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“ Vector Norms
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Vector Norms

Definition
Let x,y € R" (C"). Then
n
xTy=>"xy; €R
i=1
n
xy=>Y Xy €C
i=1

is called the standard inner product for R” (C").
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Definition
Let V be a vector space. A function || - || : V — Rx¢ is called a norm
provided forany x,y € Vand a« € R

@ ||x|| > 0and ||x|| =0 if and only if x =0,

Q |lax| = [ [|x]],

Q [x+yll < x| + 1yl

Remark
The inequality in (3) is known as the triangle inequality.
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Remark
@ Any inner product (-, -) induces a norm via (more later)

X[ = v/ {x, X).
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Remark
@ Any inner product (-, -) induces a norm via (more later)

X[ = v/ {x, X).

@ We will show that the standard inner product induces the
Euclidean norm (cf. length of a vector).
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Remark
@ Any inner product (-, -) induces a norm via (more later)

X[ = v/ {x, X).

@ We will show that the standard inner product induces the
Euclidean norm (cf. length of a vector).

Remark
Inner products let us define angles via

xTy
x|yl
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Remark
@ Any inner product (-, -) induces a norm via (more later)

X[ = v/ {x, X).

@ We will show that the standard inner product induces the
Euclidean norm (cf. length of a vector).

Remark
Inner products let us define angles via

xTy
x|yl

In particular, x, y are orthogonal if and only if x"y = 0.
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Example
Let x € R" and consider the Euclidean norm

x|z = VxTx
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Example
Let x € R" and consider the Euclidean norm

[x|l2 = VxTx
n

— (3%

i=1

We show that || - ||2 is @ norm. We do this for the real case, but the
complex case goes analogously.

1/2
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Example
Let x € R" and consider the Euclidean norm

x|z = VxTx

n 1/2
i=1

We show that || - ||2 is @ norm. We do this for the real case, but the
complex case goes analogously.

@ Clearly, || x||2 > 0. Also,
2
[x[2=0 <= |[x]|5=0
n
= Y =0 < x=0i=1,..,n,
i—1

~— x=0.
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Example (cont.)
@ We have

n 1/2
lax|2 = (Z(ax;)z)
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Example (cont.)
@ We have

Jox]lz = (Z

i=1

1/2
(aXi)z) =

o (3258

1/2
) = |af ||x][2.

fasshauer@iit.edu

MATH 532



http://math.iit.edu/~fass

Example (cont.)
@ We have

n 1/2 n 1/2
lax|l2 = (Z(axi)2> = |al <ZX/2> = laf [[x]l2-

i=1 i=1

© To establish (3) we need
Lemma
Letx,y € R". Then

IxTy| < ||x||2]lyll2. (Cauchy—Schwarz—Bunyakovsky)

Moreover, equality holds if and only if y = ax with

xTy
o = .
X113
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Motivation for Proof of Cauchy—Schwarz—Bunyakovsky

As already alluded to above, the angle ¢ between two
vectors a and b is related to the inner product by
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Motivation for Proof of Cauchy—Schwarz—Bunyakovsky

As already alluded to above, the angle ¢ between two
vectors a and b is related to the inner product by

a’'b

cosf = ———.
all|| bl

fasshauer@iit.edu MATH 532 €


http://math.iit.edu/~fass

Motivation for Proof of Cauchy—Schwarz—Bunyakovsky

As already alluded to above, the angle ¢ between two
vectors a and b is related to the inner product by

a’'b

cosf = ———.
all|| bl

Using trigonometry as in the figure,
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Motivation for Proof of Cauchy—Schwarz—Bunyakovsky

As already alluded to above, the angle ¢ between two
vectors a and b is related to the inner product by

a’'b

cosf = .
all|| bl

Using trigonometry as in the figure, the projection of
a onto b is then

b
allcos——-
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Motivation for Proof of Cauchy—Schwarz—Bunyakovsky

As already alluded to above, the angle ¢ between two
vectors a and b is related to the inner product by

a’'b

cosf = .
all|| bl

Using trigonometry as in the figure, the projection of
a onto b is then

a’b b

allcosf—— =
Iall o080 g = lal arma o
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Motivation for Proof of Cauchy—Schwarz—Bunyakovsky

As already alluded to above, the angle ¢ between two
vectors a and b is related to the inner product by

a’'b

cosf = .
all|| bl

Using trigonometry as in the figure, the projection of
a onto b is then

a2 2B _ah
1b]| lalli6] 1ol ~ 6]

||\a|| cos 0——- b.
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Motivation for Proof of Cauchy—Schwarz—Bunyakovsky

As already alluded to above, the angle ¢ between two
vectors a and b is related to the inner product by

a’'b

cosf = .
all|| bl

Using trigonometry as in the figure, the projection of
a onto b is then

) 2R B _ 2
1b]| lalli6] 1ol ~ 6]

||\a|| cos 0——- b.

Now, we let y = a and x = b, so that the projection of y onto x is
given by
xT
ax, where a =

112
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Proof of Cauchy—Schwarz—Bunyakovsky
We know that ||y — ax||3 >0
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Proof of Cauchy—Schwarz—Bunyakovsky

We know that ||y — ax||3 > 0 since it's (the square of) a norm.
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Proof of Cauchy—Schwarz—Bunyakovsky

We know that ||y — ax||3 > 0 since it's (the square of) a norm.

Therefore,

0< |y —ax|f=(y—ax)"(y - ax)
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Proof of Cauchy—Schwarz—Bunyakovsky

We know that ||y — ax||3 > 0 since it's (the square of) a norm.

Therefore,

0<|ly —ax|5=(y —ax)"(y — ax)
=y'y—2ax"y +?x"x
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Proof of Cauchy—Schwarz—Bunyakovsky
We know that ||y — ax||3 > 0 since it's (the square of) a norm.
Therefore,

0<|ly —ax|5=(y —ax)"(y — ax)
=y'y—2ax"y +?x"x

T _2XT}’XT n (XTY)2 xTx
ST g S
- 2
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Proof of Cauchy—Schwarz—Bunyakovsky

We know that ||y — ax||3 > 0 since it's (the square of) a norm.
Therefore,

0<|ly —ax|5=(y —ax)"(y — ax)
=y'y—2ax"y +?x"x

_ yTy_szyxTy+ (xTy)® g
1x]]2 Ix[* =~
=|Ix|13
2
xTy
—yig- | 2) :
X115
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Proof of Cauchy—Schwarz—Bunyakovsky

We know that ||y — ax||3 > 0 since it's (the square of) a norm.

Therefore,

0<|ly —ax|5=(y —ax)"(y — ax)
=y'y—2ax"y +?x"x

_ yTy_szyxTy+ (xTy)® g
1x]]2 Ix[* =~
=|Ix|13
2
xTy
—yig- | 2) :
X115

This implies
2
(xy) <IxIBlyI3,
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Proof of Cauchy—Schwarz—Bunyakovsky
We know that ||y — ax||3 > 0 since it's (the square of) a norm.
Therefore,
0 < [ly —ax[} = (y — ax)"(y — ax)
=y'y—2ax"y +?x"x

_ yTy_szyxTy+ (XT.V)2 g
[ 12 x4 >~
=|x]I5
2
xTy
=||y|\§—( 2 :
1113

This implies
2
(xTy)" <IxIBlyI3.
and the Cauchy—Schwarz—Bunyakovsky inequality follows by taking

square roots.
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Proof (cont.)
Now we look at the equality claim.
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Proof (cont.)
Now we look at the equality claim.

“—": Let's assume that [xTy| = ||x|j2]|¥ |2
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Proof (cont.)
Now we look at the equality claim.

“—": Let's assume that |xTy| = ||x||2||¥||>. But then the first part of
the proof shows that
|y —ax|2=0

so that y = ax.
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Proof (cont.)
Now we look at the equality claim.

“—": Let's assume that |xTy| = || x]|2[|y||>. But then the first part of
the proof shows that
|y —ax|2=0

so that y = ax.

“«—=": Let's assume y = ax.
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Proof (cont.)
Now we look at the equality claim.

“—": Let's assume that [xTy| = || x]|2||y||>- But then the first part of
the proof shows that
|y —ax|2=0

so that y = ax.
“«—=": Let's assume y = ax. Then
[xTy| = |xT(@x)| = [alllxI3
Ixl2llyllz = [1Xll2llax]2 = |o||x]5,

so that we have equality. [
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Example (cont.)
© Now we can show that || - |2 satisfies the triangle inequality:
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Example (cont.)
© Now we can show that || - |2 satisfies the triangle inequality:

Ix+yl3=(x+y) (x+y)
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Example (cont.)
© Now we can show that || - || satisfies the triangle inequality:

Ix+yl3=(x+y) (x+y)
= x'x4xTy+yT'x+y’
ST

_ 2
=[lxIi3 =xTy =|yl}
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Example (cont.)
© Now we can show that || - |2 satisfies the triangle inequality:

Ix+yl3=(x+y) (x+y)
T T T T
= X X +X X
X'x y+y x+y'y
=13 =xTy —|y|?

= [|x1I3 +2xTy + |ly|3

fasshauer@iit.edu MATH 532
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Example (cont.)
© Now we can show that || - |2 satisfies the triangle inequality:

Ix+yl3=(x+y) (x+y)
T T T T
=x'x4+x"y+y'x+
X'x+xTy+y'x+yTy
=lxII3 =xTy  =|yl}
= |3 +2x"y + |y|3
<|xI3+2)x"y|+|yl2
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Example (cont.)

© Now we can show that || - |2 satisfies the triangle inequality:

Ix+yl3=(x+y) (x+y)
T T T T
=X'X+x'y+y'x+
X'x y+y y'y
=13 =xTy —|y|?
=|x|3+2xTy +|yl3
< |Ix|3+2|xTy|+|yl3

CSB 2 5
< ixllz +2[[x]l2llyll2 + lIyli2
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Example (cont.)
© Now we can show that || - |2 satisfies the triangle inequality:

Ix+yl3=(x+y) (x+y)
T T T T
=X'X+x'y+y'x+
X'x y+y y'y
=13 =xTy —|y|?
=|x|3+2xTy +|yl3
< |Ix|3+2|xTy|+|yl3

CSB 2 5

< ixllz +2[[x]l2llyll2 + lIyli2
2

= (lIxll2 + [lyll2)~-
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Example (cont.)

© Now we can show that || - |2 satisfies the triangle inequality:

Ix+yl3=(x+y) (x+y)
T T T T
=X'X+x'y+y'x+
X'x y+y y'y
=13 =xTy —|y|?
=|x|3+2xTy +|yl3
< |Ix|3+2|xTy|+|yl3

CSB 2 5

< ixllz +2[[x]l2llyll2 + lIyli2
2

= (lIxll2 + [lyll2)~-

Now we just need to take square roots to have the triangle
inequality.
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Lemma
Let x,y € R". Then we have the backward triangle inequality

[l =yl < llx =yl
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Lemma
Let x,y € R". Then we have the backward triangle inequality

I |F =Myl T < llx = yl-

Proof
We write

X[ = llx -y +yl
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Lemma
Let x,y € R". Then we have the backward triangle inequality

I |F =Myl T < llx = yl-

Proof
We write

tri.ineq.
X =lx—y+yl < lx=yl+Iyl
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Lemma
Let x,y € R". Then we have the backward triangle inequality

[l =yl < llx =yl

Proof

We write
tri.ineq.
Ixl=lx-y+yl < lx=yl+Iyl

But this implies

1xI[ = llyll < lIx — y-
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Proof (cont.)
Switch the roles of x and y to get

Iyl =[] < lly — x|

fasshauer@iit.edu MATH 532
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Proof (cont.)
Switch the roles of x and y to get

Iyl =lixl < lly =xi = = (x| =Ilyl) < llx =yl
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Proof (cont.)
Switch the roles of x and y to get

Iyl =lxl <lly =xl < =(xl=lyl) < lx-yl
Together with the previous inequality we have

[l =1yl < flx =yl

fasshauer@iit.edu MATH 532
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Other common norms
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Other common norms

@ /1-norm (or taxi-cab norm, Manhattan norm):

n
X[l =" i
i=
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Other common norms

@ /1-norm (or taxi-cab norm, Manhattan norm):
n

X[l =" i

i=1
@ /so-norm (or maximum norm, Chebyshev norm):

[X[loe = max [xj|
1<i<n
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Other common norms

@ /1-norm (or taxi-cab norm, Manhattan norm):
n
X[l =" i
i=1

@ /so-norm (or maximum norm, Chebyshev norm):

[X[loe = max [xj|
1<i<n

n 1/p
[xllo = (Z |Xi|p>
p

@ /p-norm:
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Other common norms

@ /1-norm (or taxi-cab norm, Manhattan norm):
n
X[l =" i
i=1

@ /so-norm (or maximum norm, Chebyshev norm):

[X[loe = max [xj|
1<i<n

n 1/p
[xllo = (Z IX,-I">
i=1
Remark

In the homework you will use Hélder's and Minkowski’s inequalities to
show that the p-norm is a norm.

fasshauer@iit.edu MATH 532 15
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Remark
We now show that
X|loo = i
X[ = lim_[|x].
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Remark
We now show that
X[ = lim_[|x].

Let’s use tildes to mark all components of x that are maximal, i.e..

X{ =Xo =...= X = max |x;l.
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Remark
We now show that
X[ = lim_[|x].

Let’s use tildes to mark all components of x that are maximal, i.e..

X{ =Xo =...= X = max |x;l.

The remaining components are then Xy 1, . . ., Xp.
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Remark
We now show that
X[ = lim_[|x].

Let’s use tildes to mark all components of x that are maximal, i.e..

X{ =Xo =...= Xk = max |x;|
1<i<n

The remaining components are then Xy 1, . . ., Xp.
This implies that

X; .

ZL<1, fori=k+1,...,n

Xq
16

MATH 532
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Remark (cont.)

Now
n 1/p
| Xlp = (Z I)?i\p>
i=1

fasshauer@iit.edu MATH 532
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Remark (cont.)
Now

n 1/p
| Xlp = <Z !)?i\p>
i=1

17

~ p ~
< Xk+1 Xn
= x| | K+ |5 4+ |2
Xq Xq
~—~
<1 <1
v
MATH 532
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Remark (cont.)

Now
n 1/p
| Xlp = <Z !)?i\p>
i=1

1/p
s p > P
- Xk Xn
=% | K+ |50 4.+ |2
X4
~—~
<1 <1

Since the terms inside the parentheses — except for k — go to 0 for
p — o0, ()P — 1 for p — .

fasshauer@iit.edu MATH 532
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Remark (cont.)

Now
n 1/p
| Xlp = <Z !)?i\p>

i=1

1/p
& p s |P
< Xk+1 Xn
=% | k+ | =2+ |
X4
<1 <1

Since the terms inside the parentheses — except for k — go to 0 for
p — o0, ()P — 1 for p — .
And so

X|lp — |X1| = max |x;| = || X|| -

Il — [%1] = max |x| = x|

fasshauer@iit.edu MATH 532
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Vector Norms

¢ 0

Figure: Unit “balls” in R? for the ¢4, ¢, and /., norms.

)

o

°

&

4 05 0 05 1

Note that By C B, C B since, e.g.,

V2 V2
2 2/ ll2

N[ —

1

NS,

o0
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1

°

4 05 0 05 1 4 05 0 05 1

Figure: Unit “balls” in R? for the ¢4, ¢, and /., norms.

Note that By C B, C B since, e.g.,

V2 V2 V2 V2
_ _ /11 _
2 1 2 2 2 S
2 2 2
so that V3 > 3 > V3
2 1 2 2 2 oo

fasshauer@iit.edu MATH 532

18


http://math.iit.edu/~fass

Vector Norms

1
05
0
05

Figure: Unit “balls” in R? for the ¢4, /2 and /. norms

Note that By C B, C B since, e.g.,

4 05 0

05 1

V2 V2 V2 \/E
2 1 2 2 2 S
%ﬁ Z
so that 7 > Q > V3
2 1 2 2 2 oo
In fact, we have in general (similar to HW)

1x[[+ = [Ixll2 = [[x][oo,

fasshauer@iit.edu

forany x € R".
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Norm equivalence
Definition

Two norms || - || and || - || on a vector space V are called equivalent if
there exist constants «, 5 such that

a< ||||;“|‘|, <j forall x(#0) e V.
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Norm equivalence
Definition

Two norms || - || and || - || on a vector space V are called equivalent if
there exist constants «, 5 such that

a< ||||;“|‘|, <j forall x(#0) e V.

Example

|- |l1 and | - ||z are equivalent since from above ||x||; > | x||2 and also
][4 < v/n||x]|2 (see HW) so that
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Norm equivalence
Definition

Two norms || - || and || - || on a vector space V are called equivalent if
there exist constants «, 5 such that

a< ||||;“|‘|, <j forall x(#0) e V.

Example

|- |l1 and | - ||z are equivalent since from above ||x||; > | x||2 and also
][4 < v/n||x]|2 (see HW) so that

a=1< Xl o m_ s

| X][2

fasshauer@iit.edu MATH 532 19
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Norm equivalence

Definition

Two norms || - || and || - || on a vector space V are called equivalent if
there exist constants «, 8 such that

[1x]]

a <
x|’

<p forall x(£0)eV.

Example

|- |l1 and | - ||z are equivalent since from above ||x||; > | x||2 and also
][4 < v/n||x]|2 (see HW) so that

a—1< 11+ <JA=8.
| X][2

Remark
In fact, all norms on finite-dimensional vector spaces are equivalent.

v
fasshauer@iit.edu MATH 532 19



http://math.iit.edu/~fass

Outline

e Matrix Norms
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Matrix norms are special norms — they will satisfy one additional
property.
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Matrix norms are special norms — they will satisfy one additional

property.
This property should help us measure ||AB|| for two matrices A, B of

appropriate sizes.
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Matrix norms are special norms — they will satisfy one additional

property.
This property should help us measure [|AB|| for two matrices A, B of

appropriate sizes.
We look at the simplest matrix norm, the Frobenius norm, defined for

A € R™:
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Matrix norms are special norms — they will satisfy one additional

property.
This property should help us measure [|AB|| for two matrices A, B of

appropriate sizes.
We look at the simplest matrix norm, the Frobenius norm, defined for

A € R™:

1/2
m n /

AlE={>_D lasl

i=1 j=1
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Matrix norms are special norms — they will satisfy one additional

property.
This property should help us measure [|AB|| for two matrices A, B of

appropriate sizes.
We look at the simplest matrix norm, the Frobenius norm, defined for

A € R™:
1/2

m n m 1/2
ALE =D lay = (ZHAI*H%>
i=

i=1 j=1
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Matrix norms are special norms — they will satisfy one additional

property.
This property should help us measure [|AB|| for two matrices A, B of

appropriate sizes.
We look at the simplest matrix norm, the Frobenius norm, defined for

A € R™:

R 1/2 m 1/2
IAlE= (D D laf* | = (ZHA,-*H%>
i=1 j=1 i=1
; 1/2
= | Al13
j=1
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Matrix norms are special norms — they will satisfy one additional

property.
This property should help us measure [|AB|| for two matrices A, B of

appropriate sizes.
We look at the simplest matrix norm, the Frobenius norm, defined for

A € R™:

R 1/2 m 1/2
IAlE= (D D laf* | = (ZHA,-*H%>
i=1 j=1 i=1
; 1/2
=S IA4I3| = y/trace(ATA),

=1
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Matrix norms are special norms — they will satisfy one additional

property.
This property should help us measure [|AB|| for two matrices A, B of

appropriate sizes.
We look at the simplest matrix norm, the Frobenius norm, defined for

A € R™:

m n 1/2 m 1/2
ALE =D lay =<ZHAI*HS>
i=1 j=1 i=1
n 1/2
—(SD1ag3] = frace(ara),
=

i.e., the Frobenius norm is just a 2-norm for the vector that contains aII
elements of the matrix.
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Now

m

IAX]E = |Awx|?

i=1
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Now
m
IAX]5 =" |ALx?
=1

cs M
2 2
< ) IALIE XI5
—
NELE
=||A|12
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Now
m
IAX]5 =" |ALx?
=1
cs M
< ) IALIE XI5
=1
NELE
=||A|2
so that

IAX]j2 < [|Al[£]|x]]2-
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Now
m
IAX]5 =" |ALx?
=1
cs M
< ) IALIE XI5
=1
NELE
=||A|2
so that

IAX]j2 < [|Al[£]|x]]2-

We can generalize this to matrices, i.e., we have
IABllr < [[AllFIIBIIF,

which motivates us to require this submultiplicativity for any matrix
norm.
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Definition
A matrix norm is a function || - || from the set of all real (or complex)
matrices of finite size into R>( that satisfies
@ ||A| > 0and ||A|| = 0if and only if A = O (a matrix of all zeros).
Q |eA| = |af||A|| for all a € R.
Q ||A+B| <Al + |IB]| (requires A, B to be of same size).
Q ||AB|| < ||A]|||B]| (requires A, B to have appropriate sizes).

fasshauer@iit.edu MATH 532

23


http://math.iit.edu/~fass

Definition
A matrix norm is a function || - || from the set of all real (or complex)
matrices of finite size into R>( that satisfies
@ ||A| > 0and ||A|| = 0if and only if A = O (a matrix of all zeros).
Q |eA| = |af||A|| for all a € R.
Q ||A+B| <Al + |IB]| (requires A, B to be of same size).
Q ||AB|| < ||A]|||B]| (requires A, B to have appropriate sizes).

Remark

This definition is usually too general. In addition to the Frobenius
norm, most useful matrix norms are induced by a vector norm.
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Induced matrix norms

Theorem

Let |- ||(my and | - [|(ny be vector norms on R™ and R", respectively, and
let A be an m x n matrix. Then

All = max [||Ax
Al = max [IAX] )

is a matrix norm called the induced matrix norm.
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Induced matrix norms

Theorem

Let |- ||(my and | - [|(ny be vector norms on R™ and R", respectively, and
let A be an m x n matrix. Then

Al = max_[|Ax](m)

1l (m=

is a matrix norm called the induced matrix norm.

Remark

Here the vector norm could be any vector norm. In particular, any
p-norm. For example, we could have

|Allo = max [|Ax
l1xll2,(m=1

2,(m)-

To keep notation simple we often drop indices.
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Proof
@ ||A| > 0is obvious since this holds for the vector norm.
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Proof

@ ||A| > 0is obvious since this holds for the vector norm.
It remains to show that ||A|| = 0 if and only if A = O.
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Proof

@ ||A| > 0is obvious since this holds for the vector norm.
It remains to show that ||A|| = 0 if and only if A = O.
Assume A = O, then

Al = max || Ax || =o.
lxi=1 g
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Proof

@ ||A| > 0is obvious since this holds for the vector norm.
It remains to show that ||A|| = 0 if and only if A = O.
Assume A = O, then

Al = max [l AX, || Ax | =0.

So now consider A # O. We need to show that ||A[| > 0.
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Proof

@ ||A| > 0is obvious since this holds for the vector norm.
It remains to show that ||A|| = 0 if and only if A = O.
Assume A = O, then

Al = max [l AX, || Ax | =0.

So now consider A # O. We need to show that ||A[| > 0.
There must exist a column of A that is not 0. We call this column
A.x and take x = ey.
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Proof
@ ||A| > 0is obvious since this holds for the vector norm.
It remains to show that ||A|| = 0 if and only if A = O.
Assume A = O, then

Al = max [l AX, || Ax | =0.

So now consider A # O. We need to show that ||A[| > 0.

There must exist a column of A that is not 0. We call this column
A.x and take x = e.

Then

AT = max [|Ax]

fasshauer@iit.edu MATH 532 25
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Proof

@ ||A| > 0is obvious since this holds for the vector norm.
It remains to show that ||A|| = 0 if and only if A = O.
Assume A = O, then

Al = max [l AX, || Ax | =0.

So now consider A # O. We need to show that ||A[| > 0.
There must exist a column of A that is not 0. We call this column
A.x and take x = ey.

Then -
=1
Al = i HAXH S |Aex
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Proof

@ ||A| > 0is obvious since this holds for the vector norm.
It remains to show that ||A|| = 0 if and only if A = O.
Assume A = O, then

Al = max [l AX, || Ax | =0.

So now consider A # O. We need to show that ||A[| > 0.
There must exist a column of A that is not 0. We call this column
A.x and take x = ey.

Then -
=1
Al = i HAXH S ||Aex]| = [[Au] >0

since A« # 0.
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Proof (cont.)
@ Using the corresponding property for the vector norm we have

loA]
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Proof (cont.)
@ Using the corresponding property for the vector norm we have

|aAl| = max ||aAx]|
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Proof (cont.)
@ Using the corresponding property for the vector norm we have

|laAl| = max || aAx]|| = |a| max ||Ax]|
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Proof (cont.)
@ Using the corresponding property for the vector norm we have

loA[] = max [[aAx|| = |of max [Ax]| = [o|[|A]-
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Proof (cont.)
@ Using the corresponding property for the vector norm we have

loA[] = max [[aAx|| = |of max [Ax]| = [o|[|A]-

© Also straightforward (based on the triangle inequality for the vector

norm)

IA + B
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Proof (cont.)
@ Using the corresponding property for the vector norm we have

loA[] = max [[aAx|| = |of max [Ax]| = [o|[|A]-

© Also straightforward (based on the triangle inequality for the vector

norm)

I|A+ B|| = max ||(A + B)x]|
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Proof (cont.)
@ Using the corresponding property for the vector norm we have

loA[] = max [[aAx|| = |of max [Ax]| = [o|[|A]-

© Also straightforward (based on the triangle inequality for the vector

norm)

|A + B = max || (A + B)x|| = max |AX + Bx||
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Proof (cont.)
@ Using the corresponding property for the vector norm we have

loA[] = max [[aAx|| = |of max [Ax]| = [o|[|A]-

© Also straightforward (based on the triangle inequality for the vector

norm)

|A + B = max || (A + B)x|| = max |AX + Bx||
< max ([|Ax|| + [[Bx][)
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Proof (cont.)
@ Using the corresponding property for the vector norm we have

loA[] = max [[aAx|| = |of max [Ax]| = [o|[|A]-

© Also straightforward (based on the triangle inequality for the vector

norm)

|A + BJ|| = max||(A + B)x|| = max ||Ax + Bx||
< max (||Ax]| + [|Bx])
= max |Ax|| + max ||Bx||
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Proof (cont.)
@ Using the corresponding property for the vector norm we have

loA[] = max [[aAx|| = |of max [Ax]| = [o|[|A]-

© Also straightforward (based on the triangle inequality for the vector

norm)

|A+ B = max |(A + B)x]|| = max ||Ax + Bx|
< max ([|Ax|| + [[Bx][)
= max [|Ax|| + max |[Bx|| = [|A[| + [|B]|.
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Proof (cont.)
© First note that

Ax
max ||Ax| = max [Ax]
lx]|=1 x#0 | x||
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Proof (cont.)
© First note that

Ax
max ||Ax| = max [Ax]
lx]|=1 x#0 | x||

and so
Al
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Proof (cont.)
© First note that

Ax
max ||Ax| = max [Ax]
lx]|=1 x#0 ||x||

and so 1AX]

b ¢

|A] = max ||Ax| = max
x| =1 x20 ||x]|
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Proof (cont.)
@ First note that

Ax
max [|Ax|| = max |AX|
[|x]|=1 x#0 || X||
and so
Ax Ax
|All = max ||Ax|| = max IAX] > u
[|x]|=1 x#0 || X|| [l ||
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Proof (cont.)
@ First note that

Ax
max ||Ax|| = max 1AX]]
[|x]|=1 x#0 || X||
and so
Ax Ax
|All = max ||Ax|| = max IAX] > u
llx|=1 x#0 || x| [l ||
Therefore

IAX]] < [[A[x]]-
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Proof (cont.)
© First note that

Ax
max ||Ax|| = max 1AX]]
[|x]|=1 x#0 || X||
and so
Ax Ax
|All = max ||Ax|| = max IAX] > u
llx|=1 x#0 || x| [l ||
Therefore

[[Ax]] < [IA[lx]]-

But then we also have ||AB|| < ||A]|||B|| since
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Proof (cont.)
© First note that

Ax
max [|Ax|| = max |AX|
[|x]|=1 x£0 || x||
and so
Ax Ax
|All = max ||Ax|| = max IAX] > H
[Ix]|=1 x#0 || X|| [l ||
Therefore
[AX]] < [[All[]x]]-

But then we also have ||AB|| < ||A]|||B|| since

IAB]| = max |ABx|| = [[ABy]| (for some y with [|y[| = 1)
X||=
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Proof (cont.)
© First note that

Ax
max ||Ax|| = max 1AX]]
[|x]|=1 x#0 || X||
and so
Ax Ax
|All = max ||Ax|| = max IAX] > u
llx|=1 x#0 || x| [l ||
Therefore

[[Ax]] < [IA[lx]]-

But then we also have ||AB|| < ||A]|||B|| since

IAB]| = max |ABx|| = [[ABy]| (for some y with [|y[| = 1)
X||=

(1)
< [IAllByl]
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Proof (cont.)
© First note that

Ax
max ||AX|| = max [Ax]
L= x#0 || x||
and so A A
X X
xi= HXH x|
Therefore

[[Ax]] < [IA[lx]]-

But then we also have ||AB|| < ||A]|||B|| since

IAB]| = max |ABx|| = [[ABy]| (for some y with [|y[| = 1)
X||=

(1) (1)

< [IAIIByl < IALIBI Lyl -
~—
=1
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Remark
@ One can show (see HW) that — if A is invertible —

1

mi .
IIx]|=1 |A=1]]
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Remark
@ One can show (see HW) that — if A is invertible —

1
min [|Ax| = ——.
x| =1 |AX] |A=1]]

@ The induced matrix norm can be interpreted geometrically:

||Al|: the most a vector on the unit sphere can be stretched
when transformed by A.
T AL i the most a vector on the unit sphere can be shrunk

when transformed by A.

"\\7 . max [|[Ax[ = ||A]
[lll=1

" 1
min |Ax[ = -+
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Matrix 2-norm

Theorem
Let A be an m x n matrix. Then

Q [Alz = i [AX]|2 = /Amax-
1 1

minyx=1 AX[l2 v Amin

where \max and \min are the largest and smallest eigenvalues of ATA,
respectively.

Q AT2=
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Matrix 2-norm

Theorem
Let A be an m x n matrix. Then

Q Az = HF)T(1”3_X1 |AX]l2 = v/ Amax-
1 B 1
minx=1 [AXll2  VAmin’

where \max and \min are the largest and smallest eigenvalues of ATA,
respectively.

Q AT2=

Remark
We also have

v/ Amax = o1, the largest singular value of A,
v/ Amin = on, the smallest singular value of A.
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Proof
We will show only (1), the largest singular value ((2) goes similarly).
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Proof
We will show only (1), the largest singular value ((2) goes similarly).

The idea is to solve a constrained optimization problem (as in
calculus), i.e.,

maximize f(x) = ||Ax||3 = (Ax)"Ax

subjectto g(x) = ||x]|3 = x"x =1.
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Proof
We will show only (1), the largest singular value ((2) goes similarly).

The idea is to solve a constrained optimization problem (as in
calculus), i.e.,

maximize f(x) = ||Ax|3 = (Ax)"Ax
subjectto g(x) = ||x]|3 = x"x =1.

We do this by introducing a Lagrange multiplier A and define

h(x,\) = f(x) — A\g(x) = xTATAx — \x"x.
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Proof (cont.)

Necessary and sufficient (since quadratic) condition for maximum:
g1 =0,i=1,...,n,g(x) =1
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Proof (cont.)

Necessary and sufficient (since quadratic) condition for maximum:
g1 =0,i=1,...,n,g(x) =1

x (xTATAx — )\xTx>
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Proof (cont.)

Necessary and sufficient (since quadratic) condition for maximum:
g1 =0,i=1,...,n,g(x) =1

O [ TaT T oxT + TaT A OX axT
— A'Ax — A + — X —
% (x X — AX x) o Ax +x'A'A— Ox — A 6x, AX

TOX ox
6x,-
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Proof (cont.)

Necessary and sufficient (since quadratic) condition for maximum:
g1 =0,i=1,...,n,g(x) =1

O ([ TAT T ox' 1 TaTpOX 3XT
— A'Ax — A A A'A— —X—
% (x X — X x) o X+ X Ox - A Gx, AX

—2e/ ATAx — 2)e] x

TOX ox
6X,'

fasshauer@iit.edu MATH 532

31



http://math.iit.edu/~fass

Proof (cont.)

Necessary and sufficient (since quadratic) condition for maximum:
g1 =0,i=1,...,n,g(x) =1

O ([ TAT T X\ 1 TATpAOX _ OXT
— A'Ax — A A —X—
o (x X — \X x) o X+x A"A— o —A 8x, AX

—2e/ ATAx — 2)e] x
:2<(A7Ax),-—()\x),->, i=1,....n

L
OX;
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Proof (cont.)

Necessary and sufficient (since quadratic) condition for maximum:

g =0,i=1,...,n9g(x) =

oX; OX; OX; oX;

—2e/ ATAx — 2)e] x
:2<(ATAX),-—()\X),->, i=1,....n

Together this yields

ATAX —A\x =0 <« (ATA—)\I>X:0,

T T
9 (xTATAx - )\xTx) _ 85 ATAx + TATAa—X — )\ax — X &%

6X,'
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Proof (cont.)

Necessary and sufficient (since quadratic) condition for maximum:
g =0,i=1,...,n9g(x) =

6Xi<xAAx—)\x x)_ o ATAX A XTATAC -\ x =T o
—2e/ ATAx — 2)e] x

:2<(ATAX),-—()\X),->, i=1,....n
Together this yields
ATAX - Ax =0 <« (ATA—)\I)X:O,

so that A\ must be an eigenvalue of ATA (since g(x) = x"x =1
ensures x # 0).
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Proof (cont.)
In fact, as we now show, )\ is the maximal eigenvalue.
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Proof (cont.)
In fact, as we now show, )\ is the maximal eigenvalue.
First,

ATAX = \x
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Proof (cont.)
In fact, as we now show, )\ is the maximal eigenvalue.
First,

ATAx =X x — x'ATAx
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Proof (cont.)
In fact, as we now show, )\ is the maximal eigenvalue.
First,

ATAx =X x = xTATAx=)x"x
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Proof (cont.)
In fact, as we now show, )\ is the maximal eigenvalue.
First,

ATAx =X x = x’ATAx= x"x=2)
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Proof (cont.)
In fact, as we now show, )\ is the maximal eigenvalue.
First,

ATAx =X x = x’ATAx= x"x=2)

so that

|AX|l> = VXTATAX = VA,
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Proof (cont.)
In fact, as we now show, )\ is the maximal eigenvalue.
First,
ATAx =X x = x’ATAx= x"x=2)
so that
|AX|]> = VXTATAXx = VX
And then
[All2 = max [[AX]|2
[ x]]2=1
O
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Proof (cont.)
In fact, as we now show, )\ is the maximal eigenvalue.
First,
ATAx =X x = x’ATAx= x"x=2)
so that
|AX|]> = VXTATAXx = VX

And then

[Allz = max [[Ax[l2 = max [|Ax]|

[Ix][2=1 [|x13=1

O
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Proof (cont.)
In fact, as we now show, )\ is the maximal eigenvalue.
First,
ATAx =X x = x’ATAx= x"x=2)

so that

|AX|]> = VXTATAXx = VX
And then

[Allz = max [[Ax[l2 = max [|Ax]|
[Ix][2=1 [|x13=1

= max VA = v/ Amax.

O
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Special properties of the 2-norm

.
Q [Allz = X |y"Ax|
Xl Iyle
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Special properties of the 2-norm

.
Q [Allz = X |y"Ax|
Xl Iyle

Q [IAll2 = AT]2
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Special properties of the 2-norm

.
Q [Allz = X |y"Ax|
Xl Iyle

Q [IAll2 = AT]2
Q |ATA[2 = [|AlI5 = [[AAT |2
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Special properties of the 2-norm

.
Q [Allz = X |y"Ax|
Xl Iyle

Q [IAll2 = AT]2
Q |ATA[2 = [|AlI5 = [[AAT |2

0 (5 B)|=maxiale ez}
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Special properties of the 2-norm

.
Q [Allz = X |y"Ax|
Xl Iyle

Q [IAll2 = AT]2
Q [ATAll2 = A5 = [AAT]2

0 (5 B)|=maxiale ez}

@ ||[UTAV||2 = ||A||2 provided UUT =l and VTV = | (orthogonal
matrices).
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Special properties of the 2-norm

.
Q [Allz = X |y"Ax|
Xl Iyle

Q [IAll2 = AT]2
Q [ATAll2 = A5 = [AAT]2

0 (5 B)|=maxiale ez}

@ ||[UTAV||2 = ||A||2 provided UUT =l and VTV = | (orthogonal
matrices).

Remark
The proof is a HW problem.
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Matrix 1-norm and oco-norm

Theorem
Let A be an m x n matrix. Then we have
@ the column sum norm

seenll

m
1Al = AR [AX]|1 = e |ajj,
i=1

@ and the row sum norm

Aloo = max, IAX[|oo = max Z\a,,y

7 -m
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Matrix 1-norm and oco-norm

Theorem
Let A be an m x n matrix. Then we have
@ the column sum norm

seenll

m
1Al = AR [AX]|1 = e |ajj,
i=1

@ and the row sum norm

[Alloo = max [[Ax]jo = max Z\au!

Remark

We know these are norms, so what we need to do is verify that the
formulas hold. We will show (1).
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Proof
First we look at ||Ax]|1.
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Proof
First we look at ||Ax]|1.

IAX[l1 =D |(Ax)]

i=1
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Proof
First we look at ||Ax]|1.

m m
IAX]1 = > [(Ax)i| = |Ax|
i1 i=1
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Proof
First we look at ||Ax]||1.

m m m n
IAX[[1 = > [(Ax)i] = [Aux| = [ Y ayx]
i= i= i=1 =1
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Proof
First we look at ||Ax]||1.

m m m n
1AXr = 1(AX)i| = |Anx| =D > ajxl
p i—1 =1 =1
reg.a M.
< 2.2 laill

i=1 j=1
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Proof
First we look at ||Ax]||1.

m m m n
1AXr = 1(AX)i| = |Anx| =D > ajxl
p i—1 =1 =1
reg.a M.
< 2.2 laill

i=1 j=1

-3 [\le )3 \aﬂ]
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Proof
First we look at ||Ax]||1.

m m m n
1AXr = 1(AX)i| = |Anx| =D > ajxl
p i—1 =1 =1
reg.a M.
< 2.2 laill

i=1 j=1
n m m n
=3 12 la| < | max S1a| ot
=t L=t —heemi =
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Proof
First we look at ||Ax|;.

m m m n
1AXr = 1(AX)i| = |Anx| =D > ajxl
p i—1 =1 =1
reg.a M.
< 2.2 laill

i=1 j=1
n m m n
=3 12 la| < | max S1a| ot
=t L=t —heemi =

Since we actually need to look at ||Ax||; for | x||; = 1 we note that
Ix[l1 = 3>/ ;| and therefore have

fasshauer@iit.edu MATH 532

35


http://math.iit.edu/~fass

Proof
First we look at ||Ax|;.

m m m n
1AXr = 1(AX)i| = |Anx| =D > ajxl
p i—1 =1 =1
reg.a M.
< 2.2 laill

i=1 j=1
n m m n
=3 12 la| < | max S1a| ot
=t L=t —heemi =

Since we actually need to look at ||Ax||; for | x||; = 1 we note that
Ix[l1 = 3>/ ;| and therefore have

— Ty

m
|AX[ly < max » |al.
=13
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Proof (cont.)

We even have equality since for x = ey, where k is the index such that

A.x has maximum column sum, we get
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Proof (cont.)

We even have equality since for x = ek, where k is the index such that

A.x has maximum column sum, we get

IAX][1 = [|Aexll
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Proof (cont.)

We even have equality since for x = ek, where k is the index such that
A.x has maximum column sum, we get

IAX[+ = lIAekll1 = [[Akll+
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Proof (cont.)

We even have equality since for x = ek, where k is the index such that
A.x has maximum column sum, we get

m
IAX]1 = [Aexlls = Al = |ail

i=1
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Proof (cont.)
We even have equality since for x = ek, where k is the index such that

A.x has maximum column sum, we get

m
IAX]1 = [Aexlls = Al = |ail

i=1
m
= max aij
j=1...,n;| ’k|

due to our choice of k.
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Proof (cont.)

We even have equality since for x = e, where k is the index such that
A.x has maximum column sum, we get

m

IAX]l1 = [[Aekll+ = Al = lai]

i=1
= maX Z ||

due to our choice of k.
Since ||ex||1 = 1 we indeed have the desired formula. [J
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Outline

e Inner Product Spaces
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Inner Product Spaces

Definition
A general inner product in a real (complex) vector space V is a
symmetric (Hermitian) bilinear form (-,-) : V x ¥V — R (C), i.e
@ (x,x) € R>o with (x,x) = 0if and only if x = 0.
Q (x,ay) = a(x,y) for all scalars «.
Q (x.y+2)=(xy)+(x,2).
Q (x,y) = (y,x) (or (x,y) = (y, x) if complex).
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Inner Product Spaces

Definition
A general inner product in a real (complex) vector space V is a
symmetric (Hermitian) bilinear form (-,-) : V x ¥V — R (C), i.e
0 (x,x) € R>o with (x, x) = 0 if and only if x = 0.
Q (x,ay) = a(x,y) for all scalars «.
Q (x,y+2z)=(xy)+(x 2).
Q (x,y) = (y,x) (or (x,y) = (y, x) if complex).

Remark

The following two properties (providing bilinearity) are implied (see
HW)

a(x,y)
(x,2) +(y,2).

(axy)
(x+y.2)
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Inner Product Spaces

As before, any inner product induces a norm via
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Inner Product Spaces

As before, any inner product induces a norm via

One can show (analogous to the Euclidean case) that || - || is a norm.
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Inner Product Spaces

As before, any inner product induces a norm via

One can show (analogous to the Euclidean case) that || - || is a norm.

In particular, we have a general Cauchy—Schwarz—Bunyakovsky
inequality
[(x, ) < [Ix]Hyll-
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Example
@ (x,y) = x"y (or x*y), the standard inner product for R" (C").
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Example

@ (x,y) = x"y (or x*y), the standard inner product for R” (C").
@ For nonsingular matrices A we get the A-inner product on R”, i.e.,

(x,y) =x"ATAy
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Example

@ (x,y) = x"y (or x*y), the standard inner product for R” (C").
@ For nonsingular matrices A we get the A-inner product on R”, i.e.,

(x,y) =x"ATAy

with

Ixlla = V/(x. %) = VXTATAx = || Ax]|2.
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Example

@ (x,y) = x"y (or x*y), the standard inner product for R” (C").
@ For nonsingular matrices A we get the A-inner product on R”, i.e.,

(x,y) =x"ATAy

with

IX[la = V/(x,x) = VXTATAX = || AX])2.
@ If YV =R™" (or C™") then we get the standard inner product for
matrices, i.e.,

(A,B) = trace(ATB) (or trace(A*B))
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Example

@ (x,y) = x"y (or x*y), the standard inner product for R” (C").
@ For nonsingular matrices A we get the A-inner product on R”, i.e.,

(x,y) =x"ATAy

with

Ix[la = /(x, %) = VXTATAX = ||Ax].

@ If YV =R™" (or C™") then we get the standard inner product for
matrices, i.e.,

(A,B) = trace(ATB) (or trace(A*B))

IA| = /(A Ay = /trace(ATA)

4
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Example

@ (x,y) = x"y (or x*y), the standard inner product for R” (C").
@ For nonsingular matrices A we get the A-inner product on R”, i.e.,

(x,y) =x"ATAy

with

IX[la = V/(x,x) = VXTATAX = || AX])2.
@ If YV =R™" (or C™") then we get the standard inner product for

matrices, i.e.,

(A,B) = trace(ATB) (or trace(A*B))
with

IAll = /(A,A) = \/trace(ATA) = || Al .

4
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Inner Product Spaces

Remark

In the infinite-dimensional setting we have, e.g., for f, g continuous
functions on (a, b)
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Inner Product Spaces

Remark

In the infinite-dimensional setting we have, e.g., for f, g continuous
functions on (a, b)

b
(f.g) = / f()g(t)dt
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Inner Product Spaces

Remark

In the infinite-dimensional setting we have, e.g., for f, g continuous
functions on (a, b)

b
(f.g) = / f()g(t)dt

b 1/2
17 = <f,f>=</a (f(t))zdt> .

with
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Parallelogram identity

In any inner product space the so-called parallelogram identity holds,
ie.,

I+ yI2 + 1 — y112 = 2 (X1 + 1y?) @
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Parallelogram identity

In any inner product space the so-called parallelogram identity holds,
i.e.,

I+ yI2 + 1 — y112 = 2 (X1 + 1y?) @

This is true since

1 + yI2 + | x - yII?
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Parallelogram identity

In any inner product space the so-called parallelogram identity holds,
i.e.,

I+ yI2 + 1 — y112 = 2 (X1 + 1y?) @

This is true since

X+ Y12+ x =yl = (X +y,x+y) +(x-y.x~-y)
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Parallelogram identity

In any inner product space the so-called parallelogram identity holds,
i.e.,

I+ yI2 + 1x = 1P = 2 (X1 + 1y1?) @)
This is true since
IX+y[P+Ix—yllP=(X+y.X+y)+(X—y.Xx—y)

+
= (6X) + (X Y) +{y, X) + (¥, ¥)
(X, X) = (X, y) = (Y. X) +{y, )
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Parallelogram identity

In any inner product space the so-called parallelogram identity holds,
i.e.,

I+ yI2 + 1x = 1P = 2 (X1 + 1y1?) @)
This is true since
IX+y[P+Ix—yllP=(X+y.X+y)+(X—y.Xx—y)

= XX+ XY+ X)+ ¥,y
+<X,X>—<,>—< 7> <y7y>

=2(x,X) +2(y,y)
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Parallelogram identity

In any inner product space the so-called parallelogram identity holds,
i.e.,

I+ yI2 + 1 — y112 = 2 (X1 + 1y?) @

This is true since

X+ Y12+ x =yl = (X +y,x+y) +(x-y.x~-y)
= XX+ XY+ X)+ ¥,y
+<X,X>—< 24 >_< Y, > <y7y>

=2(x,x) +2(y,y) =2 (HXHQ - Hy”z) '
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Polarization identity

The following theorem shows that we

@ not only get a norm from an inner product (i.e., every Hilbert
space is a Banach space),
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Polarization identity

The following theorem shows that we
@ not only get a norm from an inner product (i.e., every Hilbert
space is a Banach space),

@ but — if the parallelogram identity holds — then we can get an
inner product from a norm (i.e., a Banach space becomes a
Hilbert space).
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Polarization identity

The following theorem shows that we

@ not only get a norm from an inner product (i.e., every Hilbert
space is a Banach space),

@ but — if the parallelogram identity holds — then we can get an
inner product from a norm (i.e., a Banach space becomes a
Hilbert space).

Theorem

LetV be a real vector space with norm || - ||. If the parallelogram
identity (2) holds then

x.y) = 7 (Ix+ 12~ lx~ yIP) ©

is an inner product on V.
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Inner Product Spaces

Proof

We need to show that all four properties of a general inner product
hold.
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Inner Product Spaces

Proof

We need to show that all four properties of a general inner product
hold.

@ Nonnegativity:

(X, %)
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Inner Product Spaces

Proof

We need to show that all four properties of a general inner product
hold.

@ Nonnegativity:

(x,%) = 7 (IIx+x|? = ||x - x]?)

PN
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Inner Product Spaces

Proof

We need to show that all four properties of a general inner product
hold.

@ Nonnegativity:

1
(11 + 12 = 1x = xI2) = Zl|2x]?

PN

<X,X>:
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Inner Product Spaces

Proof

We need to show that all four properties of a general inner product
hold.

@ Nonnegativity:

1
(11 + 12 = l1x = x|2) = Z 2] = |x||? > 0.

PN

<X,X>:
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Inner Product Spaces

Proof

We need to show that all four properties of a general inner product
hold.

@ Nonnegativity:

1

1
2 2 2 2
(%, x) = 7 (IIx+ X1 = [1x = x|) = 2)12x| = |x|}? > 0

Moreover, (x, x) > 0 if and only if x = 0 since (x, x) = || x||2.
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Inner Product Spaces

Proof

We need to show that all four properties of a general inner product
hold.

@ Nonnegativity:

1

1
2 2 2 2
(%, x) = 7 (IIx+ X1 = [1x = x|) = 2)12x| = |x|}? > 0

Moreover, (x, x) > 0 if and only if x = 0 since (x, x) = || x||2.
© Symmetry:
X, y) =y, %)
is clear since ||x — y|| = ||y — x||-
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Inner Product Spaces

Proof (cont.)
© Additivity: The parallelogram identity implies

1
Ix+ v+ lx+ 22 = 5 (Il +y+x+ 22+ lly - 22). (@)
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Inner Product Spaces

Proof (cont.)
© Additivity: The parallelogram identity implies

1

Ix+yIP+lx+ 22 = (Ix+y+x+22+ly-2IP) . @)

N

and

1
Ix = yIP+lIx =21 = 5 (Ix -y +x = 2|2+ |z—yI?) . ()
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Inner Product Spaces

Proof (cont.)
© Additivity: The parallelogram identity implies

1
Ix+ v+ lx+ 22 = 5 (Il +y+x+ 22+ lly - 22). (@)

and

1
Ix = yIP+lIx =21 = 5 (Ix -y +x = 2|2+ |z—yI?) . ()

Subtracting (5) from (4) we get

2
1+ yIIZ = lIx = yl2+]x + 2| — |Ix — 2|

1
=5 (l2x+y+2|2—|2x -y —2|?).

—
(22)
~
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Inner Product Spaces

Proof (cont.)
The specific form of the polarized inner product implies

1
(x,y) + (x,2) = 7 (X +y|2 =[x = y|? + |+ 2|2 - | x - 2I?)
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Inner Product Spaces

Proof (cont.)
The specific form of the polarized inner product implies

(k,y) +0,2) = 7 (I -+ Y12 = = Y2+ I+ 212 = |1x - 2]°)

oo|—-l>|

2 (l2x+y+ 27 - ||2x - y - z?)
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Inner Product Spaces

Proof (cont.)

The specific form of the polarized inner product implies

(X, y) +(x,2) =

—

N = oo|--l>|

2
(I -+ Y12 = 1= yI2 + o+ 212 = |x - 2]F)

(MX+y+ﬂF |2x — y - z|?)

_Hx_

(

y+z
2

yt+z
2

)

fasshauer@iit.edu

MATH 532

46


http://math.iit.edu/~fass

Inner Product Spaces

Proof (cont.)
The specific form of the polarized inner product implies

1
(x,y) + (x,2) = 7 (X +y|2 =[x = y|? + |+ 2|2 - | x - 2I?)

1
25 (l2x+y+21? — |2x -y - 2|?)

—

1 y+2z 2 y+2z 2
S (B2
polarizzation 2<X, y—21—2>.
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Inner Product Spaces

Proof (cont.)
The specific form of the polarized inner product implies

1
(x,y) + (x,2) = 7 (X +y|2 =[x = y|? + |+ 2|2 - | x - 2I?)

—

:f<MX+y+ﬂF l2x — y - 2|?)

1 y+2z y+z 2
=2 ( X+ HX 2 )
polari:zation 2(x, y+ Z>.
2
Setting z =0 in (7) yields
(x,y) = 2(x,2)

since (x,z) = 0.
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Inner Product Spaces

Proof (cont.)
To summarize, we have

+Zz
() + (x,2) = 2(x, L25). 7)
and y
(x.y) =2(x.3) ®)


http://math.iit.edu/~fass

Inner Product Spaces

Proof (cont.)
To summarize, we have

_V—i-Z>
5 /)

(X,y>+<X,Z>:2<X, (7)

and y
(x.y) = 2(x,3). ®)

Since (8) is true for any y € V we can, in particular, set y = y + z so

that we have
y+z

2>'

(x.y +2) = 2(x,
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Inner Product Spaces

Proof (cont.)
To summarize, we have

_V—i-Z>
5 /)

(X, y) + (x,2) = 2(x,

and

x,y) =2(x,%). (8)

2
Since (8) is true for any y € V we can, in particular, set y = y + z so

that we have
y+z

2 )
This, however, is the right-hand side of (7) so that we end up with

(x.y +2) = 2(x,

X.y+2z)=xy)+x2),

as desired.

(7)
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Inner Product Spaces

Proof (cont.)

©@ Scalar multiplication:
To show (x, ay) = a(x, y) for integer o« we can just repeatedly
apply the additivity property just proved.

fasshauer@iit.edu MATH 532

48


http://math.iit.edu/~fass

Inner Product Spaces

Proof (cont.)

©@ Scalar multiplication:
To show (x, ay) = a(x, y) for integer o« we can just repeatedly
apply the additivity property just proved.

From this we can get the property for rational « as follows.
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Inner Product Spaces

Proof (cont.)

©@ Scalar multiplication:
To show (x, ay) = a(x, y) for integer o« we can just repeatedly
apply the additivity property just proved.

From this we can get the property for rational « as follows.
We let o = 2 with integer 3,y # 0 so that

By(X,y) = (vX, By) = 7*(x, g}’)-
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Inner Product Spaces

Proof (cont.)

©@ Scalar multiplication:
To show (x, ay) = a(x, y) for integer o« we can just repeatedly
apply the additivity property just proved.

From this we can get the property for rational « as follows.
We let o = 2 with integer 3,y # 0 so that

By(X,y) = (vX, By) = 7*(x, g}’)-

Dividing by 72 we get

_ i B
(x,y) = (x, ,yy>-

B
S
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Inner Product Spaces

Proof (cont.)

Finally, for real o we use the continuity of the norm function (see HW)
which implies that our inner product (-, -) also is continuous.
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Inner Product Spaces

Proof (cont.)
Finally, for real o we use the continuity of the norm function (see HW)
which implies that our inner product (-, -) also is continuous.

Now we take a sequence {a,} of rational numbers such that o, — «
for n — oo and have — by continuity

(X,apy) — (X,ay) asn— oo.
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Inner Product Spaces

Theorem
The only vector p-norm induced by an inner product is the 2-norm. J
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Inner Product Spaces

Theorem
The only vector p-norm induced by an inner product is the 2-norm.

Remark

Since many problems are more easily dealt with in inner product
spaces (since we then have lengths and angles, see next section) the
2-norm has a clear advantage over other p-norms.
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Inner Product Spaces

Proof
We know that the 2-norm does induce an inner product, i.e.,

Ixll2 = vVxTx.
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Inner Product Spaces

Proof
We know that the 2-norm does induce an inner product, i.e.,

Ixll2 = vVxTx.

Therefore we need to show that it doesn’t work for p # 2.
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Inner Product Spaces

Proof
We know that the 2-norm does induce an inner product, i.e.,

Ixll2 = vVxTx.

Therefore we need to show that it doesn’t work for p # 2.
We do this by showing that the parallelogram identity

X + I+ lIx = y |2 =2 (Ix]2 + 1y |?)

fails for p # 2.
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Inner Product Spaces

Proof
We know that the 2-norm does induce an inner product, i.e.,

|x]|2 = VXxTx.

Therefore we need to show that it doesn’t work for p # 2.
We do this by showing that the parallelogram identity

X + I+ lIx = y |2 =2 (Ix]2 + 1y |?)
fails for p # 2.

We will do this for 1 < p < oo. You will work out the case p = >« in a
HW problem.
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Inner Product Spaces

Proof (cont.)
All we need is a counterexample, so we take x = e1 and y = e» so that

2 2
||X+}/||p = |les + e2||p
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Inner Product Spaces

Proof (cont.)
All we need is a counterexample, so we take x = e1 and y = e» so that

n 2/p
Ix+yl5=ler+ez5= <Z [e1 + 92]i|p)
i—
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Inner Product Spaces

Proof (cont.)
All we need is a counterexample, so we take x = e1 and y = e» so that

n 2/p
Ix+yl5=ler+ez5= <Z|[e1 +e2],.|P) = 22/P
=1
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Inner Product Spaces

Proof (cont.)
All we need is a counterexample, so we take x = e1 and y = e» so that

n 2/p
HX+Hﬁ=H&+eﬂS=<§]pr+@mﬂ = 22/P
=1

and, similarly
Ix = yIZ = lles — ez])3 = 2%/P.
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Inner Product Spaces

Proof (cont.)
All we need is a counterexample, so we take x = e1 and y = e» so that

n 2/p
HX+Hﬁ=H&+eﬂS=<§]pr+@mﬂ = 22/P
=1

and, similarly
Ix = yIZ = lles — ez])3 = 2%/P.

Together, the left-hand side of the parallelogram identity is
2 (22/P) — 22/p+1.
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Inner Product Spaces

Proof (cont.)
For the right-hand side of the parallelogram identity we calculate

2 2
1x1[p = llells
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Inner Product Spaces

Proof (cont.)
For the right-hand side of the parallelogram identity we calculate

2 2
1x1[p = lleqllp =1

fasshauer@iit.edu MATH 532

53


http://math.iit.edu/~fass

Inner Product Spaces

Proof (cont.)
For the right-hand side of the parallelogram identity we calculate

2 2 2 2
1xl[p = llesllp =1 = llezllp = [yl

so that the right-hand side comes out to
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Inner Product Spaces

Proof (cont.)
For the right-hand side of the parallelogram identity we calculate

2 2 2 2
1xl[p = llesllp =1 = llezllp = [yl

so that the right-hand side comes out to 4.
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Inner Product Spaces

Proof (cont.)
For the right-hand side of the parallelogram identity we calculate

2 2 2 2
1xl[p = llesllp =1 = llezllp = [yl

so that the right-hand side comes out to 4.
Finally, we have

22/p+1 _ 4
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Inner Product Spaces

Proof (cont.)
For the right-hand side of the parallelogram identity we calculate

2 2 2 2
1xl[p = llesllp =1 = llezllp = [yl

so that the right-hand side comes out to 4.
Finally, we have

22/ptl _ g %—1-1:2 — '%:10”7:2-
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Outline

e Orthogonal Vectors
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Orthogonal Vectors

We will now work in a general inner product space V with induced
norm
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Orthogonal Vectors

We will now work in a general inner product space V with induced
norm

Definition
Two vectors x, y € V are called orthogonal if

(x,y)=0.

We often use the notation x L y.
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In the HW you will prove the Pythagorean theorem for the 2-norm and
standard inner product x7y, i.e.,
x|+ yl?=x-y|> < xTy=o0.
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In the HW you will prove the Pythagorean theorem for the 2-norm and
standard inner product x7y, i.e.,

Ix[[Z+lyl* = [Ix —y|? <= xTy=0.

Moreover, the law of cosines states

Ix — yI? = x| + llyl® — 2| x]||ly|| cos .
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In the HW you will prove the Pythagorean theorem for the 2-norm and
standard inner product x7y, i.e.,

Ix[[Z+lyl* = [Ix —y|? <= xTy=0.

Moreover, the law of cosines states

Ix — yI? = x| + llyl® — 2| x]||ly|| cos .

so that

HX”2 + HyH2 —|lx - _VH2 Pythagoras ﬂ
2[|x[l{ly 2)x[[|y]

cosf =
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In the HW you will prove the Pythagorean theorem for the 2-norm and
standard inner product x7y, i.e.,

Ix[[Z+lyl* = [Ix —y|? <= xTy=0.

Moreover, the law of cosines states

Ix — yI? = x| + llyl® — 2| x]||ly|| cos .

so that

HxH2 + Hsz — ||x - _VHZ Pythagoras 2XTy

cosf = E i
2||xllyl 2||x]llyl

This motivates our general definition of angles:
Definition

Let x,y € V. The angle between x and y is defined via

cosf = xy) 6 € [0,n].

Tyl
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Orthonormal sets

Definition
A set {uq,uUs,...,uy} CVis called orthonormal if

(uj, u;) = 6; (Kronecker delta).
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Orthonormal sets

Definition
A set {uq,uUs,...,uy} CVis called orthonormal if

(uj, u;) = 6; (Kronecker delta).

Theorem
Every orthonormal set is linearly independent.
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Orthonormal sets

Definition
A set {uq,uUs,...,uy} CVis called orthonormal if

(uj, u;) = 6; (Kronecker delta).

Theorem
Every orthonormal set is linearly independent.

Corollary

Every orthonormal set of n vectors from an n-dimensional vector
spaceV is an orthonormal basis forV .

fasshauer@iit.edu MATH 532 57


http://math.iit.edu/~fass

Orthogonal Vectors

Proof (of the theorem)
We want to show linear independence, i.e., that

n
ZOJ/UJ'ZO - a,-:O,j:1,...

j=1
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Orthogonal Vectors

Proof (of the theorem)
We want to show linear independence, i.e., that

n
ZOJ/UJ'ZO — ajzo,j:1,...,n

=1

To see this is true we take the inner product with u;:

ulazajuj (u;,0)

O
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Orthogonal Vectors

Proof (of the theorem)
We want to show linear independence, i.e., that

n
ZOJ/UJ'ZO — ajzo,j:1,...,n

=1

To see this is true we take the inner product with u;:

ulazajuj (u;,0)

n

<~ Zaj<u,-, Llj> =0 << q;=0.

—
J =5;

0
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Orthogonal Vectors

Proof (of the theorem)
We want to show linear independence, i.e., that

n
ZOJ/UJ'ZO — ajzo,j:1,...,n
Jj=1

To see this is true we take the inner product with u;:

unza/u/ (u;,0)

n
<~ Z a,-(u,-, Llj> =0 <— «o;=0.
—
J =5;
Since i was arbitrary this holds for all i = 1, ..., n, and we have linear

independence. [
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Orthogonal Vectors

Example
The standard orthonormal basis of R” is given by

{e1a327---7en}-
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Orthogonal Vectors

Example
The standard orthonormal basis of R” is given by

{61,92,...,9,7}.

Using this basis we can express any x € R" as

X = X161 + Xo0€2 + ... + Xp€n,

we get a coordinate expansion of x.
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Orthogonal Vectors

In fact, any other orthonormal basis provides just as simple a
representation of x;
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Orthogonal Vectors

In fact, any other orthonormal basis provides just as simple a
representation of x;

Consider the orthonormal basis B = {u4, U», ..., u,} and assume
n
X = Z ajUj
j=1

for some appropriate scalars a;.
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Orthogonal Vectors

In fact, any other orthonormal basis provides just as simple a
representation of x;

Consider the orthonormal basis B = {u4, U», ..., u,} and assume
n
X = Z ajUj
j=1

for some appropriate scalars a;.
To find these expansion coefficients o; we take the inner product with

uj, i.e.,

<U,’,X>
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Orthogonal Vectors

In fact, any other orthonormal basis provides just as simple a
representation of x;

Consider the orthonormal basis B = {u1, us, ..., u,} and assume
n
X = Z ol
j=1

for some appropriate scalars a;.
To find these expansion coefficients o; we take the inner product with

uj, i.e.,
(uj, x Za, uj, u,
l

ij
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Orthogonal Vectors

In fact, any other orthonormal basis provides just as simple a
representation of x;

Consider the orthonormal basis B = {u1, us, ..., u,} and assume
n
X = Z ol
j=1

for some appropriate scalars a;.
To find these expansion coefficients o; we take the inner product with

uj, i.e.,

(uj, x Za, u,,u, = qj.
l

ij
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Orthogonal Vectors

We therefore have proved

Theorem

Let{uy,uy, ..., u,} be an orthonormal basis for an inner product
space V. Then any x €V can be written as

n
x=> (x upu;.
=

This is a (finite) Fourier expansion with Fourier coefficients (X, u;).
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Orthogonal Vectors

Remark
The classical (infinite-dimensional) Fourier series for continuous
functions on (—m, ) uses the orthogonal (but not yet orthonormal)

basis
{1,sint,cost,sin2t,cos2t,...,}

and the inner product

™

(f,g)= [ f(t)g(t)dt.

—T
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Orthogonal Vectors

Example
Consider the basis

:
B{U1,Uz,U3}{<0) (
1

0
1
0

)

1
0
1

)}
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Orthogonal Vectors

Example
Consider the basis

1 0 1
B{U1,U2,U3}{<O) 5 (1) ,(0
1) \o/ \-1

It is clear by inspection that B is an orthogonal subset of R3, i.e., using
the Euclidean inner product, we have u] u; =0, i,j=1,2,3, i #j.

)}
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Orthogonal Vectors

Example
Consider the basis

e () (3)

It is clear by inspection that B is an orthogonal subset of R3, i.e., using
the Euclidean inner product, we have u] u; =0, i,j=1,2,3, i #j.

We can obtain an orthonormal basis by normalizing the vectors, i.e., by
computing v; = & ” i=1,2,3.
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Orthogonal Vectors

Example
Consider the basis

e () (3)

It is clear by inspection that B is an orthogonal subset of R3, i.e., using
the Euclidean inner product, we have u] u; =0, i,j=1,2,3, i #j.

We can obtain an orthonormal basis by normalizing the vectors, i.e., by
computing v; = & ” i=1,2,8.

This yields

1 1 0 1 1
V1:$ (1) , Vo= ;l) 5 V:},:\?2 _01 c
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Orthogonal Vectors

Example (cont.)

The Fourier expansion of x = (1 2 3)T is given by
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Orthogonal Vectors

Example (cont.)

The Fourier expansion of x = (1 2 3)T is given by

=3 (xv)v

i=1
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Orthogonal Vectors

Example (cont.)

The Fourier expansion of x = (1 2 3)T is given by

X = i (xTv,-) V;
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Orthogonal Vectors

Example (cont.)

The Fourier expansion of x = (1 2 3)T is given by
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Gram-Schmidt Orthogonalization & QR Factorization

Outline

e Gram—Schmidt Orthogonalization & QR Factorization
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Gram-Schmidt Orthogonalization & QR Factorization

We want to convert an arbitrary basis {x1, X2,...,x,} of Vto an
orthonormal basis {uq, Uy, ..., Un}.
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Gram-Schmidt Orthogonalization & QR Factorization

We want to convert an arbitrary basis {x1, X2,...,x,} of Vto an

orthonormal basis {uq, Uy, ..., Un}.
Idea: construct uq, uo, ..., U, successively so that
{uq,uUs, ..., ux} is an ON basis for span{x, X2, ..., Xk},
k=1,...,n.
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Gram-Schmidt Orthogonalization & QR Factorization

Construction
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Gram-Schmidt Orthogonalization & QR Factorization

Construction

k=1:
X1

up=—-.
[1x4]]

k = 2: Consider the projection of x» onto uy, i.e.,

(uq, x2)uy.
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Gram-Schmidt Orthogonalization & QR Factorization

Construction

k=1:
X1

Il

k = 2: Consider the projection of x» onto uy, i.e.,

u,

(uq, x2)uy.
Then
Vo = X — (U1, X2) U4
and . Vo
> = e
[vall
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Gram-Schmidt Orthogonalization & QR Factorization

In general, consider {uy, ..., ux} as a given ON basis for
span{X1,...,Xx}.
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Gram-Schmidt Orthogonalization & QR Factorization

In general, consider {uy, ..., ux} as a given ON basis for
span{X1,...,Xx}.

Use the Fourier expansion to express Xy 1 with respect to
{uq, .. Uk}
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Gram-Schmidt Orthogonalization & QR Factorization

In general, consider {uy, ..., ux} as a given ON basis for
span{X1,...,Xx}.

Use the Fourier expansion to express Xy 1 with respect to
{ur, ... Uk}

k+1

Xk1 = Z<Ui,xk+1>ui
i—1
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Gram-Schmidt Orthogonalization & QR Factorization

In general, consider {uy, ..., ux} as a given ON basis for
span{X1,...,Xx}.

Use the Fourier expansion to express Xy 1 with respect to
{ur, ... Uk}

k1
Xk1 = Z<Ui,xk+1>ui
i—1
K
= Xkpq = Z(Ui,xk+1>ui + (Ukt1, Xki1) Ukt
i—1
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Gram-Schmidt Orthogonalization & QR Factorization

In general, consider {uy, ..., ux} as a given ON basis for
span{X1,...,Xx}.

Use the Fourier expansion to express Xy 1 with respect to
{ur, ... Uk}

k+1
Xk1 = Z<Ui,xk+1>ui
i—1
K
= Xkpq = Z(Ui,xk+1>ui + (Ukt1, Xki1) Ukt
i—1

k
Xkt — D i1 (Ui X 1) Ui
(U1, Xp41)

= Uy q =
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Gram-Schmidt Orthogonalization & QR Factorization

In general, consider {uy, ..., ux} as a given ON basis for
span{X1,...,Xx}.

Use the Fourier expansion to express Xy 1 with respect to
{ur, ... Uk}

k+1
X1 = Y (Ui, Xpi1)Uj
i—1
K
= Xkpq = Z(Ui,xk+1>ui + (Ukt1, Xki1) Ukt
i—1
K
Xit = 2 (Uis X 1)Ui Vi

= Upq = =
* (U1, Xp41) (U1, Xkt1)
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Gram-Schmidt Orthogonalization & QR Factorization

In general, consider {uy, ..., ux} as a given ON basis for
span{X1,...,Xx}.

Use the Fourier expansion to express Xy 1 with respect to
{ur, ... Uk}

k+1
X1 = Y (Ui, Xpi1)Uj
i—1
K
= Xkpq = Z(Ui,xk+1>ui + (Ukt1, Xki1) Ukt
i—1
K
Xit = 2 (Uis X 1)Ui Vi

= Upq = =
* (U1, Xp41) (U1, Xkt1)

This vector, however is not yet normalized.
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Gram-Schmidt Orthogonalization & QR Factorization

We now want ||ux.1|| =1, i.e.,

7 7 B 1 _
( , ) = |Vkstll =
(Uks1, Xk1) (U1, Xkt1) |(Ukt1, Xk41)|
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Gram-Schmidt Orthogonalization & QR Factorization

We now want ||ux.1|| =1, i.e.,

Vi1 Vi1 . 1 —q
( : ) = Vil =
(Uki1, Xki1) (Uks1s Xki1) | (U1, Xk1)|
K
— Vil = Xkt = Ui X)) Uil = [(Uks1, Xy)].
P
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Gram-Schmidt Orthogonalization & QR Factorization

We now want ||ux.1|| =1, i.e.,

Vit Vit . 1 —q
( ; ) = [Vt =
(Ukt1s Xi1) " (U1, Xie1) " [(Uk1, Xieg1)|
K
— Vil = Xkt = Ui X)) Uil = [(Uks1, Xy)].
i=
Therefore
k
(Ukt, Xpa1) = | X1 = (Ui, Xiqr ).
i=
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Gram-Schmidt Orthogonalization & QR Factorization

We now want ||ux.1|| =1, i.e.,

J T LT L —
Ukt Xkp1) (Ui, Xe1) ™ (Ui, Xir)|
k
— Vil = Xkt = Ui X)) Uil = [(Uks1, Xy)].
i=
Therefore
K
(U1, Xigt) = £ Xpqr = Y (U7 Xer )|
i=1

Since the factor +£1 does not change the span, nor orthogonality, nor
normalization we can pick the positive sign.
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Gram-Schmidt Orthogonalization & QR Factorization

Gram-Schmidt algorithm

Summarizing, we have

up = X
1=
x4
k—1
Vi =Xk — > (U, XU, Kk=2,....n,
i=1
Vk
U= —.
[Vl
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Gram-Schmidt Orthogonalization & QR Factorization

Using matrix notation to describe Gram—-Schmidt

We will assume V C R™ (but this also works in the complex case).

Let
0

Ui =|: e R"”

andfork =2,3,...,nlet

Ue=(uy Uz - Uj_q) e RMK
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Gram-Schmidt Orthogonalization & QR Factorization

Then
U;’—Xk
T
U, Xy
2
Ul xy = )
S

Cq s
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Gram-Schmidt Orthogonalization & QR Factorization

Then
U;I—Xk
T U;—Xk
Uka EE
T
Cq s
and
T
u1Txk
U, Xy
T 2
UkUka = (U1 u, --- Uk,1) :
T
L L
k—1 k—1
T T
= ui(ulx) =D (Ul xp)u;.
i=1 i=1
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Gram-Schmidt Orthogonalization & QR Factorization

Now, Gram—-Schmidt says

k—1

Vi =Xk — (Ul xp)u;
i=
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Gram-Schmidt Orthogonalization & QR Factorization

Now, Gram—-Schmidt says

k—1

Vi =Xk — > _ (U] x)uj = X — UU[ Xk
e
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Gram-Schmidt Orthogonalization & QR Factorization

Now, Gram—-Schmidt says

k-1

Vi = Xk — Z(u,-Txk)u,- = xx — UU] x4
i—1

- (l—ukUkT)xk, k=1,2,....n,

1 is also covered by the special definition of Uj.

where the case k
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Gram-Schmidt Orthogonalization & QR Factorization

Now, Gram—-Schmidt says

k1
Vi =Xk — > _ (U] x)uj = X — UU[ Xk
i=1

_ <|_ukuk7)xk, k=1,2,....n,

where the case k = 1 is also covered by the special definition of Uy.

Remark

Uk U[ is a projection matrix, and | — Uk U[ is a complementary
projection. We will cover these later.
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Gram-Schmidt Orthogonalization & QR Factorization

QR Factorization (via Gram—Schmidt)

Consider an m x n matrix A with rank(A) = n.
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Gram-Schmidt Orthogonalization & QR Factorization

QR Factorization (via Gram—Schmidt)

Consider an m x n matrix A with rank(A) = n.

We want to convert the set of columns of A, {ay,ao,...,a,} to an ON
basis {q1 ¢ PYRR qn} of R(A)
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Gram-Schmidt Orthogonalization & QR Factorization

QR Factorization (via Gram—Schmidt)

Consider an m x n matrix A with rank(A) = n.

We want to convert the set of columns of A, {ay,ao,...,a,} to an ON
basis {q1 ¢ PYRR qn} of R(A)

From our discussion of Gram—Schmidt we know

g = o
NNk
k—1
Vk:ak_z<qiaak>qi7 k:2""7n’
i=1
Vik
Q= .
vl

fasshauer@iit.edu MATH 532 74


http://math.iit.edu/~fass

Gram-Schmidt Orthogonalization & QR Factorization

We now rewrite as follows:

a; = |la]|q;
ax=(qq.a)q + ...+ (Qx_1.aK)qx_1 + |Vkllqx, k=2,...,n.
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Gram-Schmidt Orthogonalization & QR Factorization

We now rewrite as follows:

a, = |a|q,
ax=(qq,a)q1 + ...+ (Qx_1,aK)qx_1 + IVkllgx, k=2,...,n.

We also introduce the new notation

iy =la1l, rmk=Ilvkll, k=2,...,n.
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Gram-Schmidt Orthogonalization & QR Factorization

We now rewrite as follows:

ar = |lai||q;
ax =(qy,a)qy + ... +(Q_1,8)qQk—1 + |VkllGx, k=2,...,n

We also introduce the new notation

iy =la1l, rmk=Ilvkll, k=2,...,n.

Then
A=(a; a - apn)
ri (qy,a) - (qy,an)
rop -+ (qa,an)
Z(Ch q. - Qn) . )
=< O I'nn
—R

and we have the reduced QR factorization of A.
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Gram-Schmidt Orthogonalization & QR Factorization

Remark
@ The matrix Q is m x n with orthonormal columns

@ The matrix R is n x n upper triangular with positive diagonal
entries.

@ The reduced QR factorization is unique (see HW).
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Gram-Schmidt Orthogonalization & QR Factorization

Example

Find the QR factorization of the matrix A =

—

—

o =N

_ a O
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Gram-Schmidt Orthogonalization & QR Factorization

Example

Find the QR factorization of the matrix A =

—_ O —
o =N
—_ a O

1

ai 1
g =r=—12= 0], rni=al=v2
P Tl V2 il
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Gram-Schmidt Orthogonalization & QR Factorization

Example

Find the QR factorization of the matrix A =

—_ O —

2
1
0

0
1
1

1
a 1
Q1—1—(0), = || =v2

lai] V2 |
ngag—(qra2>q1, Chaz—\/——\/——ﬁz
MATH 532 77
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Gram-Schmidt Orthogonalization & QR Factorization

Example

1
ai 1
= L= (0], ni=lal=v2
T = la \@(1)

2
vZ:az—(qTaz)q1, qlaz=—==v2=rp

2 1 1
va (1 ol
)30 (1) e

NI
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Gram-Schmidt Orthogonalization & QR Factorization

Example

1
ai 1
== o], nr=lail=v2
T = la \@(1)

2
vZ:az—(qTaz)q1, qlaz=—==v2=rp

2 1 1
va (1 e
)3 (3) e
g 1
2= v, =B\

NI
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Gram-Schmidt Orthogonalization & QR Factorization

Example (cont.)
vs=as— (qfas) q, - (afas) q,

1
T T
qias = —= = 3, g:a3=0=rx3

\V)

V3 1 —L
=3 —-— |2
%= Tvsl = V6 |
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Gram-Schmidt Orthogonalization & QR Factorization

Example (cont.)
Together we have

41 1 1
a=1% % ¢ R=f0o v8 o0
B —FE & 0 0 V6 J
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Gram-Schmidt Orthogonalization & QR Factorization

Solving linear systems with the QR factorization

Recall the use of the LU factorization to solve Ax = b.
Now, A = QR implies

Ax=b <+—= QRx=0b.

In the special case of a nonsingular n x n matrix A the matrix Q is also
n x n with ON columns so that

Q'=Q" (sinceQ’Q=1)

and
QRx=b <= Rx=Q'b.
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Gram-Schmidt Orthogonalization & QR Factorization

Therefore we solve Ax = b by the following steps:
@ Compute A = QR.
@ Compute y = Q7b.
© Solve the upper triangular system Rx = y.

Remark
This procedure is comparable to the three-step LU solution procedure. J
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Gram-Schmidt Orthogonalization & QR Factorization

The real advantage of the QR factorization lies in the solution of least
squares problems.
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Gram-Schmidt Orthogonalization & QR Factorization

The real advantage of the QR factorization lies in the solution of least
squares problems.
Consider Ax = b with A € R™" and rank(A) = n
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Gram-Schmidt Orthogonalization & QR Factorization

The real advantage of the QR factorization lies in the solution of least
squares problems.

Consider Ax = b with A € R™*" and rank(A) = n (so that a unique
least squares solution exists).
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The real advantage of the QR factorization lies in the solution of least
squares problems.
Consider Ax = b with A € R™" and rank(A) = n (so that a unique
least squares solution exists).
We know that the least squares solution is given by the solution of the
normal equations

ATAx = ATb.
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The real advantage of the QR factorization lies in the solution of least
squares problems.
Consider Ax = b with A € R™*" and rank(A) = n (so that a unique
least squares solution exists).
We know that the least squares solution is given by the solution of the
normal equations

ATAx = ATb.
Using the QR factorization of A this becomes

(QR)"QRx = (QR)"b
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The real advantage of the QR factorization lies in the solution of least
squares problems.
Consider Ax = b with A € R™*" and rank(A) = n (so that a unique
least squares solution exists).
We know that the least squares solution is given by the solution of the
normal equations

ATAx = ATb.
Using the QR factorization of A this becomes

(QR)"QRx = (QR)"b

<~ R'Q'QRx=R’Q’b
=
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The real advantage of the QR factorization lies in the solution of least
squares problems.
Consider Ax = b with A € R™*" and rank(A) = n (so that a unique
least squares solution exists).
We know that the least squares solution is given by the solution of the
normal equations

ATAx = ATb.
Using the QR factorization of A this becomes

(QR)"QRx = (QR)"b

R"Q"QRx =R'Q"b
=

R’Rx = RTQ7b.

!

!
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The real advantage of the QR factorization lies in the solution of least
squares problems.

Consider Ax = b with A € R™" and rank(A) = n (so that a unique
least squares solution exists).

We know that the least squares solution is given by the solution of the

normal equations
ATAx = ATb.
Using the QR factorization of A this becomes
(QR)"QRx = (QR)"b
~— R’Q'QRx=R’Q"b
=l
<~ R’Rx=R7Q"b.
Now R is upper triangular with positive diagonal and therefore
invertible.
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The real advantage of the QR factorization lies in the solution of least
squares problems.
Consider Ax = b with A € R™" and rank(A) = n (so that a unique
least squares solution exists).
We know that the least squares solution is given by the solution of the
normal equations
ATAx = ATb.
Using the QR factorization of A this becomes
(QR)"QRx = (QR)"b
<~ RTQ'QRx=R’Q’b
=l
<~ R’Rx=R7Q"b.
Now R is upper triangular with positive diagonal and therefore
invertible. Therefore solving the normal equations corresponds to
solving (cf. the previous discussion)

T
Rx =Q'b.
fasshauer@iit.edu MATH 532 82
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Gram-Schmidt Orthogonalization & QR Factorization

Remark

This is the same as the QR factorization applied to a square and
consistent system Ax = b.
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Gram-Schmidt Orthogonalization & QR Factorization

Remark

This is the same as the QR factorization applied to a square and
consistent system Ax = b.

Summary
The QR factorization provides a simple and efficient way to solve least
squares problems.

The ill-conditioned matrix ATA is never computed.

If it is required, then it can be computed from R as R"R (in fact, this is
the Cholesky factorization) of ATA.
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Gram-Schmidt Orthogonalization & QR Factorization

Modified Gram—-Schmidt

There is still a problem with the QR factorization via Gram—Schmidt:

fasshauer@iit.edu MATH 532 84


http://math.iit.edu/~fass

Gram-Schmidt Orthogonalization & QR Factorization

Modified Gram—-Schmidt

There is still a problem with the QR factorization via Gram—Schmidt:

it is not numerically stable (see HW).
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Gram-Schmidt Orthogonalization & QR Factorization

Modified Gram—-Schmidt

There is still a problem with the QR factorization via Gram—Schmidt:
it is not numerically stable (see HW).

A better — but still not ideal — approach is provided by the modified
Gram—-Schmidt algorithm.
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Gram-Schmidt Orthogonalization & QR Factorization

Modified Gram—-Schmidt

There is still a problem with the QR factorization via Gram—Schmidt:
it is not numerically stable (see HW).

A better — but still not ideal — approach is provided by the modified
Gram—-Schmidt algorithm.

Idea: rearrange the order of calculation, i.e., write the projection
matrices

k—1
T T
UkUk = Z U,'u,-
i=1

as a sum of rank-1 projections.
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Gram-Schmidt Orthogonalization & QR Factorization

MGS Algorithm

. X g
k=1.u1<—|x—1”, U« x;, j=2,...,n
fork=2:n

Ek:I—uk,1u[_1
forj=k,....n
Uj<—EkUj
u
Uk%—k
[k

fasshauer@iit.edu MATH 532 85


http://math.iit.edu/~fass

Gram-Schmidt Orthogonalization & QR Factorization

Remark
@ The MGS algorithm is theoretically equivalent to the GS algorithm,
i.e., in exact arithmetic, but in practice it preserves orthogonality
better.
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Gram-Schmidt Orthogonalization & QR Factorization

Remark

@ The MGS algorithm is theoretically equivalent to the GS algorithm,
i.e., in exact arithmetic, but in practice it preserves orthogonality
better.

@ Most stable implementations of the QR factorization use
Householder reflections or Givens rotations (more later).
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Gram-Schmidt Orthogonalization & QR Factorization

Remark

@ The MGS algorithm is theoretically equivalent to the GS algorithm,
i.e., in exact arithmetic, but in practice it preserves orthogonality
better.

@ Most stable implementations of the QR factorization use
Householder reflections or Givens rotations (more later).

@ Householder reflections are also more efficient than MGS.

v
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Outline

e Unitary and Orthogonal Matrices
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Unitary and Orthogonal Matrices

Definition

A real (complex) n x n matrix is called orthogonal (unitary) if its
columns form an orthonormal basis for R (C").
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Unitary and Orthogonal Matrices

Definition

A real (complex) n x n matrix is called orthogonal (unitary) if its
columns form an orthonormal basis for R" (C").

Theorem
Let U be an orthogonal n x n matrix. Then
@ U has orthonormal rows.
Q uU'T=U".
Q ||Ux|2 = ||x]||2 for all x € R", i.e., U is an isometry.
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Unitary and Orthogonal Matrices

Definition
A real (complex) n x n matrix is called orthogonal (unitary) if its
columns form an orthonormal basis for R" (C").

Theorem
Let U be an orthogonal n x n matrix. Then
@ U has orthonormal rows.
Q uU'T=U".
Q ||Ux|2 = ||x]||2 for all x € R", i.e., U is an isometry.

Remark
Analogous properties for unitary matrices are formulated and proved in
[Mey00].

v
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Unitary and Orthogonal Matrices

Proof
@ By definition U = (uy --- up) has orthonormal columns, i.e.,
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Unitary and Orthogonal Matrices

Proof
@ By definition U = (uy

uj L u

u,) has orthonormal columns, i.e.,

—= uluj=g;
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Unitary and Orthogonal Matrices

Proof
@ By definition U = (uy --- up) has orthonormal columns, i.e.,

uilu <= U,-TUj = 0jj
— (UTU> =0
if
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Unitary and Orthogonal Matrices

Proof
@ By definition U = (uy --- up) has orthonormal columns, i.e.,

uilu <= U,-TUj = 0jj
— (UTU> =0
if

— UTu=1.
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Proof
@ By definition U = (uy --- up) has orthonormal columns, i.e.,

ui Luy <~ u,-Tuj:(S,-j
T — 5.
— (U U>ij_5’j

— Ulu=L

But UTU = I implies UT = U1,
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Unitary and Orthogonal Matrices

Proof
@ By definition U= (uy --- uy) has orthonormal columns, i.e.,

uLlu = ulu=g;
— (UTU>I_j = 5
— UTu=1L.
But UTU = I implies UT = U1,
@ Therefore the statement about orthonormal rows follows from

uu-'=uu’T =1.
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Unitary and Orthogonal Matrices

Proof (cont.)
© To show that U is an isometry we assume U is orthogonal.
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Unitary and Orthogonal Matrices

Proof (cont.)

© To show that U is an isometry we assume U is orthogonal. Then,

for any x € R"

IUx[3 = (Ux)" (Ux)
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Unitary and Orthogonal Matrices

Proof (cont.)
© To show that U is an isometry we assume U is orthogonal. Then,
forany x € R”
IUx|3 = (Ux)T (Ux)
=x"UTUx
=I
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Unitary and Orthogonal Matrices

Proof (cont.)

© To show that U is an isometry we assume U is orthogonal. Then,
forany x € R”

|Ux||3 = (Ux)"(Ux)
= x"U"ux
5
= ||x|3.
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Unitary and Orthogonal Matrices

Remark

The converse of (3) is also true, i.e., if ||Ux||2 = || X||2 for all x € R"
then U must be orthogonal.
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Unitary and Orthogonal Matrices

Remark

The converse of (3) is also true, i.e., if ||Ux||2 = || X||2 for all x € R"
then U must be orthogonal. Consider x = e;. Then

IVeil3 = u u;
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Unitary and Orthogonal Matrices

Remark

The converse of (3) is also true, i.e., if ||Ux||2 = || X||2 for all x € R"
then U must be orthogonal. Consider x = e;. Then

2 T, 3 2
[Uejl|5 = uj u; = |lejl|5 =1,

so the columns of U have norm 1.
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Unitary and Orthogonal Matrices

Remark

The converse of (3) is also true, i.e., if ||Ux||2 = || X||2 for all x € R"
then U must be orthogonal. Consider x = e;. Then

2 T, 3 2
[Uejl|5 = uj u; = |lejl|5 =1,

so the columns of U have norm 1.
Moreover, for x = e; + e; (i # j) we get

IU(e; + )13 = uf u;+ul uj+ ul u; + ul u;
—— ~—~—

=1 —1
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Unitary and Orthogonal Matrices

Remark

The converse of (3) is also true, i.e., if ||Ux||2 = || X||2 for all x € R"
then U must be orthogonal. Consider x = e;. Then

2 T, 3 2
[Uejl|5 = uj u; = |lejl|5 =1,

so the columns of U have norm 1.
Moreover, for x = e; + e; (i # j) we get

(3)
IU(e; + €)ll5 = uf uj+ul uj+ ufui+ ulu; = e+ g5 =2,
~—— ~——

=1 —1

so that u,-T u; = 0 for i # j and the columns of U are orthogonal.
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Unitary and Orthogonal Matrices

Example
@ The simplest orthogonal matrix is the identity matrix .
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Unitary and Orthogonal Matrices
Example

@ The simplest orthogonal matrix is the identity matrix .
@ Permutation matrices are orthogonal, e.g.,

100
P=(0 0 1
010

In fact, for permutation matrices we even have PT = P so that
PTP = P2 = |. Such matrices are called involutary (see pretest).
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Unitary and Orthogonal Matrices
Example

@ The simplest orthogonal matrix is the identity matrix .
@ Permutation matrices are orthogonal, e.g.,

100
P=10 0 1
010

In fact, for permutation matrices we even have PT = P so that
PTP = P2 = |. Such matrices are called involutary (see pretest).

@ An orthogonal matrix can be viewed as a unitary matrix, but a
unitary matrix may not be orthogonal. For example for

()

we have A*A = AA* = |, but ATA # | £ AAT.
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Elementary Orthogonal Projectors

Definition
A matrix Q of the form
Q=Il-uu’, ueR" |ul2=1,

is called an elementary orthogonal projection.
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Elementary Orthogonal Projectors

Definition
A matrix Q of the form

Q=Il-uu’, ueR" |ul2=1,

is called an elementary orthogonal projection.

Remark
Note that Q is not an orthogonal matrix:

Q" =(I—uu")T
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Elementary Orthogonal Projectors

Definition
A matrix Q of the form
Q=Il-uu’, ueR" |ul2=1,

is called an elementary orthogonal projection.

Remark
Note that Q is not an orthogonal matrix:

Q" =(-uu"" =1-uu”
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Elementary Orthogonal Projectors

Definition
A matrix Q of the form
Q=Il-uu’, ueR" |ul2=1,

is called an elementary orthogonal projection.

Remark
Note that Q is not an orthogonal matrix:

Q" =(-uuH" =l-wu" =Q.
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Unitary and Orthogonal Matrices

All projectors are idempotent, i.e., Q2 = Q:
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Unitary and Orthogonal Matrices

All projectors are idempotent, i.e., Q2 = Q:

Q’Q
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Unitary and Orthogonal Matrices

All projectors are idempotent, i.e., @2 = Q:

QTQ abgve Q2

fasshauer@iit.edu MATH 532 94


http://math.iit.edu/~fass

Unitary and Orthogonal Matrices

All projectors are idempotent, i.e., @2 = Q:

Q’Q*2° Q% = (I — uu")(1 - uu’)
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Unitary and Orthogonal Matrices

All projectors are idempotent, i.e., @2 = Q:

Q’Q*2° Q% = (I — uu")(1 - uu’)
=l-2uu” +uu'uu’
1
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Unitary and Orthogonal Matrices

All projectors are idempotent, i.e., @2 = Q:

Q’Q*2° Q% = (I — uu")(1 - uu’)
=l-2uu" +uu"uu’
e
= (I—uu')
=Q.
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Geometric interpretation

Consider
x=(1-Q)x+Qx

and observe that (I — Q)x L Qx: 'l

| Qx = (I - uul)x

fasshauer@iit.edu MATH 532 5


http://math.iit.edu/~fass

Geometric interpretation

Consider
x=(I-Q)x+Qx
and observe that (I — Q)x L Qx: —

(1—Q)x)"ax = x"(1-Q")ax

| Qx = (I - uul)x
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Geometric interpretation
Consider
=(-Q)x+Qx
and observe that (I — Q)x L Qx: 'l
(1 - Q)x)7 Qx = x(1— QT)ax '

=x"(Q-Q'Q)x
-a

a- Q);( =uu'x

; Qx = (I - uul)x
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Geometric interpretation

Consider
=(1-Q)x +Qx
and observe that (I — Q)x L Qx: —
-

(1-Q)x)"ax = x"(1 -Q")Qx
—x"(Q-Q"Q)x = 0.
ey

(I-Q);(=uuTx

; Qx = (I - uul)x

fasshauer@iit.edu MATH 532 E5


http://math.iit.edu/~fass

Geometric interpretation
Consider
=(-Q)x+Qx
and observe that (I — Q)x L Qx: <
((I1—Q)x ) Qx =x"(1-Q")Qx

—x"(Q-Q"Q)x = 0.
=Q

(I-Q);(=uuTx

; Qx = (I - uul)x

Also,

(1—Q)x = (uu")x
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Geometric interpretation
Consider
=(-Q)x+Qx
and observe that (I — Q)x L Qx: <
((I1—Q)x ) Qx =x"(1-Q")Qx

—x"(Q-Q"Q)x = 0.
=Q

(I-Q);(=uuTx

| Qx = (I - uul)x

Also,

(1—Q)x = (uu")x = u(u"x) € span{u}.
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Geometric interpretation
Consider
=(-Q)x+Qx
and observe that (I — Q)x L Qx: <
((I1—Q)x ) Qx =x"(1-Q")Qx

—x"(Q-Q"Q)x = 0.
=Q

(I-Q);(=uuTx

; Qx = (I - uul)x

Also,

(1—Q)x = (uu")x = u(u"x) € span{u}.

Therefore Qx € u*t, the orthogonal complement of u.

fasshauer@iit.edu MATH 532 E5


http://math.iit.edu/~fass

Geometric interpretation
Consider
=(-Q)x+Qx
and observe that (I — Q)x L Qx: < -
(1-Q)x)"ax = x"(1 - Q7)Qx

—x"(Q-Q"Q)x = 0.
=Q

(I-Q)x=uu"x .

; Qx = (I - uul)x

Also,

(I1—Q)x = (uu")x = u(u’ x) € span{u}.
Therefore Qx € ut, the orthogonal complement of u

Also note that ||(u"x)u|| = |u” x| ||ul|2, so that |u” x| is the length of
—— .

=1
the orthogonal projection of x onto span{u}.
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Summary

@ (I-Q)x € span{u}, so
|-Q=uu’ =P,

is a projection onto span{u}.
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Summary

@ (I-Q)x € span{u}, so
|l-Q=uu’ =P,
is a projection onto span{u}.

@ Qx € ut, so
Q=l-uu" =P,

is a projection onto u=.
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Unitary and Orthogonal Matrices

Remark
Above we assumed that ||u|, = 1.

For an arbitrary vector v we get a unit vector u =
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Unitary and Orthogonal Matrices

Remark
Above we assumed that ||u|, = 1.

' nit vectoru = V- = Y.
For an arbitrary vector v we get a unit vector u Ve = vy
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Unitary and Orthogonal Matrices

Remark
Above we assumed that ||u|, = 1.

For an arbitrary v rv wi nit vi ru= V- =Y.
or an arbitrary vecto e get a unit vector u = o

Therefore, for general v

T g o E
® Py, = Y- is a projection onto span{v}.
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Unitary and Orthogonal Matrices

Remark
Above we assumed that ||u|, = 1.

For an arbitrary vector v wi nit vector u = Y- = Y.
or an arbitrary vecto e get a unit vector u Vi =

Therefore, for general v

T g o E
® Py, = Y- is a projection onto span{v}.

T g o o
@ P, =1-Py,=1- Y[ isaprojection onto v,
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Unitary and Orthogonal Matrices

Elementary Reflections

Definition
Let v(# 0) € R". Then

.
vv

R=1-2——
viv

is called the elementary (or Householder) reflector about v-=.

Remark
For u € R" with ||u||> = 1 we have

R=1-2uu’.
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Unitary and Orthogonal Matrices

Geometric interpretation

Consider ||u||2 = 1, and note that
Qx = (I — uu’)x is the orthogonal

u lll

projection of x onto ut as above. ("’ \
— \/\
|
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Unitary and Orthogonal Matrices

Geometric interpretation
Consider ||u|l2 = 1, and note that

Qx = (I — uu’)x is the orthogonal . ol
projection of x onto ut as above. o \
Also, — =

Q(Rx) = Q(I — 2uu")x
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Unitary and Orthogonal Matrices

Geometric interpretation
Consider ||u|l2 = 1, and note that

Qx = (I — uu’)x is the orthogonal . ol
projection of x onto ut as above. o \
Also, — =

Q(Rx) = Q(I — 2uu")x
—Q(l-2(-Q))x
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Unitary and Orthogonal Matrices

Geometric interpretation
Consider ||u|l2 = 1, and note that

Qx = (I — uu’)x is the orthogonal . ol
projection of x onto ut as above. « \
Also, — (o8
Q(Rx) = Q(I — 2uu")x \
=Q(-2(1-Q))x
=(Q-20+2Q%)x
~~
-Q
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Unitary and Orthogonal Matrices

Geometric interpretation
Consider ||u|l2 = 1, and note that

Qx = (I — uu’)x is the orthogonal . ol
projection of x onto ut as above. « \
Also, — (o8
Q(Rx) = Q(I — 2uu")x \
=Q(l-2(1-Q)) x
=(Q-2Q+2.Q%)x =Qx,
~
=Q
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Unitary and Orthogonal Matrices

Geometric interpretation

Consider ||u|l2 = 1, and note that
Qx = (I — uu’)x is the orthogonal

projection of x onto ut as above. « \
Also, — (o8
Q(Rx) = Q(I — 2uu")x \
=Q(-2(1-Q))x
=(Q-2Q+2 Q?)x =Qx,
ey

so that Qx is also the orthogonal
projection of Rx onto u~.
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Unitary and Orthogonal Matrices

Geometric interpretation

Consider ||u|l2 = 1, and note that
Qx = (I — uu’)x is the orthogonal

projection of x onto ut as above. « \
Also, — (o8
Q(Rx) = Q(I — 2uu")x \
=Q(-2(1-Q))x
=(Q-2Q+2 Q?)x =Qx,
ey

so that Qx is also the orthogonal
projection of Rx onto u~.

Moreover, ||x — Qx| = ||x — (I — uu)x||
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Unitary and Orthogonal Matrices

Geometric interpretation

Consider ||u|l2 = 1, and note that
Qx = (I — uu’)x is the orthogonal

projection of x onto ut as above. « \
Also, — (o8
Q(Rx) = Q(I — 2uu")x \
=Q(-2(1-Q))x
=(Q-2Q+2 Q?)x =Qx,
ey

so that Qx is also the orthogonal
projection of Rx onto u~.

Moreover, ||x — Qx| = ||x — (I — uuT)x|| = |u" x| |u]|
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Unitary and Orthogonal Matrices

Geometric interpretation

Consider ||u|l2 = 1, and note that
Qx = (I — uu’)x is the orthogonal

projection of x onto ut as above. « \
Also, — (o8
Q(Rx) = Q(I — 2uu")x \
=Q(-2(1-Q))x
=(Q-2Q+2 Q?)x =Qx,
ey

so that Qx is also the orthogonal
projection of Rx onto u~.

Moreover, ||x — Qx| = ||x — (I — uuT)x|| = |u" x| ||u| = |u" x|
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Unitary and Orthogonal Matrices

Geometric interpretation

Consider ||u|l2 = 1, and note that
Qx = (I — uu’)x is the orthogonal

projection of x onto ut as above. « \
Also, — SN
Q(Rx) = Q(l - 2uu")x "‘
=Q(-2(1-Q))x
=(Q-2Q+2 Q?)x =Qx,
ey

so that Qx is also the orthogonal
projection of Rx onto u~.

Moreover, ||x — Qx| = ||x — (I — uuT)x|| = |u" x| |u| = |u" x| and

1Qx — Rx[| = [[(Q - R)x||
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Unitary and Orthogonal Matrices

Geometric interpretation

Consider ||u|l2 = 1, and note that
Qx = (I — uu’)x is the orthogonal

projection of x onto ut as above. « \
Also, — SN
Q(Rx) = Q(l - 2uu")x "‘
=Q(-2(1-Q))x
=(Q-2Q+2 Q?)x =Qx,
ey

so that Qx is also the orthogonal
projection of Rx onto u~.

Moreover, ||x — Qx| = ||x — (I — uuT)x|| = |u" x| |u| = |u" x| and

IQx — Rx|| = [(Q - R)x|| = || (I - uu" — (1 - 2uu")) x]|
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Unitary and Orthogonal Matrices

Geometric interpretation

Consider ||u|l2 = 1, and note that
Qx = (I — uu’)x is the orthogonal

projection of x onto ut as above. « \
Also, — (o8
Q(Rx) = Q(I — 2uu")x “'
=Q(-2(1-Q))x
=(Q-2Q+2 Q?)x =Qx,
Yy

so that Qx is also the orthogonal
projection of Rx onto u~.

Moreover, ||x — Qx| = ||x — (I — uuT)x|| = |u" x| |u| = |u" x| and
IQx — Rx|| = (Q - R)x|| = || (I - uu" — (1 - 2uu")) x|
= |uu"x|| = |u"x|.
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Unitary and Orthogonal Matrices

Geometric interpretation

Consider ||u|l2 = 1, and note that
Qx = (I — uu’)x is the orthogonal

projection of x onto ut as above. « \
Also, — (o8
Q(Rx) = Q(I — 2uu")x “'
=Q(-2(1-Q))x
=(Q-2Q+2 Q?)x =Qx,
Yy

so that Qx is also the orthogonal
projection of Rx onto u~.

Moreover, ||x — Qx| = ||x — (I — uuT)x|| = |u" x| |u| = |u" x| and
IQx — Rx|| = (Q - R)x|| = || (I - uu" — (1 - 2uu")) x|
= |uu"x|| = |u"x|.

Together, Rx is the reflection of x about u+.
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Unitary and Orthogonal Matrices

Properties of elementary reflections

Theorem
Let R be an elementary reflector. Then

R'"=R" =R,

i.e., R is orthogonal, symmetric, and involutary.

fasshauer@iit.edu MATH 532

100


http://math.iit.edu/~fass
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Properties of elementary reflections

Theorem
Let R be an elementary reflector. Then

R'"=R" =R,

i.e., R is orthogonal, symmetric, and involutary.

Remark

However, these properties do not characterize a reflection, i.e., an
orthogonal, symmetric and involutary matrix is not necessarily a
reflection (see HW).
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Unitary and Orthogonal Matrices

Proof.

RT = (I—2uu™)T
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Unitary and Orthogonal Matrices

Proof.

RT=(I-2uu”)" =1-2uu”
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Unitary and Orthogonal Matrices

Proof.

RT=(l-2uu”)" =1-2uu” =R.
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Unitary and Orthogonal Matrices

Proof.
RT=(l-2uu”)" =1-2uu” =R.
Also,

R? = (I—2uu")(I — 2uu’)

fasshauer@iit.edu MATH 532 101


http://math.iit.edu/~fass

Unitary and Orthogonal Matrices

Proof.
RT=(l-2uu”)" =1-2uu” =R.
Also,
R% = (I —2uu")(I — 2uu’)

=|—4uu” +4uuuu’
~—~
e
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Unitary and Orthogonal Matrices

Proof.
RT=(l-2uu”)" =1-2uu” =R.
Also,
R% = (I —2uu")(I — 2uu’)

=l—4uu” +4uu"uu’ =1,
e
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Unitary and Orthogonal Matrices

Proof.
RT=(l-2uu”)" =1-2uu” =R.
Also,
R% = (I —2uu")(I — 2uu’)

=l—4uu” +4uu"uu’ =1,
e

sothatR~"=R. [
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Reflection of x onto e

If we can construct a matrix R such that Rx = aeq, then we can use R
to zero out entries in (the first column of) a matrix.
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Reflection of x onto e

If we can construct a matrix R such that Rx = «e4, then we can use R
to zero out entries in (the first column of) a matrix.
To this end consider

1 if x4 real,

X1

V=x=+ulxl-e where = .
plx||2€1, K {W if x; complex,
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Reflection of x onto e

If we can construct a matrix R such that Rx = «e4, then we can use R
to zero out entries in (the first column of) a matrix.
To this end consider

1 if x4 real,
V=X=£pulx|2e1, wherep=< , .
ﬁ if x; complex,
and note
viv = (x+ px|l2€1) " (x £ pl|x]2€1)
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Reflection of x onto e

If we can construct a matrix R such that Rx = «e4, then we can use R
to zero out entries in (the first column of) a matrix.
To this end consider

V= X+ | x|p€1, where 1 ifxreal,
= 5 W = .
el o H |’;—1| if x; complex,
and note
viv = (x+ px|l2€1) " (x £ pl|x]2€1)

— xTx £ 2y x|2e]x + 42 |x[3
~—
=1
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Reflection of x onto e

If we can construct a matrix R such that Rx = «e4, then we can use R
to zero out entries in (the first column of) a matrix.
To this end consider

V= X+ | x|p€1, where 1 ifxreal,
= 5 W = .
el o H |’;—1| if x; complex,
and note
viv = (x+ px|l2€1) " (x £ pl|x]2€1)

— xTx £ 2y x|2e]x + 42 |x[3
~—
=1

— 2(x7x £ x| €] x)
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Reflection of x onto e

If we can construct a matrix R such that Rx = aeq, then we can use R
to zero out entries in (the first column of) a matrix.
To this end consider

L ulx]e here 1 if x4 real,
V=X , W = .
el o H |’;—1| if x; complex,
and note

viv = (x £ p|x|2e1)" (x + pl|x]2€1)

= x"x +2p| x|l x + p? |x|3
~—
=1
=2(x"x + p|x|elx)=2v'x.
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Unitary and Orthogonal Matrices

Our Householder reflection was defined as

.
vv

R=1-2——
viv
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Unitary and Orthogonal Matrices

Our Householder reflection was defined as

.
vv

R=1-2——
viv

so that
vvix

Rx=x-2
viv
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Unitary and Orthogonal Matrices

Our Householder reflection was defined as

.
vv

R=1-2——
viv

so that
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Unitary and Orthogonal Matrices

Our Householder reflection was defined as

-
vv
R=1-2—
viv
so that
T T
vv'x 2v'x
Rx=x-2 — = T
v viv
——
&
=X—-V
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Unitary and Orthogonal Matrices

Our Householder reflection was defined as

.
vv

R=1-2——
viv

so that
vvix 2vix

Rx=x-2 = X —
viv viv

=X-V
= Fulx||2 e4.
———

=«
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Unitary and Orthogonal Matrices

Our Householder reflection was defined as

-
vv
R=1-2—
viv
so that
T T
vv'x 2v'x
Rx=x-2 F—=X——=
viv viv
——
&
=X—-V
= Fulx||2 e4.
——
=
Remark

These special reflections are used in the Householder variant of the
QR factorization. For optimal numerical stability of real matrices one

lets 1 = sign(xy).
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Unitary and Orthogonal Matrices

Remark
Since R? = | R~' = R) we have — whenever || x|, = 1 —

Rx = Fueq
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Unitary and Orthogonal Matrices

Remark
Since R? = | R~' = R) we have — whenever || x|, = 1 —

Rx = Fue; — R2x = FuReq
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Unitary and Orthogonal Matrices

Remark
Since R? = | R~' = R) we have — whenever || x|, = 1 —

Rx = Fue; — R2x=7FpRe; < x=7FuR,s.
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Unitary and Orthogonal Matrices

Remark
Since R? = | R~' = R) we have — whenever || x|, = 1 —

Rx = Fue; — R2x=7FpRe; < x=7FuR,s.

Therefore the matrix U = ¥R (taking |u| = 1) is orthogonal (since R is)
and contains x as its first column.
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Unitary and Orthogonal Matrices

Remark
Since R? = | (R~' = R) we have — whenever || x| = 1 —

Rx = Fue; — R2x=7FuRe; < x=7FuR,s.

Therefore the matrix U = ¥R (taking |u| = 1) is orthogonal (since R is)
and contains x as its first column.

Thus, this allows us to construct an ON basis for R" that contains x
(see example in [Mey00].
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Rotations

We give only a brief overview (more details can be found in [Mey00]).

We begin in R? and look for a matrix representation of the rotation of a
vector u into another vector v, counterclockwise by an angle 6:

Here v=(v,.v,)
_(u _ (llul cos¢
u_(Uz>_<HUIlsin¢> (10) \
v= <v1> _ (HVIICOS(¢+0)> v
\v)  \llvlsin(¢+0) \ o
(11) |
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Unitary and Orthogonal Matrices

We use the trigonometric identities

cos(A+ B) = cosAcos B —sinAsinB
sin(A+ B) =sinAcos B+ sinBcos A

with A = ¢, B= 6 and ||v|| = ||u]| to get

L) (Hvllcos(q5+9))

v sin(¢ + 6)
_ (|lu]| (cos ¢cos§ — sinpsinf)
N <||u|\ (sin¢cos 6 + sind cos ¢)>
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Unitary and Orthogonal Matrices

We use the trigonometric identities

cos(A+ B) = cosAcos B —sinAsinB
sin(A+ B) =sinAcos B+ sinBcos A

with A = ¢, B= 6 and ||v|| = ||u]| to get
L () (H v|| cos(¢ + 9))
v sin(¢ + 6)

_ (lu]| (cos ¢ cos & — sin ¢ sind)
~ \Jlu| (sin ¢ cos 6 + sin b cos ¢)

(10) (UycOs O — Upsind
~ \Upcosf + uysing
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Unitary and Orthogonal Matrices

We use the trigonometric identities

cos(A+ B) = cosAcos B —sinAsinB
sin(A+ B) =sinAcos B+ sinBcos A

with A = ¢, B= 6 and ||v|| = ||u]| to get
L () (H v|| cos(¢ + 9))
v sin(¢ + 6)

_ (lu]| (cos ¢ cos & — sin ¢ sind)
~ \Jlu| (sin ¢ cos 6 + sin b cos ¢)

(10) (UycOs O — Upsind
~ \Upcosf + uysing

__(cosf —sind u
~ \sind cos#@
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Unitary and Orthogonal Matrices

We use the trigonometric identities

cos(A+ B) = cosAcos B —sinAsinB
sin(A+ B) =sinAcos B+ sinBcos A

with A = ¢, B= 6 and ||v|| = ||u]| to get
L () (H v|| cos(¢ + 9))
v sin(¢ + 6)

_ (lu]| (cos ¢ cos & — sin ¢ sind)
~ \Jlu| (sin ¢ cos 6 + sin b cos ¢)

(10) (UycOs O — Upsind
~ \Upcosf + uysing

__(cosf —sind u—Pu
~ \sind cos#@ -

where P is the rotation matrix.
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Unitary and Orthogonal Matrices

Remark
@ Note that

pTp _ cosf sinf\ (cosf —sind
~ \—sind cosh) \sind cos¥h
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Unitary and Orthogonal Matrices

Remark
@ Note that
pTp _ cosf sinf\ (cosf —sind
~ \—sind cosh) \sind cos¥h
_ cos? 0 + sin? 0 —cos#sind + cosfsinf
~ \—cos#sin® +cosfsind sin @ + cos2 0
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Unitary and Orthogonal Matrices

Remark
@ Note that

7o ( €osé@ sind
P P_<—sin9 cos ¢

< cos2 6 +

cosf
sing

sin® 9

—cosfsing + cosfsind

=1,

—sind
cos 6
—cos@sinf + cosfsind
sin @ + cos2 0

)
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Unitary and Orthogonal Matrices

Remark
@ Note that
pTp _ cosf sinf\ (cosd
~ \—sind cosh) \sind

_ cos? 0 + sin? 0
~ \—cosfsinf + cosfsind

=1,

so that P is an orthogonal matrix.

—sind
cos 6
—cos@sinf + cosfsind
sin @ + cos2 0

)
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Unitary and Orthogonal Matrices

Remark
@ Note that
PTp _ cosf sinf\ (cosd
~ \—sind cosh) \sind
_ cos? 0 + sin? 0
~ \—cosfsinf + cosfsind

=1,

so that P is an orthogonal matrix.

—sind
cos 6
—cos@sinf + cosfsind
sin @ + cos2 0

e PT is also a rotation matrix (by an angle —6).

)
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Unitary and Orthogonal Matrices

Rotations about a coordinate axis in R are very similar. Such rotations
are referred to a plane rotations.

fasshauer@iit.edu MATH 532 108


http://math.iit.edu/~fass

Unitary and Orthogonal Matrices

Rotations about a coordinate axis in R are very similar. Such rotations
are referred to a plane rotations.

For example, rotation about the x-axis (in the yz-plane) is
accomplished with

1 0 0
Py,= |0 cosf —sind
0 sinf cosb
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Unitary and Orthogonal Matrices

Rotations about a coordinate axis in R are very similar. Such rotations
are referred to a plane rotations.

For example, rotation about the x-axis (in the yz-plane) is
accomplished with

1 0 0
Py,= |0 cosf —sind
0 sinf cosb

Rotation about the y and z-axes is done analogously.
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Unitary and Orthogonal Matrices

We can use the same ideas for plane rotations in higher dimensions.
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Unitary and Orthogonal Matrices

We can use the same ideas for plane rotations in higher dimensions.

Definition

An orthogonal matrix of the form

1

with ¢® + s? = 1 is called a plane rotation (or Givens rotation).

C s
1
-5 c
T T
I j

—J
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Unitary and Orthogonal Matrices

We can use the same ideas for plane rotations in higher dimensions.

Definition
An orthogonal matrix of the form

1

C 1 s i
Pj = .
1
1
T T
I j

with ¢® + s? = 1 is called a plane rotation (or Givens rotation).

Note that the orientation is reversed from the earlier discussion.
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Unitary and Orthogonal Matrices

Usually we set

Xj Xj
€= 12 1+ ¥2 $= [22 1+ 2
. T
since thenfor x = (xy -+ Xp)

Xq X

) x,2+Xj2

CXi + 24 X24x2

i 7
P,X = : = | ¥
—SX; + CX; 0

fasshauer@iit.edu MATH 532 110


http://math.iit.edu/~fass

Unitary and Orthogonal Matrices

Usually we set

Xj Xj
€= 12 1+ ¥2 $= [22 1+ 2
. T
since thenfor x = (xy -+ Xp)

X
Xq 1

) x,2+Xj2

CXi + 24 X24x2

i 7
P,'/‘X = = .
—SX; + CX; 0
Xn Xn

This shows that P zeros the jt" component of x.
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Unitary and Orthogonal Matrices

20\ .2
X7 +X;

Note that = ,/x? + x? so that repeatedly applying Givens
i Vi ! y

rotations P;; with the same /, but different values of j will zero out all but
the /" component of x, and that component will become

X2+ ..+ x5 =[xz

X2 4 x2
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2 x2
Note that \;% = 4/ XF + x? so that repeatedly applying Givens
Xi Xj

rotations P;; with the same /, but different values of j will zero out all but
the /" component of x, and that component will become

X2+ ..+ x5 =[xz
Therefore, the sequence
P=Pin - Piip1Pii1- P
of Givens rotations rotates the vector x € R" onto e;, i.e.,

Px = ||x||2€;.
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X +)(j2
rotations P;; with the same /, but different values of j will zero out all but

the /" component of x, and that component will become

/X4 xE = ||X]|2.

Therefore, the sequence

x2+x? . .
Note that \/271 = 4/ XF + x? so that repeatedly applying Givens

P=Pin - Piip1Pii1- P
of Givens rotations rotates the vector x € R" onto e;, i.e.,

Px = ||x||2€;.

Moreover, the matrix P is orthogonal.
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Remark

@ Givens rotations can be used as an alternative to Householder
reflections to construct a QR factorization.
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Unitary and Orthogonal Matrices

Remark

@ Givens rotations can be used as an alternative to Householder
reflections to construct a QR factorization.

@ Householder reflections are in general more efficient, but for
sparse matrices Givens rotations are more efficient because they
can be applied more selectively.
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Outline

a Orthogonal Reduction
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Orthogonal Reduction

Recall the form of LU factorization (Gaussian elimination):
Thq--T2T1A=U,

where Ty are lower triangular and U is upper triangular, i.e., we have a
triangular reduction.
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Orthogonal Reduction

Recall the form of LU factorization (Gaussian elimination):
Tho1---T2THA=U,

where Ty are lower triangular and U is upper triangular, i.e., we have a
triangular reduction.

For the QR factorization we will use orthogonal Householder reflectors
R to get
Rp-1---RoR1A=T,

where T is upper triangular, i.e., we have an orthogonal reduction.
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Orthogonal Reduction

Recall Householder reflectors

-
vv
R=I-2—— with v = x £+ ul|x||e
— llxlles,
so that
Rx = Ful x| e

and p = 1 for x real.
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Orthogonal Reduction

Recall Householder reflectors

-
vv
R=I-2——— with v = x + p|| x| eq,
— pllxlley
so that
Rx = Fpullx|les

and p = 1 for x real.

Now we explain how to use these Householder reflectors to convert an
m x n matrix A to an upper triangular matrix of the same size, i.e., how
to do a full QR factorization.
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Orthogonal Reduction

Apply Householder reflector to the first column of A:

vv’
RiA, = <| = 2W) A.q with v = A, + ||As1] €4
f1
= FlAller=| .
0
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Orthogonal Reduction

Apply Householder reflector to the first column of A:

vv’
RiA, = <| = 2W) A.q with v = A, + ||As1] €4
f1
= F|As e =
0

Then, Ry applied to all of A yields

t1 tz -+ tn
RA=|
0 = *
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Orthogonal Reduction

Apply Householder reflector to the first column of A:

vv’
RiA, = <| = 2W) A.q with v = A, + ||As1] €4
f1
= F|As e =
0

Then, Ry applied to all of A yields

t1 tz -+ tn
0 & 0 % -
_ _ 1
A : _<0 Az)
0 = *
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Orthogonal Reduction

Next, we apply the same idea to Ay, i.e., we let

1 0
Re = (0 If‘2)

Then

RoR{A =
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Orthogonal Reduction

Next, we apply the same idea to Ay, i.e., we let

1 0
Re = (0 ﬁz)

R.R.A — (0 Ho\
27T 0 RaAz)

Then
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Orthogonal Reduction

Next, we apply the same idea to Ay, i.e., we let

1 0
Re = (0 ﬁz)

ty ] t1 te
RoR1A = A =
2R4 <0 R2A2> )

Then

0 0
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Orthogonal Reduction

We continue the process until we get an upper triangular matrix, i.e.,

t4 *
Rn---RaR1A= e whenever m > n
——— O tnn
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Orthogonal Reduction

We continue the process until we get an upper triangular matrix, i.e.,

t4 *
Rn---RoR1A= e whenever m > n
——— O tnn
—p
O
or
1 *
Rm---RaR{ A= .. ¢ 4| whenevern>m
—_——
= O tmm
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Orthogonal Reduction

We continue the process until we get an upper triangular matrix, i.e.,

t4 *
Rp---RoR{A = e whenever m > n
—_——— @) tnn
=P
(@)
or
1 *
Rm---RaR1 A= . whenever n > m
=P O tmm

Since each Ry is orthogonal (unitary for complex A) we have
PA=T

with P m x m orthogonal and T m x n upper triangular, i.e.,
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Orthogonal Reduction

We continue the process until we get an upper triangular matrix, i.e.,

t4 *
Rp---RoR{A = e whenever m > n
—_——— @) tnn
=P
(@)
or
1 *
Rm---RaR1 A= . whenever n > m
=P O tmm

Since each Ry is orthogonal (unitary for complex A) we have
PA=T
with P m x m orthogonal and T m x n upper triangular, i.e.,
A=QR (Q=P", R=T)

fasshauer@iit.edu MATH 532 118



http://math.iit.edu/~fass

Orthogonal Reduction

Remark

@ This is similar to obtaining the QR factorization via MGS, but now
Q is orthogonal (square) and R is rectangular.
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Orthogonal Reduction

Remark

@ This is similar to obtaining the QR factorization via MGS, but now
Q is orthogonal (square) and R is rectangular.

@ This gives us the full QR factorization, whereas MGS gave us the
reduced QR factorization (withm x n Q and n x nR).
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Orthogonal Reduction

Example
We use Householder reflections to find the QR factorization (where R
has positive diagonal elements) of

120
A=(0 1 1
1 0 1
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Orthogonal Reduction

Example

We use Householder reflections to find the QR factorization (where R
has positive diagonal elements) of

1 20
A=10 1 1
1 0 1

V1VT .

Ri=1-2—=1,  withvi=A, = |A]e
ViVvq
so that

R1A = F[|Auler =
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Orthogonal Reduction

Example

We use Householder reflections to find the QR factorization (where R
has positive diagonal elements) of

1 20
A=(0 1 1
1 0 1
V1VT .
Ri=1-2—=1,  withvi=A, = |A]e
ViVvq
so that
V2
RiA=F[Aqller=F( 0
0
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Orthogonal Reduction

Example

We use Householder reflections to find the QR factorization (where R
has positive diagonal elements) of

1 20
A=(0 1 1
1 0 1
V1VT .
Ri=1-2—=1,  withvi=A, = |A]e
ViVvq
so that
V2
RiA=F[Aqller=F( 0
0

Thus we take the + sign as “—” so that t;1 = v2 > 0.
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Orthogonal Reduction

Example ((cont.))
To find R1A we can either compute Ry using the formula above and
then compute the matrix-matrix product, or — more cheaply — note

that
.
viv v
Rix=[1-2-11 |x=x—-2v]x———,
ViVvy VvV, V4

1

so that we can compute v]A,;, j = 2, 3, instead of the full R;.
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Orthogonal Reduction

Example ((cont.))
To find R1A we can either compute Ry using the formula above and
then compute the matrix-matrix product, or — more cheaply — note

that

.
viv v

Rix=[1-2-11 |x=x—-2v]x———,
ViVy ViV4

so that we can compute v]A,;, j = 2, 3, instead of the full R;.

viAo=(1-Vv2)-240-14+1-0

T
vy A*3
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Orthogonal Reduction

Example ((cont.))
To find R1A we can either compute Ry using the formula above and
then compute the matrix-matrix product, or — more cheaply — note

that

.
viv v

Rix=[1-2-11 |x=x—-2v]x———,
ViVy ViV4

so that we can compute v]A,;, j = 2, 3, instead of the full R;.

vIAo=(1-Vv2).-240-1+1.0=2-2V2

T
vy A*3
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Orthogonal Reduction

Example ((cont.))
To find R1A we can either compute Ry using the formula above and
then compute the matrix-matrix product, or — more cheaply — note

that

;
ViVvy T, Vi1

Rix=1[1-2 X=X—-2V{X——,

so that we can compute v]A,;, j = 2, 3, instead of the full R;.

vIAo=(1-Vv2).-240-1+1.0=2-2V2
VIAs=(1-v2)-04+0-1+1-1
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Orthogonal Reduction

Example ((cont.))
To find R1A we can either compute Ry using the formula above and
then compute the matrix-matrix product, or — more cheaply — note

that

;
ViVvy T, Vi1

Rix=1[1-2 X=X—-2V{X——,

so that we can compute v]A,;, j = 2, 3, instead of the full R;.

vIAo=(1-Vv2).-240-1+1.0=2-2V2
VIAs=(1-v2)-0+0-1+1-1=1
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Example ((cont.))
To find R1A we can either compute Ry using the formula above and
then compute the matrix-matrix product, or — more cheaply — note

that

;
ViVvy T, Vi1

Rix=1[1-2 X=X—-2V{X——,

so that we can compute v]A,;, j = 2, 3, instead of the full R;.

vIAo=(1-Vv2).-240-1+1.0=2-2V2
VIAs=(1-v2)-0+0-1+1-1=1

Also /B
12

p Vi ] 0

1
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Orthogonal Reduction

Example ((cont.))
Therefore

RiA.

fasshauer@iit.edu MATH 532

122


http://math.iit.edu/~fass

Orthogonal Reduction

Example ((cont.))
Therefore

)_22\/2(

22

N’
=2

1-v2
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Orthogonal Reduction

Example ((cont.))
Therefore

)_22\/2(

22

N’
=2

1-v2

)

V2
1v2

)
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Example ((cont.))

Therefore
2
RiAo=[1] - ﬂ
0 22
N—_——
=2
V3
2
I:{1 A*S = 1
_y2
2

1-v2
V2
? )(1\@

)
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Example ((cont.))

Therefore
RyA,o = ? _B=AYA 1_o\/§
N —
=—V2
V2
2
I:{1 A*S = 1
_V2
2
so that
R{A =

)(1?5

)
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Orthogonal Reduction

Example ((cont.))
Therefore

2
RiA, = | 1
0

o)
oo

V2
Ri{A=| O
0

so that

2221_\@
0

2-v2 |

——

3

m\§ —nfS,

S

V2
2
T 1,
V2
2

(3
1 1
n
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Example ((cont.))

Next
5 v
Rox = x — 2v]x—2
vV, Vo

with vo = (A2).1 — [|(A2)+ €1
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Example ((cont.))

Next
5 v
Rox = x — 2v]x—2
vV, Vo

With V2 = (A2)ur — [(As)erler = (1 e

)
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Example ((cont.))
Next

T

A v . 1-—
Rox = X — 2v) x—=2—  with vo = (A2).1 — [|(A2)s1 € = (
vV, Vo

V3
»)
. . Vo . 1 1-— \/§
V;—(Ag)ﬂ = 3\/5, V;(Ag)*g = —\/5, 2V;V2 = 3_ \/§ ( \/§ )
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Example ((cont.))
Next

T

A v . 1-—
Rox = X — 2v) x—=2—  with vo = (A2).1 — [|(A2)s1 € = (
vV, Vo

v 1 1
ViAot =3V3, vilhada= V3, 2ft — 1 (
5

Ro(A2)u = (?) ) Ra(Az).2 = (%)
2

SO
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Orthogonal Reduction

Example ((cont.))

Next

A Vo . 1—\/§>
Rox = x—2vlx with vo = (As).1 — [|(A2).1lle; =

: I g Wit vo = (Ao~ lAo)allen = (13
vI(A2). =3V3, VI(As)w=-V3, 2 =

2 (A2)s1 2 (A2)s2 vIvs 3_\f3< NG

SO

ﬁz(Az)m = (?) ) FA%Z(AZ)*? = (35>
2

: 1 07
Using Ry = 0 R we get
2

V2 V2 2
R:RiA=[0 V3 0|=T
~p 0o o £
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Orthogonal Reduction

Remark

@ As mentioned earlier, the factor R of the QR factorization is given
by the matrix T.

@ The factor Q = PT is not explicitly given in the example.
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Orthogonal Reduction

Remark

@ As mentioned earlier, the factor R of the QR factorization is given
by the matrix T.

@ The factor Q = PT is not explicitly given in the example.

@ One could also obtain the same answer using Givens rotations
(compare [Mey00, Example 5.7.2]).
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Theorem

Let A be an n x n nonsingular real matrix. Then the factorization
A=QR

with n x n orthogonal matrix Q and n x n upper triangular matrix R with
positive diagonal entries is unique.

v
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Orthogonal Reduction

Theorem
Let A be an n x n nonsingular real matrix. Then the factorization

A=QR

with n x n orthogonal matrix Q and n x n upper triangular matrix R with
positive diagonal entries is unique.

v

Remark

In this n x n case the reduced and full QR factorizations coincide, i.e.,
the results obtained via Gram-Schmidt, Householder and Givens
should be identical.
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Orthogonal Reduction

Proof
Assume we have two QR factorizations

A=Q1R1 :Q2R2 <~

v
~uge”
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Orthogonal Reduction

Proof
Assume we have two QR factorizations

A=QRy =QR, <= QJQ;=RR;"
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Proof
Assume we have two QR factorizations

A=QR{ =QR; — Q;—Q1 = R2R1—1 =U.

Now, Rng is upper triangular with positive diagonal (since each
factor is) and Q] Q; is orthogonal.

fasshauer@iit.edu MATH 532

126


http://math.iit.edu/~fass

Orthogonal Reduction

Proof
Assume we have two QR factorizations

A=QR{ =QR; — Q;—Q1 = R2R1—1 =U.

Now, Rng is upper triangular with positive diagonal (since each
factor is) and Q] Q is orthogonal. Therefore U has all of these
properties.
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Orthogonal Reduction

Proof
Assume we have two QR factorizations

A=QR{ =QR; — Q;—Q1 = R2R1—1 =U.

Now, Rng is upper triangular with positive diagonal (since each
factor is) and Q] Q is orthogonal. Therefore U has all of these
properties.

Since U is upper triangular
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Orthogonal Reduction

Proof
Assume we have two QR factorizations

A=QR{ =QR; — Q;—Q1 = R2R1—1 =U.

Now, Rng is upper triangular with positive diagonal (since each
factor is) and Q] Q is orthogonal. Therefore U has all of these
properties.

Since U is upper triangular

Moreover, since U is orthogonal uy; = 1.

fasshauer@iit.edu MATH 532

126


http://math.iit.edu/~fass

Orthogonal Reduction

Proof (cont.)
Next,
Uiz
Uzp
UlUgo=(1 0 -~ 0)] 0
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Orthogonal Reduction

Proof (cont.)
Next,
Uiz
Uzp
ULU*2:(1 o --- 0) 0 = Uq2
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Orthogonal Reduction

Proof (cont.)
Next,
Uiz
Uzp
ULUpo=(1 0 -~ 0 O | =up=0
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Orthogonal Reduction

Proof (cont.)
Next,

UlUio=(1 0 -~ 0)| 0 | =up=0

since the columns of U are orthogonal, and the fact that ||U,z|| = 1
implies uxs = 1.
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Proof (cont.)
Next,

UlUio=(1 0 -~ 0)| 0 | =up=0

since the columns of U are orthogonal, and the fact that ||U,»| = 1
implies uxs = 1.

Comparing all the other pairs of columns of U shows that U = |, and
therefore
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Proof (cont.)
Next,

UlUio=(1 0 -~ 0)| 0 | =up=0

since the columns of U are orthogonal, and the fact that ||U.z| = 1
implies uxs = 1.

Comparing all the other pairs of columns of U shows that U = |, and
therefore Q1 = Qo and Ry = Ro. [0
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Recommendations (so far) for solution of Ax = b

@ If Ais square and nonsingular, then use LU factorization with
partial pivoting. This is stable for most practical problems and
requires O(%a) operations.
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Recommendations (so far) for solution of Ax = b

@ If Ais square and nonsingular, then use LU factorization with
partial pivoting. This is stable for most practical problems and
requires O(%a) operations.

@ To find a least square solution, use QR factorization:
Ax=b <= QRx=b <= Rx=Q'b.

Usually the reduced QR factorization is all that’s needed.
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Orthogonal Reduction

Even though (for square nonsingular A) the Gram—Schmidt,
Householder and Givens versions of the QR factorization are
equivalent (due to the uniqueness theorem), we have — for general A
— that
@ classical GS is not stable,
@ modified GS is stable for least squares, but unstable for QR (since
it has problems maintaining orthogonality),
@ Householder and Givens are stable, both for least squares and
QR
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Computational cost (for n x n matrices)

@ LU with partial pivoting: O(%)
@ Gram-Schmidt: O(n®)
@ Householder: (9(2%3)

@ Givens: O(%)

Householder reflections are often the preferred method since they
provide both stability and also decent efficiency.
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Outline

e Complementary Subspaces
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Complementary Subspaces

Complementary Subspaces

Definition
Let V be a vector space and X', ) C V be subspaces. X and ) are
called complementary provided

V=X+)Y and XnY={0}.

In this case, V is also called the direct sum of X and ), and we write

V=Xa). J
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Complementary Subspaces

Definition
Let V be a vector space and X', ) C V be subspaces. X and ) are
called complementary provided

V=X+)Y and XnY={0}.
In this case, V is also called the direct sum of X and ), and we write

V=X

Example

@ Any two lines through the origin in R? are complementary.

@ Any plane through the origin in R® is complementary to any line
through the origin not contained in the plane.

@ Two planes through the origin in R® are not complementary since
they must intersect in a line.
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Complementary Subspaces

Theorem

LetV be a vector space, and X,y C V be subspaces with bases Bx
and By. The following are equivalent:

QV=xo).
@ Forevery v €V there exist unique x € X and y € Y such that
V=Xx+Y.

©Q By N By ={} and Bx UBy is a basis for V.
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Complementary Subspaces

Theorem

LetV be a vector space, and X,y C V be subspaces with bases Bx
and By. The following are equivalent:

QV=xo).
@ Forevery v €V there exist unique x € X and y € Y such that
V=Xx+Y.

©Q By N By ={} and Bx UBy is a basis for V.

Proof.
See [Mey00].
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Complementary Subspaces

Theorem

LetV be a vector space, and X,y C V be subspaces with bases Bx
and By. The following are equivalent:

QV=xo).
@ Forevery v €V there exist unique x € X and y € Y such that
V=Xx+Y.

©Q By N By ={} and Bx UBy is a basis for V.

Proof.

See [Mey00]. O

Definition
Suppose V =X @ Y, i.e., any v € V can be uniquely decomposed as
v=x+Yy. Then

@ x is called the projection of v onto X along V.

© y is called the projection of v onto ) along X.
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Properties of projectors

Theorem

Let X,) be complementary subspaces of V. Let P, defined by Pv = x,
be the projector onto X along Y. Then

@ P is unique.
@ P2 =P, e, P is idempotent.
© | — P is the complementary projector (onto Y along X).
Q R(P)={x: Px=x} =X (“fixed points” for P).
Q@ NI-P)=X=R(P)and R(I - P)=N(P) = .
Q IfV=R" (orC"), then
P=(X O)(X Y)

— (X V) (c') 8) X v)",

where the columns of X andY are bases for X and ).
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Complementary Subspaces

Proof
@ Assume Pyv = x = Pyv for all v € V. But then Py = P».
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Complementary Subspaces

Proof
@ Assume Pyv = x = Pyv for all v € V. But then Py = P».
@ We know

Pv=x foreveryveV

so that
P2v =
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Complementary Subspaces

Proof
@ Assume Pyv = x = Pyv for all v € V. But then Py = P».
@ We know

Pv=x foreveryveV

so that
P?v = P(Pv) =
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Complementary Subspaces

Proof
@ Assume Pyv = x = Pyv for all v € V. But then Py = P».
@ We know

Pv=x foreveryveV

so that
P?v = P(Pv) = Px = x.
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Complementary Subspaces

Proof
@ Assume Pyv = x = Pyv for all v € V. But then Py = P».

@ We know
Pv=x foreveryveV

so that
P?v = P(Pv) = Px = x.

Together we therefore have P? = P.
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Complementary Subspaces

Proof
@ Assume Pyv = x = Pyv for all v € V. But then Py = P».

@ We know
Pv=x foreveryveV

so that
P?v = P(Pv) = Px = x.

Together we therefore have P? = P.
© Using the unique decomposition of v we can write

V=Xx+y=
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http://math.iit.edu/~fass

Complementary Subspaces

Proof
@ Assume Pyv = x = Pyv for all v € V. But then Py = P».

@ We know
Pv=x foreveryveV

so that
P?v = P(Pv) = Px = x.

Together we therefore have P? = P.
© Using the unique decomposition of v we can write

v=x+y=Pv+y
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Complementary Subspaces

Proof
@ Assume Pyv = x = Pyv for all v € V. But then Py = P».
© We know
Pv=x foreveryveV
so that
P2v = P(Pv) = Px = x.
Together we therefore have P? = P.
© Using the unique decomposition of v we can write

v=x+y=Pv+y
— (I-P)v=y,

the projection of v onto Y along X.
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Proof (cont.)
© Note that x € R(P) if and only if x = Px. This is true since
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Proof (cont.)

© Note that x € R(P) if and only if x = Px. This is true since if
x = Px then x obviously in R(P).
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Proof (cont.)

O Note that x € R(P) if and only if x = Px. This is true since if
x = Px then x obviously in R(P). On the other hand, if x € R(P)
then x = Pv for some v € V and so

Px = P?v
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Proof (cont.)

O Note that x € R(P) if and only if x = Px. This is true since if
x = Px then x obviously in R(P). On the other hand, if x € R(P)
then x = Pv for some v € V and so

Px =P2v @ py = x.
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Proof (cont.)

O Note that x € R(P) if and only if x = Px. This is true since if
x = Px then x obviously in R(P). On the other hand, if x € R(P)
then x = Pv for some v € V and so

Px =P2v @ py = x.
Therefore

RP)={x: x=Pv,veV}=x
={x: Px=x}.
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Proof (cont.)

O Note that x € R(P) if and only if x = Px. This is true since if
x = Px then x obviously in R(P). On the other hand, if x € R(P)
then x = Pv for some v € V and so

Px =P2v @ py = x.
Therefore

RP)={x: x=Pv,veV}=x
={x: Px=x}.

@ Since N(I - P)={x: (I-P)x =0}, and
(I-P)x=0 < Px=x

we have N(I — P) = X = R(P).
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Proof (cont.)

O Note that x € R(P) if and only if x = Px. This is true since if
x = Px then x obviously in R(P). On the other hand, if x € R(P)
then x = Pv for some v € V and so

Px =P2v @ py = x.
Therefore
RP)={x: x=Pv,veV}=x
={x: Px=x}.
@ Since N(I - P)={x: (I-P)x =0}, and
(I-P)x=0 < Px=x

we have N(I — P) = X = R(P).
The claim R(I — P) = Y = N(P) is shown similarly.
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Proof (cont.)

© Take B= (X YY), where the columns of X and Y form a basis for
X and Y, respectively.
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Proof (cont.)

@ Take B = (X Y), where the columns of X and Y form a basis for
X and Y, respectively.
Then the columns of B form a basis for V and B is nonsingular.
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Complementary Subspaces

Proof (cont.)

@ Take B = (X Y), where the columns of X and Y form a basis for
X and ), respectively.
Then the columns of B form a basis for V and B is nonsingular.
From above we have Px = x, where x can be any column of X.
Also, Py = 0, where y is any column of Y.
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Proof (cont.)

@ Take B = (X Y), where the columns of X and Y form a basis for
X and ), respectively.
Then the columns of B form a basis for V and B is nonsingular.
From above we have Px = x, where x can be any column of X.
Also, Py = 0, where y is any column of Y.
So
PB=P(X Y)=
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Proof (cont.)

@ Take B = (X Y), where the columns of X and Y form a basis for
X and ), respectively.
Then the columns of B form a basis for V and B is nonsingular.
From above we have Px = x, where x can be any column of X.
Also, Py = 0, where y is any column of Y.
So
PB=P(X Y)= (X O)

or

P=(X 0)B'=(X Y) .

This establishes the first part of (6).
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Proof (cont.)
@ Take B = (X Y), where the columns of X and Y form a basis for

0

X and ), respectively.
Then the columns of B form a basis for V and B is nonsingular.
From above we have Px = x, where x can be any column of X.
Also, Py = 0, where y is any column of Y.
So

PB=P(X Y)= (X O)

or

P=(X 0)B'=(X Y) .

This establishes the first part of (6).
The second part follows by noting that

B((') 8>:(X v)<(') 8>:(X 0).
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Complementary Subspaces

We just saw that any projector is idempotent, i.e., P = P. In fact,

Theorem
A matrix P is a projector if and only if P> = P. J
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Complementary Subspaces

We just saw that any projector is idempotent, i.e., P = P. In fact,

Theorem
A matrix P is a projector if and only if P> = P.

Proof.
One direction is given above. For the other see [Mey00]. O
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Complementary Subspaces

We just saw that any projector is idempotent, i.e., P = P. In fact,

Theorem
A matrix P is a projector if and only if P> = P.

Proof.
One direction is given above. For the other see [Mey00]. O

Remark
This theorem is sometimes used to define projectors.
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Angle between subspaces

In some applications, e.g., when determining the convergence rates of
iterative algorithms, it is useful to know the angle between subspaces.
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Angle between subspaces

In some applications, e.g., when determining the convergence rates of
iterative algorithms, it is useful to know the angle between subspaces.

If R, N are complementary then

RN

1 1 Ivl = mox |Px| = [P|

sing =

”P”2 B Amax B 01’

where P is the projector onto R
along NV, Amax is the largest
eigenvalue of PTP and o is the
largest singular value of P.

See [Mey00, Example 5.9.2] for more details.
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Complementary Subspaces

Remark

We will skip [Mey00, Section 5.10] on the range—nullspace
decomposition.
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Complementary Subspaces

Remark

We will skip [Mey00, Section 5.10] on the range—nullspace
decomposition.

While the range—nullspace decomposition is theoretically important, its
practical usefulness is limited because computation is very unstable
due to lack of orthogonality.
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Complementary Subspaces

Remark

We will skip [Mey00, Section 5.10] on the range—nullspace
decomposition.

While the range—nullspace decomposition is theoretically important, its
practical usefulness is limited because computation is very unstable
due to lack of orthogonality.

This also means we will not discuss nilpotent matrices and — later on
— the Jordan normal form.
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Outline

e Orthogonal Decomposition
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Definition
Let V be an inner product space and M C V. The orthogonal
complement M+ of M is

Mt ={xeV: (mx)=0fralme M}

M= {x} M
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Definition
Let V be an inner product space and M C V. The orthogonal
complement M+ of M is

Mt ={xeV: (mx)=0fralme M}

M= {x} Mo 72

Remark
Even if M is not a subspace of V (i.e., only a subset), M is (see HW).J
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Orthogonal Decomposition

Theorem
LetV be an inner product space and M C V. If M is a subspace of V,
then

V=MaoML
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Orthogonal Decomposition

Theorem
LetV be an inner product space and M C V. If M is a subspace of V,
then

V=MaoM

Proof

According to the definition of complementary subspaces we need to
show

Q@ MnMt={0},
QO M+Mt=V.
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Orthogonal Decomposition

Proof (cont.)

@ Let’'s assume there exists an x ¢ M N M=, ie., x € M and
X € M.
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Orthogonal Decomposition

Proof (cont.)

@ Let’'s assume there exists an x ¢ M N M=, ie., x € M and
X € M.

The definition of M implies

(x,x)=0.

fasshauer@iit.edu MATH 532

144


http://math.iit.edu/~fass

Orthogonal Decomposition

Proof (cont.)

@ Let’'s assume there exists an x ¢ M N M=, ie., x € M and
X € M.

The definition of M implies
(x,x)=0.

But then the definition of an inner product implies x = 0.
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Orthogonal Decomposition

Proof (cont.)

@ Let’'s assume there exists an x ¢ M N M=, ie., x € M and
X € M.

The definition of M implies
(x,x)=0.

But then the definition of an inner product implies x = 0.

This is true for any x € M N M™*, so x = 0 is the only such vector.
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Orthogonal Decomposition

Proof (cont.)
@ We let By and B,. be ON bases for M and M-+, respectively.
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Orthogonal Decomposition

Proof (cont.)
@ We let By and B,. be ON bases for M and M-+, respectively.

Since M N M=+ = {0} we know that B U B,,. is an ON basis for
M

some S C V.
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Orthogonal Decomposition

Proof (cont.)
@ We let By and B,. be ON bases for M and M-+, respectively.

Since M N M+ = {0} we know that By, U B, is an ON basis for
some S C V.

In fact, S = V since otherwise we could extend B U B, to an
ON basis of V (using the extension theorem and GS).
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Orthogonal Decomposition

Proof (cont.)
@ We let By and B,. be ON bases for M and M-+, respectively.

Since M N M+ = {0} we know that By, U B, is an ON basis for
some S C V.

In fact, S = V since otherwise we could extend B U B, to an
ON basis of V (using the extension theorem and GS).

However, any vector in the extension must be orthogonal to M,
i.e., in M, but this is not possible since the extended basis must
be linearly independent.

Therefore, the extension set is empty.
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Orthogonal Decomposition

Theorem

LetV be an inner product space with dim(V) = n and M be a
subspace of V. Then

@ dmMLt =n—dmM,
Q Mt =M.
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Orthogonal Decomposition

Theorem

LetV be an inner product space with dim(V) = n and M be a
subspace of V. Then

@ dmMLt =n—dmM,
Q Mt =M.

Proof
For (1) recall our dimension formula from Chapter 4

dim(X +Y) =dimX +dimY —dim(X N Y).
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Orthogonal Decomposition

Theorem

LetV be an inner product space with dim(V) = n and M be a
subspace of V. Then

@ dm Mt =n—dimM,
Q MLt =M.

Proof
For (1) recall our dimension formula from Chapter 4

dim(X +Y) =dimX +dimY —dim(X N Y).

Here M N M+ = {0}, so that dim(M N ML) = 0.
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Orthogonal Decomposition

Theorem

LetV be an inner product space with dim(V) = n and M be a
subspace of V. Then

Q@ dmMt =n—dmM,
Q ML= M.

Proof
For (1) recall our dimension formula from Chapter 4

dim(X +Y) =dimX +dimY —dim(X N Y).

Here M N M+ = {0}, so that dim(M N M1) = 0.

Also, since M is a subspace of V we have V = M + M and the
dimension formula implies (1).
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Orthogonal Decomposition

Proof (cont.)

@ Instead of directly establishing equality we first show that
ML C oM.
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Orthogonal Decomposition

Proof (cont.)

@ Instead of directly establishing equality we first show that
MLt C M.

Since M & M+ =V any x € V can be uniquely decomposed into

X=m+n withmeM, nec M*.
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Orthogonal Decomposition

Proof (cont.)

@ Instead of directly establishing equality we first show that
MLt C M.
Since M & M+ =V any x € V can be uniquely decomposed into

X=m+n withmeM, nec M*.

Now we take x € ML" so that (x,n) =0 forall n € M+, and
therefore
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Orthogonal Decomposition

Proof (cont.)

@ Instead of directly establishing equality we first show that
MLt C M.
Since M & M+ =V any x € V can be uniquely decomposed into

X=m+n withmeM, nec M*.

Now we take x € ML" so that (x,n) =0 forall n € M+, and
therefore

0=(x,n)=(m+n,n) =
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Orthogonal Decomposition

Proof (cont.)
@ Instead of directly establishing equality we first show that

MLt C M.
Since M & M+ =V any x € V can be uniquely decomposed into

X=m+n withmeM, nec M*.

Now we take x € ML" so that (x,n) =0 forall n € M+, and
therefore

0= (x,n)=(m+n,n)= (m,n)+(n, n).
=0
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Orthogonal Decomposition

Proof (cont.)

@ Instead of directly establishing equality we first show that
MLt C M.

Since M & M+ =V any x € V can be uniquely decomposed into

X=m+n withmeM, nec M*.

Now we take x € ML" so that (x,n) =0 forall n € M+, and
therefore

0= (x,n)=(m+n,n)= (m,n)+(n, n).
=0

But
(n,n)=0 <«<— n=0,

and therefore x = mis in M.
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Orthogonal Decomposition

Proof (cont.)
Now, recall from Chapter 4 that for subspaces X C Y

dmX =dm)y = X =).
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Proof (cont.)
Now, recall from Chapter 4 that for subspaces X C Y
dmX =dm)y = X =).

We take X = M+~ and I = M (and know from the work just
performed that Mttisa subspace of C M).
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Orthogonal Decomposition

Proof (cont.)
Now, recall from Chapter 4 that for subspaces X C Y

dmX =dm)y — X=).

We take X = M+~ and I = M (and know from the work just

performed that Mttisa subspace of C M).
From (1) we know

dim M+ = n—dim M
dim M+ = n — dim M+
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Orthogonal Decomposition

Proof (cont.)
Now, recall from Chapter 4 that for subspaces X C Y

dmX =dm)y — X=).

We take X = M+~ and I = M (and know from the work just
performed that Mttisa subspace of C M).
From (1) we know
dim M+ = n—dim M
dim ML = n— dim M-
=n—(n—dmM) =dimM.

fasshauer@iit.edu MATH 532 148


http://math.iit.edu/~fass

Orthogonal Decomposition

Proof (cont.)
Now, recall from Chapter 4 that for subspaces X C Y

dmX =dm)y — X=).

We take X = M+~ and I = M (and know from the work just

performed that M is a subspace of C M).
From (1) we know

dim M+ = n—dim M
dim M+ = n — dim M+
=n—(n—dmM) =dimM.

But then ML" = M. [

fasshauer@iit.edu MATH 532 148


http://math.iit.edu/~fass

Back to Fundamental Subspaces

Theorem

Let A be a real m x n matrix. Then
@ RA)L =N(AT),
Q@ N(A): = R(AT).
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Back to Fundamental Subspaces

Theorem

Let A be a real m x n matrix. Then
@ RA)L =N(AT),
Q@ N(A): = R(AT).

Corollary
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Proof (of Theorem)
@ We show that x € R(A)* implies x € N(AT) and vice versa.

xc RA)? —
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Orthogonal Decomposition

Proof (of Theorem)

@ We show that x € R(A)* implies x € N(AT) and vice versa.

xcRAY < (Ay,x)=0 foranyycR"
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Orthogonal Decomposition

Proof (of Theorem)

@ We show that x € R(A)* implies x € N(AT) and vice versa.

xcRAY < (Ay,x)=0 foranyycR"
<~ y'ATx=0 foranyyecR"
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Orthogonal Decomposition

Proof (of Theorem)

@ We show that x € R(A)* implies x € N(AT) and vice versa.

xcRAY < (Ay,x)=0 foranyycR"
<~ y'ATx=0 foranyyecR"
—

(y,ATx)=0 foranyy e R"
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Orthogonal Decomposition

Proof (of Theorem)

@ We show that x € R(A)* implies x € N(AT) and vice versa.

x € R(A)* (Ay,x) =0 foranyy cR"
y'"ATx=0 foranyy cR”
(y,ATx)=0 foranyy e R"

ATx=0

1117
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Proof (of Theorem)
@ We show that x € R(A)* implies x € N(AT) and vice versa.

x € R(A)* (Ay,x) =0 foranyy cR"
y'"ATx=0 foranyy cR”
(y,ATx)=0 foranyy e R"

ATx=0 < xeN(AT

1117

by the definitions of these subspaces and of an inner product.
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Proof (of Theorem)
@ We show that x € R(A)* implies x € N(AT) and vice versa.

x € R(A)* (Ay,x) =0 foranyy cR"
y'"ATx=0 foranyy cR”
(y,ATx)=0 foranyy e R"

ATx=0 < xeN(AT

1117

by the definitions of these subspaces and of an inner product.

@ Using (1), we have

R(A): D N(AT)
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Proof (of Theorem)
@ We show that x € R(A)* implies x € N(AT) and vice versa.

x € R(A)* (Ay,x) =0 foranyy cR"
y'"ATx=0 foranyy cR”
(y,ATx)=0 foranyy e R"

ATx=0 < xeN(AT

1117

by the definitions of these subspaces and of an inner product.

@ Using (1), we have

RA: U NAT) <5 R(A) = NAT):
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Proof (of Theorem)
@ We show that x € R(A)* implies x € N(AT) and vice versa.

x € R(A)* (Ay,x) =0 foranyy cR"
y'"ATx=0 foranyy cR”
(y,ATx)=0 foranyy e R"

ATx=0 < xeN(AT

1117

by the definitions of these subspaces and of an inner product.

@ Using (1), we have

RA: U NAT) <5 R(A) = NAT):
A2AT RATY = N(A)L.

fasshauer@iit.edu MATH 532

150


http://math.iit.edu/~fass

Starting to think about the SVD

The decompositions of R™ and R" from the corollary help prepare for
the SVD of an m x n matrix A.
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Starting to think about the SVD

The decompositions of R™ and R" from the corollary help prepare for
the SVD of an m x n matrix A.

Assume rank(A) = r and let

Bray = {U1,..., ur} ON basis for R(A) C R™,
Byary = {Urs1,- -, Um} ON basis for N(AT) C R™,
Bpary = {Vi,...,Vr} ON basis for R(AT) C R”,

By = {Vrst,---, Vn} ON basis for N(A) C R".
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Orthogonal Decomposition

Starting to think about the SVD

The decompositions of R™ and R" from the corollary help prepare for
the SVD of an m x n matrix A.

Assume rank(A) = r and let

Bray = {U1,..., ur} ON basis for R(A) C R™,
Byary = {Urs1,- -, Um} ON basis for N(AT) C R™,
Bpary = {Vi,...,Vr} ON basis for R(AT) C R”,
By = {Vrst,---, Vn} ON basis for N(A) C R".
By the corollary
Bray U By(ary ON basis for R™,
Breary U Bn(a) ON basis for R”,
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Starting to think about the SVD

The decompositions of R™ and R" from the corollary help prepare for
the SVD of an m x n matrix A.
Assume rank(A) = r and let

Bray = {U1,..., ur} ON basis for R(A) C R™,
Byary = {Urs1,- -, Um} ON basis for N(AT) C R™,
Bpary = {Vi,...,Vr} ON basis for R(AT) C R”,
By = {Vrst,---, Vn} ON basis for N(A) C R".
By the corollary
Bray U By(ary ON basis for R™,
Breary U Bn(a) ON basis for R”,

and therefore the following are orthogonal matrices
U=(uy u -+ up)

V=(vi vo -+ vp).
MATH 532 151
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Orthogonal Decomposition

Consider
m,n

R=UTAV = (u,-TAv,-)ij:1 .

Note that

AVj:O7 j:
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Orthogonal Decomposition

Consider
m,n

R=UTAV = (u,-TAv,-)ij:1 .

Note that

Av; =0, j=r+1,....n,
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Orthogonal Decomposition

Consider
m,n

R=UTAV = (u,-TAv,-)ij:1 .

Note that

Av; =0, j=r+1,....n,
u/A=0
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Orthogonal Decomposition

Consider .
_uTav — (aTav )™
R=U AV_(u,Av,)i’jﬂ.
Note that
Av; =0, j=r+1,....n,
uA=0 — ATu;=0, i=
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Orthogonal Decomposition

Consider o
—_uTav — (uTav.)
R=U AV_(u,Av,)i’jﬂ.
Note that
Av; =0, j=r+1,....n,
u/A=0 — ATu;=0, i=r+1,....m,
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Orthogonal Decomposition

Consider -
—uTav — (uTav\™
R=U AV_(u,Av,)iyj:{
Note that
Av; =0, j=r+1,....n,
u/A=0 — ATu;=0, i=r+1,....m,
SO
ulAvy - ulAv,
R = 0] :(Crxr O>'
ulAvy - ulAv, 0O O
@] @)
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Orthogonal Decomposition

Thus
1T _ Cr><r O
R=U AV_<O 0
_ T _ Cr><r O T
<— A=URV _U(O O)V’

the URV factorization of A.
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Orthogonal Decomposition

Thus
1T _ Cr><r O
R=U AV(O 0
_ T _ Cr><r ) T
<— A=URV _U(O O)V’

the URV factorization of A.

Remark
The matrix C,« is nonsingular since

rank(C) = rank(UTAV) = rank(A) = r

because multiplication by the orthogonal (and therefore nonsingular)
matrices UT and V does not change the rank of A.
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Orthogonal Decomposition

We have now shown that the ON bases for the fundamental subspaces
of A yield the URV factorization.
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Orthogonal Decomposition

We have now shown that the ON bases for the fundamental subspaces
of A yield the URV factorization.

As we show next, the converse is also true, i.e., any URV factorization
of A yields a ON bases for the fundamental subspaces of A.
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Orthogonal Decomposition

We have now shown that the ON bases for the fundamental subspaces
of A yield the URV factorization.

As we show next, the converse is also true, i.e., any URV factorization
of A yields a ON bases for the fundamental subspaces of A.

However, the URV factorization is not unique. Different ON bases
result in different factorizations.
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Orthogonal Decomposition

Consider A = URV with U, V orthogonal m x m and n x n matrices,

respectively, and R = (C =

o O) with C nonsingular.
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Orthogonal Decomposition

Consider A = URV with U, V orthogonal m x m and n x n matrices,
C O

respectively, and R = (O 0

) with C nonsingular.
We partition

u—(U1 l{%) v—(‘“ &)
r

mxr mxm— nxr nxn—r
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Orthogonal Decomposition

Consider A = URV with U, V orthogonal m x m and n x n matrices,

respectively, and R = (C =

o O) with C nonsingular.

We partition

mxr mxm—r nxr nxn—r

U4 Uo V4 A
U=(<— <~ ], V=(-— <~
Then V (and therefore also V') is nonsingular and we see that

R(A) = R(URVT)

(12)
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Orthogonal Decomposition

Consider A = URV with U, V orthogonal m x m and n x n matrices,

respectively, and R = (C =

o O) with C nonsingular.

We partition

mxr mxm—r nxr nxn—r

U4 Uo V4 A
U=~ <~ |, V=(w~ <~
Then V (and therefore also V') is nonsingular and we see that

R(A) = R(URVT)
= R(UR)

(12)
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Orthogonal Decomposition

Consider A = URV with U, V orthogonal m x m and n x n matrices,

respectively, and R = (C =

o O) with C nonsingular.

We partition

mxr mxm—r nxr nxn—r

U4 Uo V4 A
U=~ <~ |, V=(w~ <~
Then V (and therefore also V') is nonsingular and we see that

R(A) = R(URVT)
= R(UR)

~R((U:C 0)) (12)
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Orthogonal Decomposition

Consider A = URV with U, V orthogonal m x m and n x n matrices,

respectively, and R = (C =

o O) with C nonsingular.

We partition

mxr mxm—r nxr nxn—r

U4 Uo V4 A
U=~ <~ |, V=(w~ <~
Then V (and therefore also V') is nonsingular and we see that

R(A) = R(URVT)
= R(UR)

=R((UiC 0)) =RUs0) (12)

mxr
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Orthogonal Decomposition

Consider A = URV with U, V orthogonal m x m and n x n matrices,

respectively, and R = (C =

o O) with C nonsingular.

We partition

U(U1 U2> V<V1 V2>
=< <= ], = <~

mxr  mxm-—r nxr  nxn—r
Then V (and therefore also V') is nonsingular and we see that
R(A) = R(URVT)
= R(UR)
=R((U,C 0)) = R(U1C)

m><r

rank (C)=r

R(U1) (12)
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Orthogonal Decomposition

Consider A = URV with U, V orthogonal m x m and n x n matrices,

respectively, and R = (C =

o O) with C nonsingular.

We partition

mxr mxm—r nxr nxn—r

U4 Uo V4 A
U=~ <~ |, V=(w~ <~
Then V (and therefore also V') is nonsingular and we see that

R(A) = R(URVT)
= R(UR)

=R((UIC 0)) = RUC)

m><r

rank

R(U1) (12)

so that the columns of Uy are an ON basis for R(A).
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Orthogonal Decomposition

Moreover,

N(AT)
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Orthogonal Decomposition

Moreover,

prev. thm

N(AT) R(A)
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Orthogonal Decomposition

Moreover,

prev. thm

N(AT) R(A) 2 Ry

fasshauer@iit.edu MATH 532 156


http://math.iit.edu/~fass

Orthogonal Decomposition

Moreover,

prev. thm

N(AT) RA)- 2 RU* = R(U,)

since U is orthogonal and R = R(U) & R(U>).
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Orthogonal Decomposition

Moreover,

prev. thm

N(AT) AR Z AU = RU,)
since U is orthogonal and R = R(U) & R(U>).

This implies that the columns of U, are an ON basis for N(AT).
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Orthogonal Decomposition

Moreover,
N(AT) P R(AY 2 AU = A(U)
since U is orthogonal and R = R(U) & R(U>).
This implies that the columns of U, are an ON basis for N(AT).

The other two cases can be argued similarly using N(AB) = N(B)
provided rank(A) = n.
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Orthogonal Decomposition

The main difference between a URV factorization and the SVD is that
the SVD will contain a diagonal matrix X with r nonzero singular
values, while R contains the full r x r block C.
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Orthogonal Decomposition

The main difference between a URV factorization and the SVD is that
the SVD will contain a diagonal matrix X with r nonzero singular
values, while R contains the full r x r block C.

As a first step in this direction, we can easily obtain a URV factorization
of A with a lower triangular matrix C.
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Orthogonal Decomposition

The main difference between a URV factorization and the SVD is that
the SVD will contain a diagonal matrix X with r nonzero singular
values, while R contains the full r x r block C.

As a first step in this direction, we can easily obtain a URV factorization
of A with a lower triangular matrix C.

Idea: use Householder reflections (or Givens rotations)
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Orthogonal Decomposition

Consider an m x n matrix A.
We apply an m x m orthogonal (Householder reflection) matrix P so
that

A — PA= (cB)) ,  with r x m matrix B, rank(B) = r.
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Orthogonal Decomposition

Consider an m x n matrix A.

We apply an m x m orthogonal (Householder reflection) matrix P so
that

A — PA= (cB)) ,  with r x m matrix B, rank(B) = r.

Next, use n x n orthogonal Q as follows:

BT — QB'= <g> , with r x r upper triangular T, rank(T) = r.
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Orthogonal Decomposition

Consider an m x n matrix A.

We apply an m x m orthogonal (Householder reflection) matrix P so
that

A — PA= (cB)) ,  with r x m matrix B, rank(B) = r.

Next, use n x n orthogonal Q as follows:

BT — QB'= <g> , with r x r upper triangular T, rank(T) = r.

Then
BQ'=(TT 0) «< B=(T" 0)Q
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Orthogonal Decomposition

Consider an m x n matrix A.
We apply an m x m orthogonal (Householder reflection) matrix P so
that

A — PA= (cB)) ,  with r x m matrix B, rank(B) = r.

Next, use n x n orthogonal Q as follows:

BT — QBT = <g> . with r x r upper triangular T, rank(T) = r.
Then

BQ' = (TT 0) < B=(TT 0)Q
and

(6)-(6 o)
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Orthogonal Decomposition

Together,
T O
PA_<O O>Q
T7T O
_pT
<~ A=P (O O)Q’

a URYV factorization with lower triangular block T7.
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Orthogonal Decomposition

Together,
T O
PA_<O O)Q
T7T O
_pT
<~ A=P (O O)Q’

a URV factorization with lower triangular block TT.

Remark
See HW for an example of this process with numbers. J
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Outline

@ Singular Value Decomposition
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Singular Value Decomposition

We know

euT 1 (C O\ .7
A = URV _U(O o)V

where C is upper triangular and U, V are orthogonal.
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Singular Value Decomposition

We know 5 @
_ T _ T
A = URV _U<O O)V’

where C is upper triangular and U, V are orthogonal.

Now we want to establish that C can even be made diagonal.
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Singular Value Decomposition

Note that
|Allz = [[Cll2 =: o1

since multiplication by an orthogonal matrix does not change the
2-norm (see HW).
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Singular Value Decomposition

Note that
|Allz = [[Cll2 =: o1

since multiplication by an orthogonal matrix does not change the

2-norm (see HW).

Also,

ICllz = max [|Cz]|>
Izl2=1

so that
ICll2 =||Cx]||2 for some x, |[x|>=1.
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Singular Value Decomposition

Note that

IAll2 = lICll2 =: o4
since multiplication by an orthogonal matrix does not change the
2-norm (see HW).

Also,

ICllz = max [|Cz]|>
Izl2=1

so that
ICll2 =||Cx]||2 for some x, |[x|>=1.

In fact (see Sect.5.2), x is such that (CTC — A)x = 0, i.e., x is an
eigenvector of C'C so that

ICllz2 =01 = VA= VxTCTCx. (13)
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Singular Value Decomposition

Since x is a unit vector we can extend it to an orthogonal matrix
Rx = (X X) 5

e.g., using Householder reflectors as discussed at the end of Sect.5.6.
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Singular Value Decomposition

Since x is a unit vector we can extend it to an orthogonal matrix
Rx = (X X) 5
e.g., using Householder reflectors as discussed at the end of Sect.5.6.

Similarly, let
Cx Cx

CCxll2 o1

(14)
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Singular Value Decomposition

Since x is a unit vector we can extend it to an orthogonal matrix
Rx = (X X) 5

e.g., using Householder reflectors as discussed at the end of Sect.5.6.

Similarly, let
Cx Cx
= =, 14
ICxll: ~ o (14)
Then
Ry=(yY)

is also orthogonal (and Hermitian/symmetric) since it's a Householder
reflector.
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Singular Value Decomposition

N T TC TC
X
RTCR:<y>CxX:<y xy )
\Ey, x= (1) C(x X)=(Vrcx yTCX
=Ry
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Singular Value Decomposition

Now v TC TCX
R7 CR :<y>Cx X :(y xy >
AT %) ={yrex yrex
:Ry

From above

o2 =1"® xTcTox @ o yTox

— y'Cx=o.
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Singular Value Decomposition

Now T T T
Cx y'CX
RTCR:<y>CxX:<y >
Py CRe=(y7)Cx X)=(¥7cx Yrox
:Ry
From above
o2 =1"® xTcTox @ o yTox
— y'Cx=o.
Also,

Yex @yT(oy) =0

since Ry is orthogonal, i.e., y is orthogonal to the columns of Y.
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Let YTCX = C, and y'CX = ¢” so that

i
RyCRy = (OS gz> .
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Let YTCX = C, and y'CX = ¢” so that

-
RyCRy = (0(')1 gz> .

To show that ¢” = 07 consider

.
¢’ =yTcx@ <CX> CX
g
TAT
_ x7CTox, ")

o1
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Let YTCX = C, and y'CX = ¢” so that

-
RyCRy = <“01 gz> .

To show that ¢” = 07 consider

.
¢’ =yTcx@ (CX> CX
g
TAT
_xcex (15)

o1
From (13) x is an eigenvector of C'C, i.e.,

C'Cx=X x=02x <<= x'C'C=o%x".
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Let YTCX = C, and y'CX = ¢” so that

-
RyCRy = (“01 gz> .

To show that ¢” = 07 consider

.
¢’ =yTcx@ (CX> CX

o1
_xCcX TC;TCX. (15)
From (13) x is an eigenvector of C'C, i.e.,
C'Cx=XMx=0%x <+ x'C'C=o%x".
Plugging this into (15) yields

¢ =ox'X=0

since Ry = (x X) is orthogonal.
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Singular Value Decomposition

Moreover, o1 > ||Cz||2 since

HW
o1 = [[Cll2 = [RyCRxll2 = max{ay, [[Cz||2}
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Singular Value Decomposition

Moreover, o1 > ||Cz||2 since

HW
o1 = [[Cll2 = [RyCRxll2 = max{ay, [[Cz||2}

Next, we repeat this process for Co, i.e.,

oo 07

) with oo > HC3H2
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Singular Value Decomposition

Moreover, o1 > ||Cz||2 since

HW
o1 = [[Cll2 = [RyCRxll2 = max{ay, [[Cz||2}

Next, we repeat this process for Co, i.e.,

02 o’ .
$yCoSx = (g ) with 2> Csllo
Let - T
10 T 10
P, = R,, Q=R .
2 <o s;) y> =2 "(o sx>
Then

o 0 0
P2CQz= (0 oo 07| withoy > 02> |Csllz
0 0 Cs
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We continue this until
o1 (@)

o
P,_1CQ,_1 = . =D, o12>202>...
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Singular Value Decomposition

We continue this until
o1 (@)

02
P,_1CQ,_1 = . =D, o1>00>...

Finally, let
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Singular Value Decomposition

We continue this until

o1 (@)
02
Pr_1CQ,_q = . =D, o1>2022>... >0/
O T
Finally, let
o7 _ (P41 O 7 v_(Q-1 O
U(O IU,andeO ok
Together,
~r,o (D O
U'AV = (O 0

or — without the tildes — the singular value decomposition (SVD) of A
_u (P O\yr
A=U <O O) V'

where Aismxn UismxmD=rxrandV =nxn.
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Singular Value Decomposition

We use the following terminology:
singular values: o1 > 00 > ... > o, > 0,
left singular vectors: columns of U,

right singular vectors: columns of V.
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Singular Value Decomposition

We use the following terminology:
singular values: o1 > 00 > ... > o, > 0,
left singular vectors: columns of U,

right singular vectors: columns of V.

Remark

In Chapter 7 we will see that the columns of U and V are also special
eigenvectors of ATA.
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Geometric interpretation of SVD

For the following we assume A € R™" n = 2.

ST

05

.

This picture is true since
A =UDV’

—

AV =UD

and o1, oo are the lengths of the semi-axes of the ellipse because

Jug|l = Jluz]l = 1.

Remark

See [Mey00] for more details.
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Singular Value Decomposition

For general n, A transforms the 2-norm unit sphere to an ellipsoid
whose semi-axes have lengths

01 >022>...20p.
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Singular Value Decomposition

For general n, A transforms the 2-norm unit sphere to an ellipsoid
whose semi-axes have lengths

01 >022>...20p.

Therefore, -
Ka(A) = =

On

is the distortion ratio of the transformation A.
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Singular Value Decomposition

For general n, A transforms the 2-norm unit sphere to an ellipsoid
whose semi-axes have lengths

01 >022>...20p.

Therefore, -
Ka(A) = =

On

is the distortion ratio of the transformation A.

Moreover, 1
a1 = [[Allz, On = A2
so that
k2(A) = [|All2|A7"[|2

is the 2-norm condition number of A (€ R"*").
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Singular Value Decomposition

Remark
The relations for 01 and o, hold because

HW
1Al = JUDVT ||z =" |ID]l2 = o

_ _ HW |~ 1
A~ |2 = IVD~'UT |l = |ID7'[|2 = .

n
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Singular Value Decomposition

Remark
The relations for 01 and o, hold because

HW
1Al = JUDVT||2 "= [ID]|2 = o4
’
IA~" |l = [IVD~"UT |l = D"l = —

On

Remark

We always have ro(A) > 1, and kp(A) = 1 if and only if A is a multiple
of an orthogonal matrix (typo in [Mey00], see proof on next slide).
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Singular Value Decomposition

Proof
“«<—=": Assume A = aQ with « > 0, Q orthogonal, i.e.,

[All2 = allQllz = a [max IQx(2 =" o max ||x|2 = o
b

[Ix|l2=1
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Singular Value Decomposition

Proof
“<—": Assume A = aQ with « > 0, Q orthogonal, i.e.,

ME o max_[|X||2 = a.

[Allz = af|Qll2 = o max {|Qx||2
Ixlo=1 lx]lz=1

Also
ATA=02Q"Q=0?’l — AT= lZAT and ||AT|2 = ||Al2
[0
so that [[A~"|, = 1 and

_ 1
r2(A) = [Al2 A7z = a— = 1.
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Singular Value Decomposition

Proof (cont.)
“—": Assume rp(A) =

Z_l =1 so that 01 = o, and therefore

D = o4l

fasshauer@iit.edu
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Singular Value Decomposition

Proof (cont.)
‘=": Assume r2(A) = 7L =1 so that oy = oy and therefore

D = o4l
Thus
A=UDVT = gUVT
and
ATA = o%(UVT)TUV’
=o2VUTUVT = o2l
]
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Applications of the Condition Number

Let x be the answer obtained by solving Ax = b with A € R™".
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Applications of the Condition Number

Let x be the answer obtained by solving Ax = b with A € R™".

Is a small residual
r=>b-Ax

a good indicator for the accuracy of x?
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Applications of the Condition Number

Let x be the answer obtained by solving Ax = b with A € R™".

Is a small residual
r=>b-Ax

a good indicator for the accuracy of x?

Since x is the exact answer, and X the computed answer we have the

relative error .
[x — x|

1]
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Singular Value Decomposition

Now

Il = [lb— Ax|| = [|Ax — AX|
= [IA(x = X)[| < [|A]ll|lx — X]|.
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Singular Value Decomposition

Now
[rll = |b— AX|| = ||[Ax — AX|
= [[A(x = X)|| < [|A]l[[x — X]|.

|A~"b] _ 4

To get the relative error we multiply by T
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Singular Value Decomposition

Now

Il = [lb— Ax|| = [|Ax — AX|
= [IA(x = X)|| < [IA]l]lx — X{|

To get the relative error we multiply by HAH?HbH =1.
Then
el < [AljA- X = X1
I«
I Ix— %
L LN (16)
1B x|
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Singular Value Decomposition

Moreover, using r = b — AX = b — b,

Ix — X|| = [[A~"(b - b)|| < |A""]|||r].
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Singular Value Decomposition

Moreover, using r = b — AX = b — b,
Ix — X|| = |A~ (b= b)|| < IA"]l]|r]l
Multiplying by % — 1 we have

Ix — X| Il

= "Aypy
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Singular Value Decomposition

Moreover, using r = b — AXx = b — b,

Ix — X|| = [[A~"(b - b)|| < |A""]|||r].

Multiplying by % — 1 we have
Ix =Xl gaylrll (17)
(24— b
Combining (16) and (17) yields
Tl _ IIx—X| 7]
< < Kk(A)—.
<A el = ="M
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Singular Value Decomposition

Moreover, using r = b — AX = b — b,
Ix — X|| = |A~ (b= b)|| < IA"]l]|r]l

Multiplying by % — 1 we have

Ix— & I
< il (17)
AT
Combining (16) and (17) yields
e x| I
< < Kk(A)—.
RA 1B S T ="My

Therefore, the relative residual ““l’,““ is a good indicator of relative error if

and only if A is well conditioned, i.e., k(A) is small (close to 1).
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Applications of the SVD

@ Determination of “numerical rank(A)”:
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Applications of the SVD
@ Determination of “numerical rank(A)”:

rank(A) ~ index of smallest singular value greater or equal a
desired threshold
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Applications of the SVD

@ Determination of “numerical rank(A)”:
rank(A) ~ index of smallest singular value greater or equal a
desired threshold

© Low-rank approximation of A:
The Eckart—Young theorem states that

k
T
Ak = Z oiujVv;
i=1

is the best rank k approximation to A in the 2-norm (also the
Frobenius norm), i.e.,

|A—Akll2= min ||A—B|a.
rank(B)=k

Moreover,
A —Axllz = ox1.
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Applications of the SVD

@ Determination of “numerical rank(A)”:
rank(A) ~ index of smallest singular value greater or equal a
desired threshold

© Low-rank approximation of A:
The Eckart—Young theorem states that

k
T
Ak = Z oiujVv;
i=1

is the best rank k approximation to A in the 2-norm (also the
Frobenius norm), i.e.,

|A—Akll2= min ||A—B|a.
rank(B)=k

Moreover,
A —Axllz = ox1.

Run SvD_movie.m
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Singular Value Decomposition

© Stable solution of least squares problems:
Use Moore—Penrose pseudoinverse
Definition
Let A € R™"and

(D O)\.r
A_U<O o)V

be the SVD of A. Then

D-' O
T T
A_V<O O)U

is called the Moore—Penrose pseudoinverse of A.
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© Stable solution of least squares problems:
Use Moore—Penrose pseudoinverse
Definition

Let A € R™" and

(D O)\.r
A_U<O o)V

be the SVD of A. Then
ar—v (P O)yr
O O
is called the Moore—Penrose pseudoinverse of A.

Remark
Note that AT € R™™ and

ul
AT =3%" %, r = rank(A).
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Singular Value Decomposition

We now show that the least squares solution of
Ax=D>b

is given by
x = A'b.
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Start with normal equations and use

_u(P O\y7_qgpur
A_U(O O)V =UDV',

the reduced SVD of A, i.e., Ue R’"Xf,\Nl e RM™T,
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Start with normal equations and use

_u(P O\y7_qgpur
A_U<O O)V =UDV’,

the reduced SVD of A, i.e., Ue R’"Xf,\Nl e RM™T,
ATAx=A"b — VDU'UDV’x=VDUTb
~—~

M
«— VD2V'x=VDU"b
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Start with normal equations and use

_u (B O\yr_gpvr
A_U<O O>V =UDV’,

the reduced SVD of A, i.e., Ue R”’Xf,\Nl e RM™T,
ATAx =ATb = VDU'UDV'x=VDU"b
=|
<« VD2V'x=VDU'b
Multiplication by D=1V yields

DV'x = UTb.
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Singular Value Decomposition

Thus B _
DVix=U"b
implies
x=VD'U"b
_ (D" ON 7
= X= V( o O> u'b
— x=Ab.

fasshauer@iit.edu MATH 532 181


http://math.iit.edu/~fass

Singular Value Decomposition

Remark
@ IfA is nonsingular then At = A= (see HW).
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Singular Value Decomposition

Remark
@ IfA is nonsingular then At = A= (see HW).
@ Ifrank(A) < n (i.e., the least squares solution is not unique), then

x = Atb provides the unique solution with minimum 2-norm (see
Jjustification on following slide).
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Minimum norm solution of underdetermined systems

Note that the general solution of Ax = b is given by

z=Ab+n, neN(A).
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Minimum norm solution of underdetermined systems

Note that the general solution of Ax = b is given by
z=Ab+n, neN(A).
Then
(13 = AT + nl|3

Pythag. thm 2 2 2
= " [IATBZ + [[n]lz > ||ATbI|5.

fasshauer@iit.edu MATH 532 183


http://math.iit.edu/~fass

____________Singular Value Decomposition |
Minimum norm solution of underdetermined systems

Note that the general solution of Ax = b is given by

z=Ab+n, neN(A).
Then

(13 = AT + nl|3

PP |ATBIE + |3 > |IATbE.

The Pythagorean theorem applies since (see HW)
A'b € R(AT) = R(AT)
so that, using R(AT) = N(A)*,
A'b 1 n.
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Singular Value Decomposition

Remark

Explicit use of the pseudoinverse is usually not recommended.
Instead we solve Ax = b, A € R™" by
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Singular Value Decomposition

Remark

Explicit use of the pseudoinverse is usually not recommended.
Instead we solve Ax = b, A € R™" by

@ A =UDVT (reduced SVD)
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Singular Value Decomposition

Remark

Explicit use of the pseudoinverse is usually not recommended.
Instead we solve Ax = b, A € R™" by

@ A =UDVT (reduced SVD)
Q@ Ax=b <+ DVix=UTh, so
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Singular Value Decomposition

Remark

Explicit use of the pseudoinverse is usually not recommended.
Instead we solve Ax = b, A € R™" by

@ A =UDVT (reduced SVD)

Q@ Ax=b — ~D\N/Tx=leb, S0
@ SolveDy =U'b fory
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Singular Value Decomposition

Remark

Explicit use of the pseudoinverse is usually not recommended.
Instead we solve Ax = b, A € R™" by

@ A =UDVT (reduced SVD)

Q@ Ax=b < DV'x=UTh, so
@ SolveDy =UTb fory
@ Compute x =\Vy
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Singular Value Decomposition

Other Applications

Also known as principal component analysis (PCA), (discrete)

Karhunen-Loéve (KL) transformation, Hotelling transform, or proper
orthogonal decomposition (POD)

@ Data compression
@ Noise filtering

@ Regularization of inverse problems
o Tomography
e Image deblurring
@ Seismology

@ Information retrieval and data mining (latent semantic analysis)
@ Bioinformatics and computational biology

o Immunology

e Molecular dynamics

e Microarray data analysis

fasshauer@iit.edu MATH 532

185


http://math.iit.edu/~fass

Outline

0 Orthogonal Projections
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Orthogonal Projections

Earlier we discussed orthogonal complementary subspaces of an
inner product space V, i.e.,

V=Mao M.

Definition

Consider V = M @& M- so that for every
v €V there exist unique vectors m € M,
n € M+ such that

Vv=m-+n.

v onto M.
The matrix P4 such that P, v = mis the
orthogonal projector onto M along M.
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Orthogonal Projections

For arbitrary complementary subspaces X', Y we showed earlier that
the projector onto X" along ) is given by

P=(X O)(X Y)™

I O

:mvwooyqu,

where the columns of X and Y are bases for X and ).
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Orthogonal Projections

Now we let X = M and ) = M be orthogonal complementary
subspaces, where M and N contain the basis vectors of M and M= in
their columns.
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Orthogonal Projections

Now we let X = M and ) = M be orthogonal complementary
subspaces, where M and N contain the basis vectors of M and M= in
their columns.

Then
P=(M O)(M N)". (18)
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Orthogonal Projections

Now we let ¥ = M and Y = M~ be orthogonal complementary
subspaces, where M and N contain the basis vectors of M and M= in
their columns.
Then

P=(M O)(M N)". (18)

Tofind (M N)~' we note that
M'N =N"M =0

and if N is an orthogonal matrix (i.e., contains an ON basis), then

(09 - (3 9)

(note that M"M is invertible since M is full rank because its columns
form a basis of M).
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Orthogonal Projections
Thus
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Orthogonal Projections

Thus MTAAMT
M Ny~ = (( N)T > (19)
Inserting (19) into (18) yields
™™n—1mT
Pv=(M O) <(M l\ﬁ])r M >
=MM'M)"'MT.
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Orthogonal Projections

Thus T 4T
(M N)_1:((M M)~'M > (19)

Inserting (19) into (18) yields

Remark

Note that P, is unique so that this formula holds for an arbitrary basis
of M (collected in M).
In particular, if M contains an ON basis for M, then

Py =MMT,
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Orthogonal Projections

Similarly,

Pye =N(N'N)"'NT (arbitrary basis for V)
P, =NN7 ON basis

As before,
Pu=1—Ppu.

fasshauer@iit.edu MATH 532 191


http://math.iit.edu/~fass

Orthogonal Projections

Similarly,
Pye =N(N'N)"'NT (arbitrary basis for V)
P, =NN7 ON basis
As before,
Pu=1-Pju.
Example

If M = span{u}, |u|| =1 then

Py=Py=uu’

and
Pyr=1-Py=1-uu’

(cf. elementary orthogonal projectors earlier).
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Properties of orthogonal projectors

Theorem

Let P € R™" be a projector, i.e., P> = P. Then the matrix P is an
orthogonal projector if

@ R(P) L N(P),
QP =P,
Q [Pz =1.
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Orthogonal Projections

Proof
@ Follows directly from the definition.
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Orthogonal Projections

Proof
@ Follows directly from the definition.

@ ‘—": Assume P is an orthogonal projector, i.e.,

P=MM'M)"'"M™ and PT=MM'M)""TMT =P.
N—_———

=(MTM)~"
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Orthogonal Projections

Proof
@ Follows directly from the definition.

@ ‘—": Assume P is an orthogonal projector, i.e.,
P=MM'M)"'"M™ and PT=MM'M)""TMT =P.
————
=(MTm)~1
“——": Assume P = P". Then
R(P) _ R(PT) Orth.d;comp. N(P)J_

so that P is an orthogonal projector via (1).
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Orthogonal Projections

Proof (cont.)

© For complementary subspaces X', ) we know the angle between
X and ) is given by

IPll2 = ﬁ oel0.3].
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Orthogonal Projections

Proof (cont.)

© For complementary subspaces X', ) we know the angle between
X and ) is given by

IPll2 = ﬁ oel0.3].

Assume P is an orthogonal projector, then § = 7 so that ||P|| = 1.
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Orthogonal Projections

Proof (cont.)

© For complementary subspaces X', ) we know the angle between
X and ) is given by

IP|l> = ﬁ 0 c [o, g} .

Assume P is an orthogonal projector, then § = 7 so that ||P|| = 1.

Conversely, if |P|l> = 1, then § = 5 and X', ) are orthogonal
complements, i.e., P is an orthogonal projector.
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Why is orthogonal projection so important?
Theorem
LetV be an inner product space with subspace M, and letb € V.
Then

dist(b, M) = min |[b— mlijz = [|b — Pbll2,

i.e., P,yb is the unique vector in M closest to b. The quantity
dist(b, M) is called the (orthogonal) distance from b to M.

b

- Jnin b —mll,
D
= ~ 7
V \/
A
0 p=Pub
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Orthogonal Projections

Proof
Let p=Pnrb. Then p € M and p — m € M for every m € M.
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Orthogonal Projections

Proof

Let p=Pnrb. Then p € M and p — m € M for every m € M.

Moreover,
b—p=(1-Py)bec M,

so that
(p—m) L (b—p).

fasshauer@iit.edu MATH 532

196


http://math.iit.edu/~fass

Orthogonal Projections

Proof

Let p=Pnrb. Then p € M and p — m € M for every m € M.

Moreover,
b—p=(1-Py)bec M,
so that
(p—m) L (b-p).
Then

lb—mi3=b—p-+p—m

fasshauer@iit.edu MATH 532

196


http://math.iit.edu/~fass

Orthogonal Projections

Proof
Let p=Pnrb. Then p € M and p — m € M for every m € M.

Moreover,
b—p=(-Py)be M,
so that
(p—m) L (b-p).
Then

lb—mi3=b—p-+p—m

Pytgag. 2

lb—plz + P — ml|3
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Orthogonal Projections

Proof
Let p=Pnrb. Then p € M and p — m € M for every m € M.

Moreover,
b—p=(-Py)be M,
so that
(p—m) L (b-p).
Then

lb—mi3=b—p-+p—m

Pythag. 2
=" |lb—pl5+p—ml|3

> |lb - pl3.
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Orthogonal Projections

Proof
Let p=Pnrb. Then p € M and p — m € M for every m € M.

Moreover,
b—p=(-Py)be M,
so that
(p—m) L (b-p).
Then

lb—m|3=|b-p+p—m|3
Pythag.
=9 b pl3+ ||p— m|3

> |lb - pl3.

Therefore minpmen ||b— m|j2 = ||b— p||2.
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Orthogonal Projections

Proof (cont.)
Unigueness: Assume there exists a g € M such that

16— qll2 = [[b— pll2.

(20)
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Orthogonal Projections

Proof (cont.)
Unigueness: Assume there exists a g € M such that

1b—qll2=1b-p|-.
Then
Ib-ql5=|b-p+p—q|3
—— ——

eEME EM
Pythag.

Ib— pli3 + P — ql3.
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Orthogonal Projections

Proof (cont.)
Uniqueness: Assume there exists a q € M such that

|b—ql2=|b-pl2. (20)
Then

Ib-ql5=|b-p+p—q|3
—— ——
emMt eM

Pythag.
=9 b-pl3+|p - ql2.

But then (20) implies that ||p — q||5 = 0 and therefore p = q. [
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Least squares approximation revisited
Now we give a “modern” derivation of the normal equations (without

calculus), and note that much of this remains true for best L,
approximation.
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Orthogonal Projections

Least squares approximation revisited

Now we give a “modern” derivation of the normal equations (without
calculus), and note that much of this remains true for best L,
approximation.

Goal of least squares: For A € R™*"_find

min \l > ((Ax)i— b)? = min [|AX — b|2.
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Least squares approximation revisited

Now we give a “modern” derivation of the normal equations (without
calculus), and note that much of this remains true for best L,
approximation.

Goal of least squares: For A € R™*"_find

XeR"

min\IZ(Ax - b)? = min [|AX — b2,
X n

Now Ax € R(A), so the least squares error is

dist(b, R(A)) =, min b~ Ax]|
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Least squares approximation revisited

Now we give a “modern” derivation of the normal equations (without
calculus), and note that much of this remains true for best L,
approximation.

Goal of least squares: For A € R™*"_find

XeR"

min\IZ(Ax - b)? = min [|AX — b2,
X n

Now Ax € R(A), so the least squares error is
dist(b, R(A)) = mm ||b Ax||2
= Hb - PR(A)bHZ

with Pg(a the orthogonal projector onto R(A).
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Orthogonal Projections

- minlAx—bll. =P b—-b
] ;2&%%” X lo = | Prea) 5
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Moreover, the least squares solution of Ax = b is given by that x for
which
Ax = PR(A)b
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Moreover, the least squares solution of Ax = b is given by that x for
which
Ax = PR(A)b

The following argument shows that this is equivalent to the normal
equations:

Ax = PR(A)b
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Moreover, the least squares solution of Ax = b is given by that x for
which
Ax = PR(A)b

The following argument shows that this is equivalent to the normal
equations:

Ax = PR(A)b
— PR(A)AX
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Moreover, the least squares solution of Ax = b is given by that x for
which
Ax = PR(A)b

The following argument shows that this is equivalent to the normal
equations:

Ax = PR(A)b
<~ PR(A)AX = P%(A)b = PH(A)b
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Moreover, the least squares solution of Ax = b is given by that x for

which
Ax = PR(A) b.

The following argument shows that this is equivalent to the normal
equations:

Ax = PR(A)b
<~ PR(A)AX = P%(A)b = PH(A)b
e PR(A)(AX = b) =0
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Orthogonal Projections

Moreover, the least squares solution of Ax = b is given by that x for
which

Ax = PR(A)b
The following argument shows that this is equivalent to the normal
equations:
Ax = PR(A)b
PR(A)AX = P%(A)b = PH(A)b
PR(A)(AX = b) =0
AX — b € N(Pgn)) = R(A)* (P orth. proj. onto R(A))

111
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Moreover, the least squares solution of Ax = b is given by that x for
which
Ax = PR(A)b

The following argument shows that this is equivalent to the normal
equations:

Ax = PR(A)b
<~ PR(A)AX = P%(A)b = PH(A)b
e PR(A)(AX = b) =0
<= Ax—be N(Pga)) = R(A)* (P orth. proj. onto R(A))

Orndeeomb- Ax — b e N(AT)
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Moreover, the least squares solution of Ax = b is given by that x for
which
Ax = PR(A)b

The following argument shows that this is equivalent to the normal
equations:
Ax = PR(A)b

<~ PR(A)AX = P%(A)b = PH(A)b

<~ PR(A)(AX = b) =0

<= Ax—be N(Pga)) = R(A)* (P orth. proj. onto R(A))

O™ Ax — b e N(AT)
— AT(Ax-b)=0
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Moreover, the least squares solution of Ax = b is given by that x for
which
Ax = PR(A)b

The following argument shows that this is equivalent to the normal
equations:
Ax = PR(A)b
— PR(A)AX = P%(A)b = PH(A)b
<~ PR(A)(AX = b) =0
<= Ax—be N(Pga)) = R(A)* (P orth. proj. onto R(A))

Orndeeomb- Ax — b e N(AT)
— AT(Ax-b)=0
«— ATAx=A"b.
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Moreover, the least squares solution of Ax = b is given by that x for
which
Ax = PR(A)b

The following argument shows that this is equivalent to the normal
equations:
Ax = PR(A)b
— PR(A)AX = P%(A)b = PH(A)b
<~ PR(A)(AX = b) =0
<= Ax—be N(Pga)) = R(A)* (P orth. proj. onto R(A))

Orndeeomb- Ax — b e N(AT)

— AT(Ax-b)=0

— ATAx=ATb.
Remark
No we are no longer limited to the real case.
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