

[A]ij = αij , A ∈ Rk×n.
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Bases and Dimension

Proof (cont.)

Now, rank(A) ≤ k < n, which implies N(A) is nontrivial, i.e., there
exists a z 6= 0 such that

Az = 0.

But then
Bz = XAz = 0,

and therefore N(B) is nontrivial.

However, since B is a basis, the columns of B are linearly independent
(i.e., N(B) = {0}) — and that is a contradiction.

Therefore, B has to be minimal.
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Bases and Dimension

Proof (cont.)
(2) =⇒ (1): Assume B is a minimal spanning set and show that it must
also be linearly independent.

This is clear since
if B were linearly dependent,
then we would be able to remove at least one vector from B and
still have a spanning set
but then it would not have been minimal.

fasshauer@iit.edu MATH 532 58

http://math.iit.edu/~fass


Bases and Dimension

Proof (cont.)
(3) =⇒ (1): Assume B is a maximal linearly independent subset of V
and show that B is a basis of V.

Assume that B is not a basis, i.e., there exists a v ∈ V such that
v /∈ span{b1, . . . ,bn}.

Then — by an earlier theorem — the extension set B ∪ {v} is linearly
independent.

But this contradicts the maximality of B, so that B has to be a basis.
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Bases and Dimension

Proof (cont.)
(1) =⇒ (3): Assume B is a basis, but not a maximal linearly
independent subset of V, and show that this leads to a contradiction.

Let
Y = {y1, . . . ,yk} ⊆ V, with k > n

be a maximal linearly independent subset of V (note that such a set
always exists).
But then Y must be a basis for V by our “(1) =⇒ (3)” argument.
On the other hand, Y has more vectors than B and a basis has to be a
minimal spanning set.
Therefore B has to already be a maximal linearly independent subset
of V. �
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Bases and Dimension

Remark
Above we remarked that B is not unique, i.e., a vector space V can
have many different bases.

However, the number of elements in all of these bases is unique.

Definition
The dimension of the vector space V is given by

dimV = the number of elements in any basis of V.

Special case: by convention

dim{0} = 0.
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Bases and Dimension

Example
Consider

P = span


1

0
0

 ,

0
1
0

 ⊂ R3.

Geometrically, P corresponds to the plane z = 0, i.e., the xy -plane.

Note that dimP = 2.

Moreover, any subspace of R3 has dimension at most 3.
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Bases and Dimension

In general,

Theorem
LetM and N be vector spaces such thatM⊆ N . Then

1 dimM≤ dimN ,
2 dimM = dimN =⇒ M = N .

Proof.
See [Mey00].
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Bases and Dimension

Back to the 4 fundamental subspaces

Consider an m × n matrix A with rank(A) = r .

R(A) We know that

R(A) = span{columns of A}.

If rank(A) = r , then only r columns of A are linearly
independent, i.e.,

dim R(A) = r .

A basis of R(A) is given by the basic columns of A
(determined via a row echelon form U).
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Bases and Dimension

R(AT ) We know that

R(AT ) = span{rows of A}.

Again, rank(A) = r implies that only r rows of A are
linearly independent, i.e.,

dim R(AT ) = r .

A basis of R(AT ) is given by the nonzero rows of U (from
the LU factorization of A).
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Bases and Dimension

N(AT ) One of our earlier theorems states that the last m − r
rows of P span N(AT ) (where P is nonsingular such that
PA = U is in row echelon form).

Since P is nonsingular these rows are linearly
independent and so

dim N(AT ) = m − r .

A basis of N(AT ) is given by the last m − r rows of P.

fasshauer@iit.edu MATH 532 66

http://math.iit.edu/~fass


Bases and Dimension

N(A) Replace A by AT above so that

dim N
(
(AT )T

)
= n − rank(AT ) = n − r

so that
dim N(A) = n − r .

A basis of N(A) is given by the n − r linearly independent
solutions of Ax = 0.
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Bases and Dimension

Theorem
For any m × n matrix A we have

dim R(A) + dim N(A) = n.

This follows directly from the above discussion of R(A) and N(A).

The theorem shows that there is always a balance between the rank of
A and the dimension of its nullspace.
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Bases and Dimension

Example
Find the dimension and a basis for

S = span




1
2
3
1

 ,


2
4
6
2

 ,


2
4
6
4

 ,


3
6
9
5

 ,


1
2
6
3


 .

Before we even do any calculations we know that

S ⊆ R4, so that dimS ≤ 4.

We will now answer this question in two different ways using

A =


1 2 2 3 1
2 4 4 6 2
3 6 6 9 6
1 2 4 5 3

 .
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Bases and Dimension

Example (cont.)

Via R(A), i.e., by finding the basic columns of A:

A =


1 2 2 3 1
2 4 4 6 2
3 6 6 9 6
1 2 4 5 3

 G.–J.−→ EA =


1 2 0 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 0


Therefore, dimS = 3 and

S = span




1
2
3
1

 ,


2
4
6
4

 ,


1
2
6
3




since the basic columns of EA are the first, third and fifth columns.
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Bases and Dimension

Example (cont.)

Via R(AT ), i.e., R(A) = span{rows of AT}, i.e., we need the nonzero
rows of U (from the LU factorization of AT :

AT =


1 2 3 1
2 4 6 2
2 4 6 4
3 6 9 4
1 2 6 3

 zero out [AT ]∗,1−→


1 2 3 1
0 0 0 0
0 0 0 2
0 0 0 2
0 0 3 2

 permute−→


1 2 3 1
0 0 3 2
0 0 0 2
0 0 0 0
0 0 0 0


︸ ︷︷ ︸

=U

Therefore, dimS = 3 and

S = span




1
2
3
1

 ,


0
0
3
2

 ,


0
0
0
2




since the nonzero rows of U are the first, second and third rows.
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Bases and Dimension

Example
Extend

S = span




1
2
3
1

 ,


1
2
6
3




to a basis for R4.
The procedure will be to augment the columns of S by an identity
matrix , i.e., to form

A =


1 1 1 0 0 0
2 2 0 1 0 0
3 6 0 0 1 0
1 3 0 0 0 1


and then to get a basis via the basic columns of U.
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Bases and Dimension

Example (cont.)

A =


1 1 1 0 0 0
2 2 0 1 0 0
3 6 0 0 1 0
1 3 0 0 0 1

 −→


1 1 1 0 0 0
0 0 −2 1 0 0
0 3 −3 0 1 0
0 2 −1 0 0 1



−→


1 1 1 0 0 0
0 2 −1 0 0 1
0 0 −3

2 0 1 −3
2

0 0 −2 1 0 0

 −→


1 1 1 0 0 0
0 2 −1 0 0 1
0 0 −3

2 0 1 −3
2

0 0 0 1 −4
3 2


so that the basic columns are [A]∗1, [A]∗2, [A]∗3, [A]∗4 and

R4 = span




1
2
3
1

 ,


1
2
6
3

 ,


1
0
0
0

 ,


0
1
0
0


 .
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Bases and Dimension

Earlier we defined the sum of subspaces X and Y as

X + Y = {x + y : x ∈ X , y ∈ Y}

Theorem
If X ,Y are subspaces of V, then

dim(X + Y) = dimX + dimY − dim(X ∩ Y).

Proof.
See [Mey00], but the basic idea is pretty clear.
We want to avoid double counting.
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Bases and Dimension

Corollary
Let A and B be m × n matrices. Then

rank(A + B) ≤ rank(A) + rank(B).

Proof
First we note that

R(A + B) ⊆ R(A) + R(B) (4)

since for any b ∈ R(A + B) we have

b = (A + B)x = Ax + Bx ∈ R(A) + R(B).
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Bases and Dimension

(cont.)
Now,

rank(A + B) = dim R(A + B)

(4)
≤ dim(R(A) + R(B))

Thm
= dim R(A) + dim R(B)− dim (R(A) ∩ R(B))

≤ dim R(A) + dim R(B)

= rank(A) + rank(B)

�
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More About Rank

More About Rank

We know that A ∼ B if and only if rank(A) = rank(B).

Thus (for invertible P,Q), PAQ = B implies rank(A) = rank(PAQ).

As we now show, it is a general fact that multiplication by a nonsingular
matrix does not change the rank of a given matrix.

Moreover, multiplication by an arbitrary matrix can only lower the rank.

Theorem
Let A be an m × n matrix, and let B by n × p. Then

rank(AB) = rank(B)− dim (N(A) ∩ R(B)) .

Remark
Note that if A is nonsingular, then N(A) = {0} so that
dim (N(A) ∩ R(B)) = 0 and rank(AB) = rank(B).
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More About Rank

Proof
Let S = {x1,x2, . . . ,xs} be a basis for N(A) ∩ R(B).

Since N(A) ∩ R(B) ⊆ R(B) we know that

dim(R(B)) = s + t , for some t ≥ 0.

We can construct an extension set such that

B = {x1,x2, . . . ,xs, z1, . . . , z2, . . . , z t}

is a basis for R(B).
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More About Rank

(cont.)

If we can show that dim(R(AB)) = t then

rank(B) = dim(R(B)) = s + t = dim (N(A) ∩ R(B)) + dim(R(AB)),

and we are done.

Therefore, we now show that dim(R(AB)) = t .
In particular, we show that

T = {Az1,Az2, . . . ,Az t}

is a basis for R(AB).

We do this by showing that
1 T is a spanning set for R(AB),
2 T is linearly independent.
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More About Rank

(cont.)

Spanning set: Consider an arbitrary b ∈ R(AB). It can be written as

b = ABy for some y .

But then By ∈ R(B), so that

By =
s∑

i=1

ξix i +
t∑

j=1

ηjz j

and

b = ABy =
s∑

i=1

ξiAx i +
t∑

j=1

ηjAz j =
t∑

j=1

ηjAz j

since x i ∈ N(A).
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More About Rank

(cont.)
Linear independence: Let’s use the definition of linear independence

and look at

t∑
i=1

αiAz i = 0 ⇐⇒ A
t∑

i=1

αiz i = 0.

The identity on the right implies that
t∑

i=1

αiz i ∈ N(A).

But we also have z i ∈ B, i.e.,
t∑

i=1

αiz i ∈ R(B).

And so together

t∑
i=1

αiz i ∈ N(A) ∩ R(B).
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More About Rank

(cont.)

Now, since S = {x1, . . . ,xs} is a basis for N(A) ∩ R(B) we have

t∑
i=1

αiz i =
s∑

j=1

βjx j ⇐⇒
t∑

i=1

αiz i −
s∑

j=1

βjx j = 0.

But B = {x1, . . . ,xs, z1, . . . , z t} is linearly independent, so that
α1 = · · · = αt = β1 = · · · = βs = 0 and therefore T is also linearly
independent. �
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More About Rank

It turns out that dim(N(A) ∩ R(B)) is relatively difficult to determine.

Therefore, the following upper and lower bounds for rank(AB) are
useful.

Theorem
Let A be an m × n matrix, and let B by n × p. Then

1 rank(AB) ≤ min{rank(A), rank(B)},
2 rank(AB) ≥ rank(A) + rank(B)− n.
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More About Rank

Proof of (1)

We show that rank(AB) ≤ rank(A) and rank(AB) ≤ rank(B).

The previous theorem states

rank(AB) = rank(B)− dim(N(A) ∩ R(B))︸ ︷︷ ︸
≥0

≤ rank(B).

Similarly,

rank(AB) = rank(AB)T = rank(BT AT )
as above
≤ rank(AT ) = rank(A).

To make things as tight as possible we take the smaller of the two
upper bounds.
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More About Rank

Proof of (2)

We begin by noting that N(A) ∩ R(B) ⊆ N(A).

Therefore,

dim(N(A) ∩ R(B)) ≤ dim(N(A)) = n − rank(A).

But then (using the previous theorem)

rank(AB) = rank(B)− dim(N(A) ∩ R(B))
≥ rank(B)− n + rank(A).

�
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More About Rank

To prepare for our study of least squares solutions, where the matrices
AT A and AAT are important, we prove

Lemma
Let A be a real m × n matrix. Then

1 rank(AT A) = rank(AAT ) = rank(A).
2 R(AT A) = R(AT ), R(AAT ) = R(A).
3 N(AT A) = N(A), N(AAT ) = N(AT ).
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Proof
From our earlier theorem we know

rank(AT A) = rank(A)− dim(N(AT ) ∩ R(A)).

For (1) to be true we need to show dim(N(AT ) ∩ R(A)) = 0, i.e.,
N(AT ) ∩ R(A) = {0}.
This is true since

x ∈ N(AT ) ∩ R(A) =⇒ AT x = 0 and x = Ay for some y .

Therefore (using xT = yT AT )

xT x = yT AT x = 0.

But

xT x = 0 ⇐⇒
m∑

i=1

x2
i = 0 =⇒ x = 0.
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More About Rank

(cont.)

rank(AAT ) = rank(AT ) obtained by switching A and AT , and then use
rank(AT ) = rank(A).

The first part of (2) follows from R(AT A) ⊆ R(AT ) (see HW) and

dim(R(AT A)) = rank(AT A)
(1)
= rank(AT ) = dim(R(AT ))

since forM⊆ N with dimM = dimN one hasM = N (from an
earlier theorem).

The other part of (2) follows by switching A and AT .
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More About Rank

(cont.)

The first part of (3) follows from N(A) ⊆ N(AT A) (see HW) and

dim(N(A)) = n − rank(A) = n − rank(AT A) = dim(N(AT A))

using the same reasoning as above.

The other part of (3) follows by switching A and AT . �
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More About Rank

Connection to least squares and normal equations

Consider a — possibly inconsistent — linear system

Ax = b

with m × n matrix A (and b /∈ R(A) if inconsistent).

To find a “solution” we multiply both sides by AT to get the normal
equations:

AT Ax = AT b,

where AT A is an n × n matrix.
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Theorem
Let A be an m × n matrix, b an m-vector, and consider the normal
equations

AT Ax = AT b

associated with Ax = b.
1 The normal equations are always consistent, i.e., for every A and

b there exists at least one x such that AT Ax = AT b.
2 If Ax = b is consistent, then AT Ax = AT b has the same solution

set (the least squares solution of Ax = b).
3 AT Ax = AT b has a unique solution if and only if rank(A) = n.

Then
x = (AT A)−1AT b,

regardless of whether Ax = b is consistent or not.
4 If Ax = b is consistent and has a unique solution, then the same

holds for AT Ax = AT b and x = (AT A)−1AT b.
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Proof
(1) follows from our previous lemma, i.e.,

AT b ∈ R(AT ) = R(AT A).

To show (2) we assume the p is some particular solution of Ax = b,
i.e., Ap = b.

If we multiply by AT , then

AT Ap = AT p,

so that p is also a solution of the normal equations.
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(cont.)
Now, the general solution of Ax = b is from the set (see Problem 2 on
HW#4)

S = p + N(A).

Moreover, the general solution of AT Ax = AT b is of the form

p + N(AT A) lemma
= p + N(A) = S.
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(cont.)

For (3) we want to show that AT Ax = AT b has a unique solution if and
only if rank(A) = n.

What we know immediately is that AT Ax = AT b has a unique solution
if and only if rank(AT A) = n.
Since we showed earlier that rank(AT A) = rank(A) this part is done.

Now, if rank(AT A) = n we know that AT A is invertible (even though AT

and A may not be) and therefore

AT Ax = AT b ⇐⇒ x = (AT A)−1AT b.

To show (4) we note that Ax = b has a unique solution if and only if
rank(A) = n. But rank(AT A) = rank(A) and the rest follows from (3). �
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Remark
The normal equations are not recommended for serious computations
since they are often rather ill-conditioned since one can show that

cond(AT A) = cond(A)2.

There’s an example in [Mey00] that illustrates this fact.
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Historical definition of rank

Let A be an m × n matrix. Then A has rank r if there exists at
least one nonsingular r × r submatrix of A (and none larger).

Example
The matrix

A =


1 2 2 3 1
2 4 4 6 2
3 6 6 9 6
1 2 4 5 3


cannot have rank 4 since rows one and two are linearly dependent.

But rank(A) ≥ 2 since
(

9 6
5 3

)
is nonsingular.
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Example (cont.)

In fact, rank(A) = 3 since 4 6 2
6 9 6
4 5 3


is nonsingular.

Note that other singular 3× 3 submatrices are allowed, such as1 2 2
2 4 4
3 6 6

 .
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Earlier we showed that

rank(AB) ≤ rank(A),

i.e., multiplication by another matrix does not increase the rank of a
given matrix, i.e., we can’t “fix” a singular system by multiplication.

Now

Theorem
Let A and E be m × n matrices. Then

rank(A + E) ≥ rank(A),

provided the entries of E are “sufficiently small”.
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This theorem has at least two fundamental consequences of practical
importance:

Beware!! A theoretically singular system may become
nonsingular, i.e., have a “solution” — just due to round-off error.

We may want to intentionally “fix” a singular system, so that it has
a “solution”. One such strategy is known as Tikhonov
regularization, i.e.,

Ax = b −→ (A + µI)x = b,

where µ is a (small) regularization parameter.
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Proof
We assume that rank(A) = r and that we have nonsingular P and Q
such that we can convert A to rank normal form, i.e.,

PAQ =

(
Ir O
O O

)
.

Then — formally — PEQ =

(
E11 E12
E21 E22

)
with appropriate blocks Eij .

This allows us to write

P(A + E)Q =

(
Ir + E11 E12

E21 E22

)
.
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(cont.)
Now, we note that

(I− B)(I + B + B2 + . . .+ Bk−1) = I− Bk

→ I,

provided the entries of B are “sufficiently small” (i.e., so that Bk → O
for k →∞).
Therefore (I− B)−1 exists.

This technique is known as the Neumann series expansion of the
inverse of I− B.
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(cont.)

Now, letting B = −E11, we know that (Ir + E11)
−1 exists and we can

write(
Ir O

−E21(Ir + E11)
−1 Im−r

)(
Ir + E11 E12

E21 E22

)(
Ir −(Ir + E11)

−1E12
O In−r

)
=

(
Ir + E11 O

O S

)
,

where S = E22 − E21(Ir + E11)
−1E12 is the Schur complement of

I + E11 in PAQ.
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(cont.)
The Schur complement calculation shows that

A + E ∼
(

Ir + E11 O
O S

)
.

But then this rank normal form with invertible diagonal blocks tells us

rank(A + E) = rank(Ir + E11) + rank(S)
= rank(A) + rank(S)
≥ rank(A).

�
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Classical Least Squares

fasshauer@iit.edu MATH 532 106

Linear least squares (linear regression)

Given: data {(t1,b1), (t2,b2), . . . , (tm,bm)}
Find: “best fit” by a line

t 1 2 3 4 5
b 1.3 3.5 4.2 5.0 7.0

Idea for best fit
Minimize the sum of the squares of the vertical distances of line from
the data points.
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More precisely, let
f (t) = α+ βt

with α, β such that
m∑

i=1

ε2
i =

m∑
i=1

(f (ti)− bi)
2

=
m∑

i=1

(α+ βti − bi)
2 = G(α, β) −→ min

From calculus, necessary (and sufficient) condition for minimum

∂G(α, β)

∂α
= 0,

∂G(α, β)

∂β
= 0.

where

∂G(α, β)

∂α
= 2

m∑
i=1

(α+ βti − bi) ,
∂G(α, β)

∂β
= 2

m∑
i=1

(α+ βti − bi) ti
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Equivalently, (
m∑

i=1

1

)
α+

(
m∑

i=1

ti

)
β =

m∑
i=1

bi(
m∑

i=1

ti

)
α+

(
m∑

i=1

t2
i

)
β =

m∑
i=1

bi ti

which can be written as
Qx = y

with

Q =


m∑

i=1

1
m∑

i=1

ti

m∑
i=1

ti
m∑

i=1

t2
i

 , x =

(
α
β

)
, y =


m∑

i=1

bi

m∑
i=1

bi ti


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We can write each of these sums as inner products:

m∑
i=1

1 = 1T 1,
m∑

i=1

ti = 1T t = tT 1,
m∑

i=1

t2
i = tT t

m∑
i=1

bi = 1T b = bT 1,
m∑

i=1

bi ti = bT t = tT b,

where

1T =
(
1 · · · 1

)
, tT =

(
t1 · · · tm

)
, bT =

(
b1 · · · bm

)
With this notation we have

Qx = y ⇐⇒
(

1T 1 1T t
tT 1 tT t

)
x =

(
1T b
tT b

)
⇐⇒ AT Ax = AT b, AT =

(
1T

tT

)
, A =

(
1 t

)
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Therefore we can find the parameters of the line, x =

(
α
β

)
, by solving

the square linear system

AT Ax = AT b.

Also note that since εi = α+ βti − bi we have

ε =

ε1
...
εm

 =

1
...
1

α+

 t1
...

tm

β −

b1
...

bm


= 1α+ tβ − b = Ax − b.

This implies that

G(α, β) =
m∑

i=1

ε2
i = εTε = (Ax − b)T (Ax − b).

fasshauer@iit.edu MATH 532 110

http://math.iit.edu/~fass


Classical Least Squares

Example
Data:

t -1 0 1 2 3 4 5 6
b 10 9 7 5 4 3 0 -1

AT Ax = AT b ⇐⇒

(∑8
i=1 1

∑8
i=1 ti∑8

i=1 ti
∑8

i=1 t2
i

)(
α
β

)
=

(∑8
i=1 bi∑8

i=1 bi ti

)

⇐⇒
(

8 20
20 92

)(
α
β

)
=

(
37
25

)
=⇒ α ≈ 8.643, β ≈ −1.607

So that the best fit line to the given data is

f (t) ≈ 8.643− 1.607t .
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General Least Squares

The general least squares problem behaves analogously to the linear
example.

Theorem
Let A be a real m × n matrix and b an m-vector. Any vector x that
minimizes the square of the residual Ax − b, i.e.,

G(x) = (Ax − b)T (Ax − b)

is called a least squares solution of Ax = b.
The set of all least squares solutions is obtained by solving the normal
equations

AT Ax = AT b.

Moreover, a unique solution exists if and only if rank(A) = n so that

x = (AT A)−1AT b.
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Proof
The statement about uniqueness follows directly from our earlier
theorem on p. 92 on the normal equations.

To characterize the least squares solutions we first show that if x
minimizes G(x) then x satisfies AT Ax = AT b.

As in our earlier example, a necessary condition for the minimum is:
∂G(x)
∂xi

= 0, i = 1, . . . ,n.

Let’s first work out what G(x) looks like:

G(x) = (Ax − b)T (Ax − b)

= xT AT Ax − xT AT b − bT Ax + bT b

= xT AT Ax − 2xT AT b + bT b

since bT Ax = (bT Ax)T = xT AT b is a scalar.
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(cont.)
Therefore

∂G(x)
∂xi

=
∂xT

∂xi
AT Ax + xT AT A

∂x
∂xi
− 2

∂xT

∂xi
AT b

= eT
i AT Ax + xT AT Aei − 2eT

i AT b

= 2eT
i AT Ax − 2eT

i AT b

since xT AT Aei = (xT AT Aei)
T = eT

i AT Ax is a scalar.
This means that

∂G(x)
∂xi

= 0 ⇐⇒ (AT )i∗Ax = (AT )i∗b.

If we collect all such conditions (for i = 1, . . . ,n) in one linear system
we get

AT Ax = AT b.
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(cont.)
To verify that we indeed have a minimum we show that if z is a solution
of the normal equations then G(z) is minimal.

G(z) = (Az − b)T (Az − b)

= zT AT Az − 2zT AT b + bT b

= zT (AT Az − AT b︸ ︷︷ ︸
=0

)− zT AT b + bT b = −zT AT b + bT b.

Now, for any other y = z + u we have

G(y) = (z + u)T AT A(z + u)− 2(z + u)T AT b + bT b

= G(z) + uT AT Au + zT AT Au︸ ︷︷ ︸
=uT AT Az

+uT AT Az − 2uT AT b︸︷︷︸
AT Az

= G(z) + uT AT Au ≥ G(z)
since uT AT Au =

∑m
i=1(Au)2

i ≥ 0. �
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Remark
Using this framework we can compute least squares fits from any
linear function space.

Example
1 Let f (t) = α0 + α1t + α2t2, i.e., we can use quadratic polynomials

(or any other degree).
2 Let f (t) = α0 + α1 sin t + α2 cos t , i.e., we can use trigonometric

polynomials.
3 Let f (t) = αet + β

√
t , i.e., we can use just about anything we want.
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Regression in Statistics (BLUE)

One assumes that there is a random process that generates data as a
random variable Y of the form

Y = β0 + β1X1 + β2X2 + . . .+ βnXn,

where X1, . . . ,Xn are (input) random variables and β1, . . . , βn are
unknown parameters.
Now the actually observed data may be affected by noise, i.e.,

y = Y + ε = β0 + β1X1 + β2X2 + . . .+ βnXn + ε,

where ε ∼ N (0, σ2) (normally distributed with mean zero and variance
σ2) is another random variable denoting the noise.
To determine the model parameters β1, . . . , βn we now look at
measurements, i.e.,

yi = β0 + β1xi,1 + β2xi,2 + . . .+ βnxi,n + ε, i = 1, . . . ,m.
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In matrix-vector form this gives us

y = Xβ + ε

Now, the least squares solution of Xβ = y , i.e., β̂ = (XT X)−1XT y is in
fact the best linear unbiased estimator (BLUE) for β.
To show this one needs an assumption that the error is unbiased, i.e.,
E[ε] = 0.
Then

E[y ] = E[Xβ + ε] = E[Xβ] + E[ε] = Xβ

and therefore

E[β̂] = E[(XT X)−1XT y ] = (XT X)−1XTE[y ]
= (XT X)−1XT Xβ = β,

so that the estimator is indeed unbiased.
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Remark

One can also show (maybe later) that β̂ has minimal variance among
all unbiased linear estimators, so it is the best linear unbiased
estimator of the model parameters.

In fact, the theorem ensuring this is the so-called Gauss-Markov
theorem.
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Kriging: a regression approach

Assume: the approximate value of a realization of a zero-mean
(Gaussian) random field is given by a linear predictor of the form

Ŷx =
N∑

j=1

Yx j wj(x) = w(x)T Y ,

where Ŷx and Yx j are random variables, Y =
(
Yx1 · · · YxN

)T , and

w(x) =
(
w1(x) · · · wN(x)

)T is a vector of weight functions at x .
Since all of the Yx j have zero mean the predictor Ŷx is automatically
unbiased.
Goal: to compute “optimal” weights

?
wj(·), j = 1, . . . ,N. To this end,

consider the mean-squared error (MSE) of the predictor, i.e.,

MSE(Ŷx) = E
[(

Yx −w(x)T Y
)2
]
.

We now present some details (see [FM15]).
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Covariance Kernel

We need the covariance kernel K of a random field Y with mean µ(x).
It is defined via

σ2K (x , z) = Cov(Yx ,Yz) = E [(Yx − µ(x))(Yz − µ(z))]
= E [(Yx − E[Yx ])(Yz − E[Yz ])]

= E [YxYz − YxE[Yz ]− E[Yx ]Yz + E[Yx ]E[Yz ]]

= E[YxYz ]− E[Yx ]E[Yz ]− E[Yx ]E[Yz ] + E[Yx ]E[Yz ]

= E[YxYz ]− E[Yx ]E[Yz ] = E[YxYz ]− µ(x)µ(z).

Therefore, the variance of the random field,

Var(Yx) = E[Y 2
x ]− E[Yx ]

2 = E[Y 2
x ]− µ2(x),

corresponds to the “diagonal” of the covariance, i.e.,

Var(Yx) = σ2K (x ,x).
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Let’s now work out the MSE:

MSE(Ŷx) = E
[(

Yx −w(x)T Y
)2
]

= E[YxYx ]− 2E[Yxw(x)T Y ] + E[w(x)T YY T w(x)]

Now use E[YxYz ] = K (x , z) (the covariance, since Y is centered):

MSE(Ŷx) = σ2K (x ,x)− 2w(x)T (σ2k(x)) + w(x)T (σ2K)w(x),

where
σ2k(x) = σ2 (k1(x) · · · kN(x)

)T : with
σ2kj(x) = σ2K (x ,x j) = E[YxYx j ]

K: the covariance matrix has entries σ2K (x i ,x j) = E[Yx i Yx j ]

Finding the minimum MSE is straightforward. Differentiation and
equating to zero yields

−2k(x) + 2Kw(x) = 0,

and so the optimum weight vector is
?
w(x) = K−1k(x).
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We have shown that the (simple) kriging predictor

Ŷx = k(x)T K−1Y

is the best (in the MSE sense) linear unbiased predictor (BLUP).

Since we are given the observations y as realizations of Y we can
compute the prediction

ŷx = k(x)T K−1y .
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The MSE of the kriging predictor with optimal weights
?
w(·),

E
[(

Yx − Ŷx

)2
]
= σ2

(
K (x ,x)− k(x)T K−1k(x)

)
,

is known as the kriging variance.
It allows us to give confidence intervals for our prediction. It also gives
rise to a criterion for choosing an optimal parametrization of the family
of covariance kernels used for prediction.

Remark
For Gaussian random fields the BLUP is also the best nonlinear
unbiased predictor (see, e.g., [BTA04, Chapter 2]).
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Remark
1 The simple kriging approach just described is precisely how Krige

[Kri51] introduced the method:
The unknown value to be predicted is given by a weighted average
of the observed values, where the weights depend on the prediction
location.
Usually one assigns a smaller weight to observations further away
from x .

The latter statement implies that one should be using kernels
whose associated weights decay away from x . Positive definite
translation invariant kernels have this property.

2 More advanced kriging variants are discussed in papers such as
[SWMW89, SSS13], or books such as [Cre93, Ste99, BTA04].
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