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Vector Norms

Vector Norms

Definition
Let x ,y ∈ Rn (Cn). Then

xT y =
n∑

i=1

xiyi ∈ R

x∗y =
n∑

i=1

x̄iyi ∈ C

is called the standard inner product for Rn (Cn).
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Vector Norms

Definition
Let V be a vector space. A function ‖ · ‖ : V → R≥0 is called a norm
provided for any x ,y ∈ V and α ∈ R

1 ‖x‖ ≥ 0 and ‖x‖ = 0 if and only if x = 0,
2 ‖αx‖ = |α| ‖x‖,
3 ‖x + y‖ ≤ ‖x‖+ ‖y‖.

Remark
The inequality in (3) is known as the triangle inequality.
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Vector Norms

Remark
Any inner product 〈·, ·〉 induces a norm via (more later)

‖x‖ =
√
〈x ,x〉.

We will show that the standard inner product induces the
Euclidean norm (cf. length of a vector).

Remark
Inner products let us define angles via

cos θ =
xT y
‖x‖‖y‖

.

In particular, x ,y are orthogonal if and only if xT y = 0.
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Vector Norms

Example

Let x ∈ Rn and consider the Euclidean norm

‖x‖2 =
√

xT x

=

(
n∑

i=1

x2
i

)1/2

.

We show that ‖ · ‖2 is a norm. We do this for the real case, but the
complex case goes analogously.

1 Clearly, ‖x‖2 ≥ 0. Also,

‖x‖2 = 0 ⇐⇒ ‖x‖22 = 0

⇐⇒
n∑

i=1

x2
i = 0 ⇐⇒ xi = 0, i = 1, . . . ,n,

⇐⇒ x = 0.
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Vector Norms

Example (cont.)
2 We have

‖αx‖2 =

(
n∑

i=1

(αxi)
2

)1/2

= |α|

(
n∑

i=1

x2
i

)1/2

= |α| ‖x‖2.

3 To establish (3) we need

Lemma
Let x ,y ∈ Rn. Then

|xT y | ≤ ‖x‖2‖y‖2. (Cauchy–Schwarz–Bunyakovsky)

Moreover, equality holds if and only if y = αx with

α =
xT y
‖x‖22

.
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Vector Norms

Motivation for Proof of Cauchy–Schwarz–Bunyakovsky

As already alluded to above, the angle θ between two
vectors a and b is related to the inner product by

cos θ =
aT b
‖a‖‖b‖

.

Using trigonometry as in the figure, the projection of
a onto b is then

‖a‖ cos θ
b
‖b‖

= ‖a‖ aT b
‖a‖‖b‖

b
‖b‖

=
aT b
‖b‖2

b.

Now, we let y = a and x = b, so that the projection of y onto x is
given by

αx , where α =
xT y
‖x‖2

.
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Vector Norms

Proof of Cauchy–Schwarz–Bunyakovsky

We know that ‖y − αx‖22 ≥ 0 since it’s (the square of) a norm.
Therefore,

0 ≤ ‖y − αx‖22 = (y − αx)T (y − αx)

= yT y − 2αxT y + α2xT x

= yT y − 2
xT y
‖x‖2

xT y +

(
xT y

)2

‖x‖4
xT x︸︷︷︸
=‖x‖2

2

= ‖y‖22 −
(
xT y

)2

‖x‖22
.

This implies (
xT y

)2
≤ ‖x‖22‖y‖22,

and the Cauchy–Schwarz–Bunyakovsky inequality follows by taking
square roots.

fasshauer@iit.edu MATH 532 10

http://math.iit.edu/~fass


Vector Norms

Proof (cont.)
Now we look at the equality claim.

“=⇒”: Let’s assume that
∣∣xT y

∣∣ = ‖x‖2‖y‖2. But then the first part of
the proof shows that

‖y − αx‖2 = 0

so that y = αx .

“⇐=”: Let’s assume y = αx . Then∣∣∣xT y
∣∣∣ =

∣∣∣xT (αx)
∣∣∣ = |α|‖x‖22

‖x‖2‖y‖2 = ‖x‖2‖αx‖2 = |α|‖x‖22,

so that we have equality. �
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Vector Norms

Example (cont.)
3 Now we can show that ‖ · ‖2 satisfies the triangle inequality:

‖x + y‖22 = (x + y)T (x + y)

= xT x︸︷︷︸
=‖x‖2

2

+xT y + yT x︸︷︷︸
=xT y

+ yT y︸︷︷︸
=‖y‖2

2

= ‖x‖22 + 2xT y + ‖y‖22
≤ ‖x‖22 + 2|xT y |+ ‖y‖22
CSB
≤ ‖x‖22 + 2‖x‖2‖y‖2 + ‖y‖22

= (‖x‖2 + ‖y‖2)2 .

Now we just need to take square roots to have the triangle
inequality.

fasshauer@iit.edu MATH 532 12

http://math.iit.edu/~fass


Vector Norms

Lemma
Let x ,y ∈ Rn. Then we have the backward triangle inequality

| ‖x‖ − ‖y‖ | ≤ ‖x − y‖.

Proof
We write

‖x‖ = ‖x − y + y‖
tri.ineq.
≤ ‖x − y‖+ ‖y‖.

But this implies
‖x‖ − ‖y‖ ≤ ‖x − y‖.
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Vector Norms

Proof (cont.)
Switch the roles of x and y to get

‖y‖ − ‖x‖ ≤ ‖y − x‖ ⇐⇒ − (‖x‖ − ‖y‖) ≤ ‖x − y‖.

Together with the previous inequality we have

|‖x‖ − ‖y‖| ≤ ‖x − y‖.

�
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Vector Norms

Other common norms

`1-norm (or taxi-cab norm, Manhattan norm):

‖x‖1 =
n∑

i=1

|xi |

`∞-norm (or maximum norm, Chebyshev norm):

‖x‖∞ = max
1≤i≤n

|xi |

`p-norm:

‖x‖p =

(
n∑

i=1

|xi |p
)1/p

Remark
In the homework you will use Hölder’s and Minkowski’s inequalities to
show that the p-norm is a norm.
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Vector Norms

Remark
We now show that

‖x‖∞ = lim
p→∞

‖x‖p.

Let’s use tildes to mark all components of x that are maximal, i.e..

x̃1 = x̃2 = . . . = x̃k = max
1≤i≤n

|xi |.

The remaining components are then x̃k+1, . . . , x̃n.
This implies that

x̃i

x̃1
< 1, for i = k + 1, . . . ,n.
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Vector Norms

Remark (cont.)
Now

‖x‖p =

(
n∑

i=1

|x̃i |p
)1/p

= |x̃1|

k +

∣∣∣∣ x̃k+1

x̃1

∣∣∣∣︸ ︷︷ ︸
<1

p

+ . . .+

∣∣∣∣ x̃n

x̃1

∣∣∣∣︸︷︷︸
<1

p


1/p

.

Since the terms inside the parentheses — except for k — go to 0 for
p →∞, (·)1/p → 1 for p →∞.
And so

‖x‖p → |x̃1| = max
1≤i≤n

|xi | = ‖x‖∞.
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Vector Norms

Figure: Unit “balls” in R2 for the `1, `2 and `∞ norms.
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In fact, we have in general (similar to HW)

‖x‖1 ≥ ‖x‖2 ≥ ‖x‖∞, for any x ∈ Rn.
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Vector Norms

Norm equivalence
Definition
Two norms ‖ · ‖ and ‖ · ‖′ on a vector space V are called equivalent if
there exist constants α, β such that

α ≤ ‖x‖
‖x‖′

≤ β for all x( 6= 0) ∈ V.

Example

‖ · ‖1 and ‖ · ‖2 are equivalent since from above ‖x‖1 ≥ ‖x‖2 and also
‖x‖1 ≤

√
n‖x‖2 (see HW) so that

α = 1 ≤ ‖x‖1
‖x‖2

≤
√

n = β.

Remark
In fact, all norms on finite-dimensional vector spaces are equivalent.
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Matrix Norms

Matrix norms are special norms — they will satisfy one additional
property.
This property should help us measure ‖AB‖ for two matrices A,B of
appropriate sizes.
We look at the simplest matrix norm, the Frobenius norm, defined for
A ∈ Rm,n:

‖A‖F =

 m∑
i=1

n∑
j=1

|aij |2
1/2

=

(
m∑

i=1

‖Ai∗‖22

)1/2

=

 n∑
j=1

‖A∗j‖22

1/2

=
√

trace(AT A),

i.e., the Frobenius norm is just a 2-norm for the vector that contains all
elements of the matrix.
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Matrix Norms

Now

‖Ax‖22 =
m∑

i=1

|Ai∗x |2

CSB
≤

m∑
i=1

‖Ai∗‖22︸ ︷︷ ︸
=‖A‖2

F

‖x‖22

so that
‖Ax‖2 ≤ ‖A‖F‖x‖2.

We can generalize this to matrices, i.e., we have

‖AB‖F ≤ ‖A‖F‖B‖F ,

which motivates us to require this submultiplicativity for any matrix
norm.
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Matrix Norms

Definition
A matrix norm is a function ‖ · ‖ from the set of all real (or complex)
matrices of finite size into R≥0 that satisfies

1 ‖A‖ ≥ 0 and ‖A‖ = 0 if and only if A = O (a matrix of all zeros).
2 ‖αA‖ = |α|‖A‖ for all α ∈ R.
3 ‖A + B‖ ≤ ‖A‖+ ‖B‖ (requires A,B to be of same size).
4 ‖AB‖ ≤ ‖A‖‖B‖ (requires A,B to have appropriate sizes).

Remark
This definition is usually too general. In addition to the Frobenius
norm, most useful matrix norms are induced by a vector norm.
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Matrix Norms

Induced matrix norms

Theorem
Let ‖ · ‖(m) and ‖ · ‖(n) be vector norms on Rm and Rn, respectively, and
let A be an m × n matrix. Then

‖A‖ = max
‖x‖(n)=1

‖Ax‖(m)

is a matrix norm called the induced matrix norm.

Remark
Here the vector norm could be any vector norm. In particular, any
p-norm. For example, we could have

‖A‖2 = max
‖x‖2,(n)=1

‖Ax‖2,(m).

To keep notation simple we often drop indices.
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Matrix Norms

Proof
1 ‖A‖ ≥ 0 is obvious since this holds for the vector norm.

It remains to show that ‖A‖ = 0 if and only if A = O.
Assume A = O, then

‖A‖ = max
‖x‖=1

‖ Ax︸︷︷︸
=0

‖ = 0.

So now consider A 6= O. We need to show that ‖A‖ > 0.
There must exist a column of A that is not 0. We call this column
A∗k and take x = ek .
Then

‖A‖ = max
‖x‖=1

‖Ax‖
‖ek‖=1
≥ ‖Aek‖ = ‖A∗k‖ > 0

since A∗k 6= 0.
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Matrix Norms

Proof (cont.)
2 Using the corresponding property for the vector norm we have

‖αA‖ = max ‖αAx‖ = |α|max ‖Ax‖ = |α|‖A‖.

3 Also straightforward (based on the triangle inequality for the vector
norm)

‖A + B‖ = max ‖(A + B)x‖ = max ‖Ax + Bx‖
≤ max (‖Ax‖+ ‖Bx‖)
= max ‖Ax‖+ max ‖Bx‖ = ‖A‖+ ‖B‖.
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Matrix Norms

Proof (cont.)
4 First note that

max
‖x‖=1

‖Ax‖ = max
x 6=0

‖Ax‖
‖x‖

and so
‖A‖ = max

‖x‖=1
‖Ax‖ = max

x 6=0

‖Ax‖
‖x‖

≥ ‖Ax‖
‖x‖

.

Therefore
‖Ax‖ ≤ ‖A‖‖x‖. (1)

But then we also have ‖AB‖ ≤ ‖A‖‖B‖ since

‖AB‖ = max
‖x‖=1

‖ABx‖ = ‖ABy‖ (for some y with ‖y‖ = 1)

(1)
≤ ‖A‖‖By‖

(1)
≤ ‖A‖‖B‖ ‖y‖︸︷︷︸

=1

.

�
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Matrix Norms

Remark
One can show (see HW) that — if A is invertible —

min
‖x‖=1

‖Ax‖ =
1

‖A−1‖
.

The induced matrix norm can be interpreted geometrically:
‖A‖: the most a vector on the unit sphere can be stretched

when transformed by A.
1

‖A−1‖ : the most a vector on the unit sphere can be shrunk
when transformed by A.

Figure: induced matrix 2-norm from [Mey00].
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Matrix Norms

Matrix 2-norm

Theorem
Let A be an m × n matrix. Then

1 ‖A‖2 = max
‖x‖=1

‖Ax‖2 =
√
λmax.

2 ‖A−1‖2 =
1

min‖x‖=1 ‖Ax‖2
=

1√
λmin

.

where λmax and λmin are the largest and smallest eigenvalues of AT A,
respectively.

Remark
We also have√

λmax = σ1, the largest singular value of A,√
λmin = σn, the smallest singular value of A.
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Matrix Norms

Proof
We will show only (1), the largest singular value ((2) goes similarly).

The idea is to solve a constrained optimization problem (as in
calculus), i.e.,

maximize f (x) = ‖Ax‖22 = (Ax)T Ax

subject to g(x) = ‖x‖22 = xT x = 1.

We do this by introducing a Lagrange multiplier λ and define

h(x , λ) = f (x)− λg(x) = xT AT Ax − λxT x .
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Matrix Norms

Proof (cont.)
Necessary and sufficient (since quadratic) condition for maximum:
∂h
∂xi

= 0, i = 1, . . . ,n, g(x) = 1

∂

∂xi

(
xT AT Ax − λxT x

)
=
∂xT

∂xi
AT Ax + xT AT A

∂x
∂xi
− λ∂xT

∂xi
x − λxT ∂x

∂xi

= 2eT
i AT Ax − 2λeT

i x

= 2
(

(AT Ax)i − (λx)i

)
, i = 1, . . . ,n.

Together this yields

AT Ax − λx = 0 ⇐⇒
(

AT A− λI
)

x = 0,

so that λ must be an eigenvalue of AT A (since g(x) = xT x = 1
ensures x 6= 0).
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Matrix Norms

Proof (cont.)
In fact, as we now show, λ is the maximal eigenvalue.
First,

AT Ax = λx =⇒ xT AT Ax = λxT x = λ

so that
‖Ax‖2 =

√
xT AT Ax =

√
λ.

And then

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = max
‖x‖2

2=1
‖Ax‖2

= max
√
λ =

√
λmax.

�
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Matrix Norms

Special properties of the 2-norm

1 ‖A‖2 = max
‖x‖2=1

max
‖y‖2=1

|yT Ax |

2 ‖A‖2 = ‖AT‖2
3 ‖AT A‖2 = ‖A‖22 = ‖AAT‖2

4

∥∥∥∥(A O
O B

)∥∥∥∥ = max {‖A‖2, ‖B‖2}

5 ‖UT AV‖2 = ‖A‖2 provided UUT = I and VT V = I (orthogonal
matrices).

Remark
The proof is a HW problem.
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Matrix Norms

Matrix 1-norm and∞-norm

Theorem
Let A be an m × n matrix. Then we have

1 the column sum norm

‖A‖1 = max
‖x‖1=1

‖Ax‖1 = max
j=1,...,n

m∑
i=1

|aij |,

2 and the row sum norm

‖A‖∞ = max
‖x‖∞=1

‖Ax‖∞ = max
i=1,...,m

n∑
j=1

|aij |.

Remark
We know these are norms, so what we need to do is verify that the
formulas hold. We will show (1).
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Matrix Norms

Proof
First we look at ‖Ax‖1.

‖Ax‖1 =
m∑

i=1

|(Ax)i | =
m∑

i=1

|Ai∗x | =
m∑

i=1

|
n∑

j=1

aijxj |

reg.∆
≤

m∑
i=1

n∑
j=1

|aij | |xj |

=
n∑

j=1

[
|xj |

m∑
i=1

|aij |

]
≤

[
max

j=1,...,n

m∑
i=1

|aij |

]
n∑

j=1

|xj |.

Since we actually need to look at ‖Ax‖1 for ‖x‖1 = 1 we note that
‖x‖1 =

∑n
j=1 |xj | and therefore have

‖Ax‖1 ≤ max
j=1,...,n

m∑
i=1

|aij |.
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Matrix Norms

Proof (cont.)
We even have equality since for x = ek , where k is the index such that
A∗k has maximum column sum, we get

‖Ax‖1 = ‖Aek‖1 = ‖A∗k‖1 =
m∑

i=1

|aik |

= max
j=1...,n

m∑
i=1

|aik |

due to our choice of k .
Since ‖ek‖1 = 1 we indeed have the desired formula. �
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Inner Product Spaces

Definition
A general inner product in a real (complex) vector space V is a
symmetric (Hermitian) bilinear form 〈·, ·〉 : V × V → R (C), i.e.,

1 〈x ,x〉 ∈ R≥0 with 〈x ,x〉 = 0 if and only if x = 0.
2 〈x , αy〉 = α〈x ,y〉 for all scalars α.
3 〈x ,y + z〉 = 〈x ,y〉+ 〈x , z〉.
4 〈x ,y〉 = 〈y ,x〉 (or 〈x ,y〉 = 〈y ,x〉 if complex).

Remark
The following two properties (providing bilinearity) are implied (see
HW)

〈αx ,y〉 = α〈x ,y〉
〈x + y , z〉 = 〈x , z〉+ 〈y , z〉.
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Inner Product Spaces

As before, any inner product induces a norm via

‖ · ‖ =
√
〈·, ·〉.

One can show (analogous to the Euclidean case) that ‖ · ‖ is a norm.

In particular, we have a general Cauchy–Schwarz–Bunyakovsky
inequality

|〈x ,y〉| ≤ ‖x‖ ‖y‖.
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Inner Product Spaces

Example
1 〈x ,y〉 = xT y (or x∗y), the standard inner product for Rn (Cn).
2 For nonsingular matrices A we get the A-inner product on Rn, i.e.,

〈x ,y〉 = xT AT Ay

with
‖x‖A =

√
〈x ,x〉 =

√
xT AT Ax = ‖Ax‖2.

3 If V = Rm×n (or Cm×n) then we get the standard inner product for
matrices, i.e.,

〈A,B〉 = trace(AT B) (or trace(A∗B))

with
‖A‖ =

√
〈A,A〉 =

√
trace(AT A) = ‖A‖F .
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Inner Product Spaces

Remark
In the infinite-dimensional setting we have, e.g., for f ,g continuous
functions on (a,b)

〈f ,g〉 =

∫ b

a
f (t)g(t)dt

with

‖f‖ =
√
〈f , f 〉 =

(∫ b

a
(f (t))2 dt

)1/2

.
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Inner Product Spaces

Parallelogram identity

In any inner product space the so-called parallelogram identity holds,
i.e.,

‖x + y‖2 + ‖x − y‖2 = 2
(
‖x‖2 + ‖y‖2

)
. (2)

This is true since

‖x + y‖2 + ‖x − y‖2 = 〈x + y ,x + y〉+ 〈x − y ,x − y〉
= 〈x ,x〉+ 〈x ,y〉+ 〈y ,x〉+ 〈y ,y〉

+ 〈x ,x〉 − 〈x ,y〉 − 〈y ,x〉+ 〈y ,y〉

= 2〈x ,x〉+ 2〈y ,y〉 = 2
(
‖x‖2 + ‖y‖2

)
.
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Inner Product Spaces

Polarization identity

The following theorem shows that we
not only get a norm from an inner product (i.e., every Hilbert
space is a Banach space),
but — if the parallelogram identity holds — then we can get an
inner product from a norm (i.e., a Banach space becomes a
Hilbert space).

Theorem
Let V be a real vector space with norm ‖ · ‖. If the parallelogram
identity (2) holds then

〈x ,y〉 =
1
4

(
‖x + y‖2 − ‖x − y‖2

)
(3)

is an inner product on V.
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Inner Product Spaces

Proof
We need to show that all four properties of a general inner product
hold.

1 Nonnegativity:

〈x ,x〉 =
1
4

(
‖x + x‖2 − ‖x − x‖2

)
=

1
4
‖2x‖2 = ‖x‖2 ≥ 0.

Moreover, 〈x ,x〉 > 0 if and only if x = 0 since 〈x ,x〉 = ‖x‖2.
4 Symmetry:

〈x ,y〉 = 〈y ,x〉

is clear since ‖x − y‖ = ‖y − x‖.
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Inner Product Spaces

Proof (cont.)
3 Additivity: The parallelogram identity implies

‖x + y‖2 + ‖x + z‖2 =
1
2

(
‖x + y + x + z‖2 + ‖y − z‖2

)
. (4)

and

‖x − y‖2 + ‖x − z‖2 =
1
2

(
‖x − y + x − z‖2 + ‖z − y‖2

)
. (5)

Subtracting (5) from (4) we get

‖x + y‖2 − ‖x − y‖2+‖x + z‖2 − ‖x − z‖2

=
1
2

(
‖2x + y + z‖2 − ‖2x − y − z‖2

)
.

(6)
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Inner Product Spaces

Proof (cont.)
The specific form of the polarized inner product implies

〈x ,y〉+ 〈x , z〉 =
1
4

(
‖x + y‖2 − ‖x − y‖2 + ‖x + z‖2 − ‖x − z‖2

)
(6)
=

1
8

(
‖2x + y + z‖2 − ‖2x − y − z‖2

)
=

1
2

(∥∥∥∥x +
y + z

2

∥∥∥∥2

−
∥∥∥∥x − y + z

2

∥∥∥∥2
)

polarization
= 2〈x , y + z

2
〉. (7)

Setting z = 0 in (7) yields

〈x ,y〉 = 2〈x , y
2
〉 (8)

since 〈x , z〉 = 0.
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Inner Product Spaces

Proof (cont.)
To summarize, we have

〈x ,y〉+ 〈x , z〉 = 2〈x , y + z
2
〉. (7)

and
〈x ,y〉 = 2〈x , y

2
〉. (8)

Since (8) is true for any y ∈ V we can, in particular, set y = y + z so
that we have

〈x ,y + z〉 = 2〈x , y + z
2
〉.

This, however, is the right-hand side of (7) so that we end up with

〈x ,y + z〉 = 〈x ,y〉+ 〈x , z〉,

as desired.
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Inner Product Spaces

Proof (cont.)
2 Scalar multiplication:

To show 〈x , αy〉 = α〈x ,y〉 for integer α we can just repeatedly
apply the additivity property just proved.

From this we can get the property for rational α as follows.
We let α = β

γ with integer β, γ 6= 0 so that

βγ〈x ,y〉 = 〈γx , βy〉 = γ2〈x , β
γ

y〉.

Dividing by γ2 we get

β

γ
〈x ,y〉 = 〈x , β

γ
y〉.
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Inner Product Spaces

Proof (cont.)
Finally, for real α we use the continuity of the norm function (see HW)
which implies that our inner product 〈·, ·〉 also is continuous.

Now we take a sequence {αn} of rational numbers such that αn → α
for n→∞ and have — by continuity

〈x , αny〉 → 〈x , αy〉 as n→∞.

�
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Inner Product Spaces

Theorem
The only vector p-norm induced by an inner product is the 2-norm.

Remark
Since many problems are more easily dealt with in inner product
spaces (since we then have lengths and angles, see next section) the
2-norm has a clear advantage over other p-norms.
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Inner Product Spaces

Proof
We know that the 2-norm does induce an inner product, i.e.,

‖x‖2 =
√

xT x .

Therefore we need to show that it doesn’t work for p 6= 2.
We do this by showing that the parallelogram identity

‖x + y‖2 + ‖x − y‖2 = 2
(
‖x‖2 + ‖y‖2

)
fails for p 6= 2.
We will do this for 1 ≤ p <∞. You will work out the case p =∞ in a
HW problem.
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Inner Product Spaces

Proof (cont.)
All we need is a counterexample, so we take x = e1 and y = e2 so that

‖x + y‖2p = ‖e1 + e2‖2p =

(
n∑

i=1

|[e1 + e2]i |
p

)2/p

= 22/p

and, similarly
‖x − y‖2p = ‖e1 − e2‖2p = 22/p.

Together, the left-hand side of the parallelogram identity is
2
(
22/p) = 22/p+1.
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Inner Product Spaces

Proof (cont.)
For the right-hand side of the parallelogram identity we calculate

‖x‖2p = ‖e1‖2p = 1 = ‖e2‖2p = ‖y‖2p,

so that the right-hand side comes out to 4.
Finally, we have

22/p+1 = 4 ⇐⇒ 2
p

+ 1 = 2 ⇐⇒ 2
p

= 1 or p = 2.

�
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Orthogonal Vectors

Orthogonal Vectors

We will now work in a general inner product space V with induced
norm

‖ · ‖ =
√
〈·, ·〉.

Definition
Two vectors x ,y ∈ V are called orthogonal if

〈x ,y〉 = 0.

We often use the notation x ⊥ y .
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Orthogonal Vectors

In the HW you will prove the Pythagorean theorem for the 2-norm and
standard inner product xT y , i.e.,
‖x‖2 + ‖y‖2 = ‖x − y‖2 ⇐⇒ xT y = 0.
Moreover, the law of cosines states

‖x − y‖2 = ‖x‖2 + ‖y‖2 − 2‖x‖‖y‖ cos θ,

so that

cos θ =
‖x‖2 + ‖y‖2 − ‖x − y‖2

2‖x‖‖y‖
Pythagoras

=
2xT y

2‖x‖‖y‖
.

This motivates our general definition of angles:

Definition
Let x ,y ∈ V. The angle between x and y is defined via

cos θ =
〈x ,y〉
‖x‖‖y‖

, θ ∈ [0, π].
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Orthogonal Vectors

Orthonormal sets

Definition
A set {u1,u2, . . . ,un} ⊆ V is called orthonormal if

〈ui ,uj〉 = δij (Kronecker delta).

Theorem
Every orthonormal set is linearly independent.

Corollary
Every orthonormal set of n vectors from an n-dimensional vector
space V is an orthonormal basis for V.
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Orthogonal Vectors

Proof (of the theorem)
We want to show linear independence, i.e., that

n∑
j=1

αjuj = 0 =⇒ αj = 0, j = 1, . . . ,n.

To see this is true we take the inner product with ui :

〈ui ,

n∑
j=1

αjuj〉 = 〈ui ,0〉

⇐⇒
n∑

j=1

αj〈ui ,uj〉︸ ︷︷ ︸
=δij

= 0 ⇐⇒ αi = 0.

Since i was arbitrary this holds for all i = 1, . . . ,n, and we have linear
independence. �
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Orthogonal Vectors

Example

The standard orthonormal basis of Rn is given by

{e1,e2, . . . ,en}.

Using this basis we can express any x ∈ Rn as

x = x1e1 + x2e2 + . . .+ xnen,

we get a coordinate expansion of x .
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Orthogonal Vectors

In fact, any other orthonormal basis provides just as simple a
representation of x ;

Consider the orthonormal basis B = {u1,u2, . . . ,un} and assume

x =
n∑

j=1

αjuj

for some appropriate scalars αj .
To find these expansion coefficients αj we take the inner product with
ui , i.e.,

〈ui ,x〉 =
n∑

j=1

αj 〈ui ,uj〉︸ ︷︷ ︸
=δij

= αi .
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Orthogonal Vectors

We therefore have proved

Theorem
Let {u1,u2, . . . ,un} be an orthonormal basis for an inner product
space V. Then any x ∈ V can be written as

x =
n∑

j=1

〈x ,ui〉ui .

This is a (finite) Fourier expansion with Fourier coefficients 〈x ,ui〉.
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Orthogonal Vectors

Remark
The classical (infinite-dimensional) Fourier series for continuous
functions on (−π, π) uses the orthogonal (but not yet orthonormal)
basis

{1, sin t , cos t , sin 2t , cos 2t , . . . , }

and the inner product

〈f ,g〉 =

∫ π

−π
f (t)g(t)dt .
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Orthogonal Vectors

Example
Consider the basis

B = {u1,u2,u3} =


1

0
1

 ,

0
1
0

 ,

 1
0
−1

 .

It is clear by inspection that B is an orthogonal subset of R3, i.e., using
the Euclidean inner product, we have uT

i uj = 0, i , j = 1,2,3, i 6= j .
We can obtain an orthonormal basis by normalizing the vectors, i.e., by
computing v i = ui

‖ui‖2
, i = 1,2,3.

This yields

v1 =
1√
2

1
0
1

 , v2 =

0
1
0

 , v3 =
1√
2

 1
0
−1

 .
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Orthogonal Vectors

Example (cont.)

The Fourier expansion of x =
(
1 2 3

)T is given by

x =
3∑

i=1

(
xT v i

)
v i

=
4√
2

1√
2

1
0
1

+ 2

0
1
0

− 2√
2

1√
2

 1
0
−1


=

2
0
2

+

0
2
0

+

−1
0
1

 .
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Gram–Schmidt Orthogonalization & QR Factorization

We want to convert an arbitrary basis {x1,x2, . . . ,xn} of V to an
orthonormal basis {u1,u2, . . . ,un}.

Idea: construct u1,u2, . . . ,un successively so that
{u1,u2, . . . ,uk} is an ON basis for span{x1,x2, . . . ,xk},
k = 1, . . . ,n.
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Gram–Schmidt Orthogonalization & QR Factorization

Construction

k = 1:
u1 =

x1

‖x1‖
.

k = 2: Consider the projection of x2 onto u1, i.e.,

〈u1,x2〉u1.

Then
v2 = x2 − 〈u1,x2〉u1

and
u2 =

v2

‖v2‖
.
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Gram–Schmidt Orthogonalization & QR Factorization

In general, consider {u1, . . . ,uk} as a given ON basis for
span{x1, . . . ,xk}.
Use the Fourier expansion to express xk+1 with respect to
{u1, . . . ,uk+1}:

xk+1 =
k+1∑
i=1

〈ui ,xk+1〉ui

⇐⇒ xk+1 =
k∑

i=1

〈ui ,xk+1〉ui + 〈uk+1,xk+1〉uk+1

⇐⇒ uk+1 =
xk+1 −

∑k
i=1〈ui ,xk+1〉ui

〈uk+1,xk+1〉
=

vk+1

〈uk+1,xk+1〉

This vector, however is not yet normalized.
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Gram–Schmidt Orthogonalization & QR Factorization

We now want ‖uk+1‖ = 1, i.e.,√
〈 vk+1

〈uk+1,xk+1〉
,

vk+1

〈uk+1,xk+1〉
〉 =

1
|〈uk+1,xk+1〉|

‖vk+1‖ = 1

=⇒ ‖vk+1‖ = ‖xk+1 −
k∑

i=1

〈ui ,xk+1〉ui‖ = |〈uk+1,xk+1〉|.

Therefore

〈uk+1,xk+1〉 = ±‖xk+1 −
k∑

i=1

〈ui ,xk+1〉ui‖.

Since the factor ±1 does not change the span, nor orthogonality, nor
normalization we can pick the positive sign.
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Gram–Schmidt Orthogonalization & QR Factorization

Gram–Schmidt algorithm

Summarizing, we have

u1 =
x1

‖x1‖
,

vk = xk −
k−1∑
i=1

〈ui ,xk 〉ui , k = 2, . . . ,n,

uk =
vk

‖vk‖
.
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Gram–Schmidt Orthogonalization & QR Factorization

Using matrix notation to describe Gram–Schmidt

We will assume V ⊆ Rm (but this also works in the complex case).
Let

U1 =

0
...
0

 ∈ Rm

and for k = 2,3, . . . ,n let

Uk =
(
u1 u2 · · · uk−1

)
∈ Rm×k−1.
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Gram–Schmidt Orthogonalization & QR Factorization

Then

UT
k xk =


uT

1 xk
uT

2 xk
...

uT
k−1xk


and

UkUT
k xk =

(
u1 u2 · · · uk−1

)


uT
1 xk

uT
2 xk
...

uT
k−1xk


=

k−1∑
i=1

ui(uT
i xk ) =

k−1∑
i=1

(uT
i xk )ui .
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Gram–Schmidt Orthogonalization & QR Factorization

Now, Gram–Schmidt says

vk = xk −
k−1∑
i=1

(uT
i xk )ui = xk − UkUT

k xk

=
(

I− UkUT
k

)
xk , k = 1,2, . . . ,n,

where the case k = 1 is also covered by the special definition of U1.

Remark

UkUT
k is a projection matrix, and I− UkUT

k is a complementary
projection. We will cover these later.
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Gram–Schmidt Orthogonalization & QR Factorization

QR Factorization (via Gram–Schmidt)

Consider an m × n matrix A with rank(A) = n.

We want to convert the set of columns of A, {a1,a2, . . . ,an} to an ON
basis {q1,q2, . . . ,qn} of R(A).

From our discussion of Gram–Schmidt we know

q1 =
a1

‖a1‖
,

vk = ak −
k−1∑
i=1

〈q i ,ak 〉q i , k = 2, . . . ,n,

qk =
vk

‖vk‖
.
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Gram–Schmidt Orthogonalization & QR Factorization

We now rewrite as follows:

a1 = ‖a1‖q1

ak = 〈q1,a2〉q1 + . . .+ 〈qk−1,ak 〉qk−1 + ‖vk‖qk , k = 2, . . . ,n.

We also introduce the new notation

r11 = ‖a1‖, rkk = ‖vk‖, k = 2, . . . ,n.

Then

A =
(
a1 a2 · · · an

)
=
(
q1 q2 · · · qn

)︸ ︷︷ ︸
=Q


r11 〈q1,a2〉 · · · 〈q1,an〉

r22 · · · 〈q2,an〉
. . .

...
O rnn


︸ ︷︷ ︸

=R

and we have the reduced QR factorization of A.
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Gram–Schmidt Orthogonalization & QR Factorization

Remark
The matrix Q is m × n with orthonormal columns

The matrix R is n × n upper triangular with positive diagonal
entries.

The reduced QR factorization is unique (see HW).

fasshauer@iit.edu MATH 532 76

http://math.iit.edu/~fass


Gram–Schmidt Orthogonalization & QR Factorization

Example

Find the QR factorization of the matrix A =

1 2 0
0 1 1
1 0 1

.

q1 =
a1

‖a1‖
=

1√
2

1
0
1

 , r11 = ‖a1‖ =
√

2

v2 = a2 −
(

qT
1 a2

)
q1, qT

1 a2 =
2√
2

=
√

2 = r12

=

2
1
0

− √2√
2

1
0
1

 =

 1
1
−1

 , ‖v2‖ =
√

3 = r22

=⇒ q2 =
v2

‖v2‖
=

1√
3

 1
1
−1


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Gram–Schmidt Orthogonalization & QR Factorization

Example (cont.)

v3 = a3 −
(

qT
1 a3

)
q1 −

(
qT

2 a3

)
q2

with
qT

1 a3 =
1√
2

= r13, qT
2 a3 = 0 = r23

Thus

v3 =

0
1
1

− 1√
2
√

2

1
0
1

− 0 =
1
2

−1
2
1

 , ‖v3‖ =

√
6

2
= r33

So

q3 =
v3

‖v3‖
=

1√
6

−1
2
1


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Gram–Schmidt Orthogonalization & QR Factorization

Example (cont.)
Together we have

Q =


1√
2

1√
3
− 1√

6
0 1√

3
2√
6

1√
2
− 1√

3
1√
6

 , R =


√

2
√

2 1√
2

0
√

3 0
0 0

√
6



fasshauer@iit.edu MATH 532 79

http://math.iit.edu/~fass


Gram–Schmidt Orthogonalization & QR Factorization

Solving linear systems with the QR factorization

Recall the use of the LU factorization to solve Ax = b.
Now, A = QR implies

Ax = b ⇐⇒ QRx = b.

In the special case of a nonsingular n × n matrix A the matrix Q is also
n × n with ON columns so that

Q−1 = QT (since QT Q = I)

and
QRx = b ⇐⇒ Rx = QT b.
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Gram–Schmidt Orthogonalization & QR Factorization

Therefore we solve Ax = b by the following steps:
1 Compute A = QR.
2 Compute y = QT b.
3 Solve the upper triangular system Rx = y .

Remark
This procedure is comparable to the three-step LU solution procedure.
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The real advantage of the QR factorization lies in the solution of least
squares problems.
Consider Ax = b with A ∈ Rm×n and rank(A) = n (so that a unique
least squares solution exists).
We know that the least squares solution is given by the solution of the
normal equations

AT Ax = AT b.
Using the QR factorization of A this becomes

(QR)T QRx = (QR)T b

⇐⇒ RT QT Q︸ ︷︷ ︸
=I

Rx = RT QT b

⇐⇒ RT Rx = RT QT b.

Now R is upper triangular with positive diagonal and therefore
invertible. Therefore solving the normal equations corresponds to
solving (cf. the previous discussion)

Rx = QT b.
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Remark
This is the same as the QR factorization applied to a square and
consistent system Ax = b.

Summary
The QR factorization provides a simple and efficient way to solve least
squares problems.

The ill-conditioned matrix AT A is never computed.

If it is required, then it can be computed from R as RT R (in fact, this is
the Cholesky factorization) of AT A.
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Modified Gram–Schmidt

There is still a problem with the QR factorization via Gram–Schmidt:

it is not numerically stable (see HW).

A better — but still not ideal — approach is provided by the modified
Gram–Schmidt algorithm.

Idea: rearrange the order of calculation, i.e., write the projection
matrices

UkUT
k =

k−1∑
i=1

uiuT
i

as a sum of rank-1 projections.
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MGS Algorithm

k=1: u1 ← x1
‖x1‖ , uj ← x j , j = 2, . . . ,n

for k = 2 : n

Ek = I− uk−1uT
k−1

for j = k , . . . ,n
uj ← Ekuj

uk ←
uk

‖uk‖
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Remark
The MGS algorithm is theoretically equivalent to the GS algorithm,
i.e., in exact arithmetic, but in practice it preserves orthogonality
better.

Most stable implementations of the QR factorization use
Householder reflections or Givens rotations (more later).

Householder reflections are also more efficient than MGS.
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Unitary and Orthogonal Matrices

Definition
A real (complex) n × n matrix is called orthogonal (unitary) if its
columns form an orthonormal basis for Rn (Cn).

Theorem
Let U be an orthogonal n × n matrix. Then

1 U has orthonormal rows.
2 U−1 = UT .
3 ‖Ux‖2 = ‖x‖2 for all x ∈ Rn, i.e., U is an isometry.

Remark
Analogous properties for unitary matrices are formulated and proved in
[Mey00].
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Unitary and Orthogonal Matrices

Proof
2 By definition U =

(
u1 · · · un

)
has orthonormal columns, i.e.,

ui ⊥ uj ⇐⇒ uT
i uj = δij

⇐⇒
(

UT U
)

ij
= δij

⇐⇒ UT U = I.

But UT U = I implies UT = U−1.

1 Therefore the statement about orthonormal rows follows from

UU−1 = UUT = I.
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Proof (cont.)
3 To show that U is an isometry we assume U is orthogonal. Then,

for any x ∈ Rn

‖Ux‖22 = (Ux)T (Ux)

= xT UT U︸︷︷︸
=I

x

= ‖x‖22.

�
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Remark
The converse of (3) is also true, i.e., if ‖Ux‖2 = ‖x‖2 for all x ∈ Rn

then U must be orthogonal. Consider x = ei . Then

‖Uei‖22 = uT
i ui

(3)
= ‖ei‖22 = 1,

so the columns of U have norm 1.
Moreover, for x = ei + ej (i 6= j ) we get

‖U(ei + ej)‖22 = uT
i ui︸ ︷︷ ︸
=1

+uT
i uj + uT

j ui + uT
j uj︸ ︷︷ ︸
=1

(3)
= ‖ei + ej‖22 = 2,

so that uT
i uj = 0 for i 6= j and the columns of U are orthogonal.
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Example
The simplest orthogonal matrix is the identity matrix I.
Permutation matrices are orthogonal, e.g.,

P =

1 0 0
0 0 1
0 1 0


In fact, for permutation matrices we even have PT = P so that
PT P = P2 = I. Such matrices are called involutary (see pretest).
An orthogonal matrix can be viewed as a unitary matrix, but a
unitary matrix may not be orthogonal. For example for

A =
1√
2

(
1 i
−1 i

)
we have A∗A = AA∗ = I, but AT A 6= I 6= AAT .
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Elementary Orthogonal Projectors

Definition
A matrix Q of the form

Q = I− uuT , u ∈ Rn, ‖u‖2 = 1,

is called an elementary orthogonal projection.

Remark
Note that Q is not an orthogonal matrix:

QT = (I− uuT )T = I− uuT = Q.
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All projectors are idempotent, i.e., Q2 = Q:

QT Q above
= Q2 = (I− uuT )(I− uuT )

= I− 2uuT + u uT u︸︷︷︸
=1

uT

= (I− uuT )

= Q.
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Geometric interpretation
Consider

x = (I−Q)x + Qx

and observe that (I−Q)x ⊥ Qx :

((I−Q)x)T Qx = xT (I−QT )Qx

= xT (Q−QT Q︸ ︷︷ ︸
=Q

)x = 0.

Also,

(I−Q)x = (uuT )x = u(uT x) ∈ span{u}.

Therefore Qx ∈ u⊥, the orthogonal complement of u.
Also note that ‖(uT x)u‖ = |uT x | ‖u‖2︸ ︷︷ ︸

=1

, so that |uT x | is the length of

the orthogonal projection of x onto span{u}.
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Summary

(I−Q)x ∈ span{u}, so

I−Q = uuT = Pu

is a projection onto span{u}.
Qx ∈ u⊥, so

Q = I− uuT = Pu⊥

is a projection onto u⊥.
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Remark
Above we assumed that ‖u‖2 = 1.

For an arbitrary vector v we get a unit vector u = v
‖v‖2

= v√
vT v

.

Therefore, for general v

Pv = vvT

vT v is a projection onto span{v}.

Pv⊥ = I− Pv = I− vvT

vT v is a projection onto v⊥.
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Elementary Reflections

Definition
Let v( 6= 0) ∈ Rn. Then

R = I− 2
vvT

vT v
is called the elementary (or Householder) reflector about v⊥.

Remark
For u ∈ Rn with ‖u‖2 = 1 we have

R = I− 2uuT .
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Geometric interpretation
Consider ‖u‖2 = 1, and note that
Qx = (I− uuT )x is the orthogonal
projection of x onto u⊥ as above.
Also,

Q(Rx) = Q(I− 2uuT )x
= Q (I− 2(I−Q)) x

= (Q− 2Q + 2 Q2︸︷︷︸
=Q

)x = Qx ,

so that Qx is also the orthogonal
projection of Rx onto u⊥.

Moreover, ‖x −Qx‖ = ‖x − (I− uuT )x‖ = |uT x | ‖u‖ = |uT x | and

‖Qx − Rx‖ = ‖(Q− R)x‖ = ‖
(
I− uuT − (I− 2uuT )

)
x‖

= ‖uuT x‖ = |uT x |.

Together, Rx is the reflection of x about u⊥.
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Properties of elementary reflections

Theorem
Let R be an elementary reflector. Then

R−1 = RT = R,

i.e., R is orthogonal, symmetric, and involutary.

Remark
However, these properties do not characterize a reflection, i.e., an
orthogonal, symmetric and involutary matrix is not necessarily a
reflection (see HW).
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Proof.

RT = (I− 2uuT )T = I− 2uuT = R.

Also,

R2 = (I− 2uuT )(I− 2uuT )

= I− 4uuT + 4u uT u︸︷︷︸
=1

uT = I,

so that R−1 = R. �
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Reflection of x onto e1

If we can construct a matrix R such that Rx = αe1, then we can use R
to zero out entries in (the first column of) a matrix.
To this end consider

v = x ± µ‖x‖2e1, where µ =

{
1 if x1 real,
x1
|x1| if x1 complex,

and note

vT v = (x ± µ‖x‖2e1)T (x ± µ‖x‖2e1)

= xT x ± 2µ‖x‖2eT
1 x + µ2︸︷︷︸

=1

‖x‖22

= 2(xT x ± µ‖x‖eT
1 x) = 2vT x . (9)
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Our Householder reflection was defined as

R = I− 2
vvT

vT v
so that

Rx = x − 2
vvT x
vT v

= x − 2vT x
vT v︸ ︷︷ ︸

(9)
=1

v

= x − v
= ∓µ‖x‖2︸ ︷︷ ︸

=α

e1.

Remark
These special reflections are used in the Householder variant of the
QR factorization. For optimal numerical stability of real matrices one
lets ∓µ = sign(x1).
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Remark

Since R2 = I (R−1 = R) we have — whenever ‖x‖2 = 1 —

Rx = ∓µe1 =⇒ R2x = ∓µRe1 ⇐⇒ x = ∓µR∗1.

Therefore the matrix U = ∓R (taking |µ| = 1) is orthogonal (since R is)
and contains x as its first column.

Thus, this allows us to construct an ON basis for Rn that contains x
(see example in [Mey00].
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Rotations

We give only a brief overview (more details can be found in [Mey00]).

We begin in R2 and look for a matrix representation of the rotation of a
vector u into another vector v , counterclockwise by an angle θ:

Here

u =

(
u1
u2

)
=

(
‖u‖ cosφ
‖u‖ sinφ

)
(10)

v =

(
v1
v2

)
=

(
‖v‖ cos(φ+ θ)
‖v‖ sin(φ+ θ)

)
(11)
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We use the trigonometric identities

cos(A + B) = cos A cos B − sin A sin B
sin(A + B) = sin A cos B + sin B cos A

with A = φ, B = θ and ‖v‖ = ‖u‖ to get

v
(11)
=

(
‖v‖ cos(φ+ θ)
‖v‖ sin(φ+ θ)

)
=

(
‖u‖ (cosφ cos θ − sinφ sin θ)
‖u‖ (sinφ cos θ + sin θ cosφ)

)
(10)
=

(
u1 cos θ − u2 sin θ
u2 cos θ + u1 sin θ

)
=

(
cos θ − sin θ
sin θ cos θ

)
u = Pu,

where P is the rotation matrix.
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Remark
Note that

PT P =

(
cos θ sin θ
− sin θ cos θ

)(
cos θ − sin θ
sin θ cos θ

)
=

(
cos2 θ + sin2 θ − cos θ sin θ + cos θ sin θ

− cos θ sin θ + cos θ sin θ sin2 θ + cos2 θ

)
= I,

so that P is an orthogonal matrix.

PT is also a rotation matrix (by an angle −θ).
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Rotations about a coordinate axis in R3 are very similar. Such rotations
are referred to a plane rotations.

For example, rotation about the x-axis (in the yz-plane) is
accomplished with

Pyz =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


Rotation about the y and z-axes is done analogously.
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We can use the same ideas for plane rotations in higher dimensions.

Definition
An orthogonal matrix of the form

Pij =



1
. . .

c s
1

. . .
−s c

1
. . .

1



← i

← j

↑ ↑
i j

with c2 + s2 = 1 is called a plane rotation (or Givens rotation).

Note that the orientation is reversed from the earlier discussion.
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Usually we set

c =
xi√

x2
i + x2

j

, s =
xj√

x2
i + x2

j

since then for x =
(
x1 · · · xn

)T

Pijx =



x1
...

cxi + sxj
...

−sxi + cxj
...

xn


=



x1
...

x2
i +x2

j√
x2

i +x2
j

...
0
...

xn


This shows that Pij zeros the j th component of x .
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Note that
x2

i +x2
j√

x2
i +x2

j

=
√

x2
i + x2

j so that repeatedly applying Givens

rotations Pij with the same i , but different values of j will zero out all but
the i th component of x , and that component will become√

x2
1 + . . .+ x2

n = ‖x‖2.

Therefore, the sequence

P = Pin · · ·Pi,i+1Pi,i−1 · · ·Pi1

of Givens rotations rotates the vector x ∈ Rn onto ei , i.e.,

Px = ‖x‖2ei .

Moreover, the matrix P is orthogonal.
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Remark
Givens rotations can be used as an alternative to Householder
reflections to construct a QR factorization.

Householder reflections are in general more efficient, but for
sparse matrices Givens rotations are more efficient because they
can be applied more selectively.
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Orthogonal Reduction

Recall the form of LU factorization (Gaussian elimination):

Tn−1 · · ·T2T1A = U,

where Tk are lower triangular and U is upper triangular, i.e., we have a
triangular reduction.

For the QR factorization we will use orthogonal Householder reflectors
Rk to get

Rn−1 · · ·R2R1A = T,

where T is upper triangular, i.e., we have an orthogonal reduction.
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Orthogonal Reduction

Recall Householder reflectors

R = I− 2
vvT

vT v
, with v = x ± µ‖x‖e1,

so that
Rx = ∓µ‖x‖e1

and µ = 1 for x real.

Now we explain how to use these Householder reflectors to convert an
m × n matrix A to an upper triangular matrix of the same size, i.e., how
to do a full QR factorization.
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Apply Householder reflector to the first column of A:

R1A∗1 =

(
I− 2

vvT

vT v

)
A∗1 with v = A∗1 ± ‖A∗1‖e1

= ∓‖A∗1‖e1 =


t11
0
...
0


Then, R1 applied to all of A yields

R1A =


t11 t12 · · · t1n
0 ∗ · · · ∗
...

...
...

0 ∗ · · · ∗

 =

(
t11 tT

1
0 A2

)
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Next, we apply the same idea to A2, i.e., we let

R2 =

(
1 0T

0 R̂2

)
Then

R2R1A =

(
t11 tT

1
0 R̂2A2

)
=

t11 t12 · · · t1n
t22 tT

2
0 0 A3


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We continue the process until we get an upper triangular matrix, i.e.,

Rn · · ·R2R1︸ ︷︷ ︸
=P

A =


t11 ∗

. . .
...

O tnn
O

 whenever m > n

or

Rm · · ·R2R1︸ ︷︷ ︸
=P

A =

t11 ∗
. . .

... ∗
O tmm

 whenever n > m

Since each Rk is orthogonal (unitary for complex A) we have

PA = T

with P m ×m orthogonal and T m × n upper triangular, i.e.,

A = QR (Q = PT , R = T)
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Remark
This is similar to obtaining the QR factorization via MGS, but now
Q is orthogonal (square) and R is rectangular.

This gives us the full QR factorization, whereas MGS gave us the
reduced QR factorization (with m × n Q and n × n R).
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Example
We use Householder reflections to find the QR factorization (where R
has positive diagonal elements) of

A =

1 2 0
0 1 1
1 0 1

 .

R1 = I− 2
v1vT

1

vT
1 v1

, with v1 = A∗1 ± ‖A∗1‖e1

so that

R1A = ∓‖A∗1‖e1 = ∓

√2
0
0

 .

Thus we take the ± sign as “−” so that t11 =
√

2 > 0.
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Example ((cont.))
To find R1A we can either compute R1 using the formula above and
then compute the matrix-matrix product, or — more cheaply — note
that

R1x =

(
I− 2

v1vT
1

vT
1 v1

)
x = x − 2vT

1 x
v1

vT
1 v1

,

so that we can compute vT
1 A∗j , j = 2,3, instead of the full R1.

vT
1 A∗2 = (1−

√
2) · 2 + 0 · 1 + 1 · 0 = 2− 2

√
2

vT
1 A∗3 = (1−

√
2) · 0 + 0 · 1 + 1 · 1 = 1

Also

2
v1

vT
1 v1

=
1

2−
√

2

1−
√

2
0
1


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Example ((cont.))
Therefore

R1A∗2 =

2
1
0

− 2− 2
√

2
2−
√

2︸ ︷︷ ︸
=−
√

2

1−
√

2
0
1

 =

( √
2

1
√

2

)

R1A∗3 =


√

2
2
1
−
√

2
2


so that

R1A =


√

2
√

2
√

2
2

0 1 1
0
√

2 −
√

2
2

 , A2 =

(
1 1√
2 −

√
2

2

)
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Example ((cont.))
Next

R̂2x = x − 2vT
2 x

v2

vT
2 v2

with v2 = (A2)∗1 − ‖(A2)∗1‖e1 =

(
1−
√

3√
2

)

vT
2 (A2)∗1 = 3

√
3, vT

2 (A2)∗2 = −
√

3, 2
v2

vT
2 v2

=
1

3−
√

3

(
1−
√

3√
2

)
so

R̂2(A2)∗1 =

(√
3

0

)
, R̂2(A2)∗2 =

(
0√
6

2

)

Using R2 =

(
1 0T

0 R̂2

)
we get

R2R1︸ ︷︷ ︸
=P

A =


√

2
√

2
√

2
2

0
√

3 0
0 0

√
6

2

 = T
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Remark
As mentioned earlier, the factor R of the QR factorization is given
by the matrix T.

The factor Q = PT is not explicitly given in the example.

One could also obtain the same answer using Givens rotations
(compare [Mey00, Example 5.7.2]).
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Orthogonal Reduction

Theorem
Let A be an n × n nonsingular real matrix. Then the factorization

A = QR

with n× n orthogonal matrix Q and n× n upper triangular matrix R with
positive diagonal entries is unique.

Remark
In this n × n case the reduced and full QR factorizations coincide, i.e.,
the results obtained via Gram–Schmidt, Householder and Givens
should be identical.
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Orthogonal Reduction

Proof
Assume we have two QR factorizations

A = Q1R1 = Q2R2 ⇐⇒ QT
2 Q1 = R2R−1

1 = U.

Now, R2R−1
1 is upper triangular with positive diagonal (since each

factor is) and QT
2 Q1 is orthogonal. Therefore U has all of these

properties.
Since U is upper triangular

U∗1 =


u11
0
...
0

 .

Moreover, since U is orthogonal u11 = 1.
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Orthogonal Reduction

Proof (cont.)
Next,

UT
∗1U∗2 =

(
1 0 · · · 0

)


u12
u22
0
...
0

 = u12 = 0

since the columns of U are orthogonal, and the fact that ‖U∗2‖ = 1
implies u22 = 1.

Comparing all the other pairs of columns of U shows that U = I, and
therefore Q1 = Q2 and R1 = R2. �
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Orthogonal Reduction

Recommendations (so far) for solution of Ax = b

1 If A is square and nonsingular, then use LU factorization with
partial pivoting. This is stable for most practical problems and
requires O(n3

3 ) operations.

2 To find a least square solution, use QR factorization:

Ax = b ⇐⇒ QRx = b ⇐⇒ Rx = QT b.

Usually the reduced QR factorization is all that’s needed.
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Orthogonal Reduction

Even though (for square nonsingular A) the Gram–Schmidt,
Householder and Givens versions of the QR factorization are
equivalent (due to the uniqueness theorem), we have — for general A
— that

classical GS is not stable,
modified GS is stable for least squares, but unstable for QR (since
it has problems maintaining orthogonality),
Householder and Givens are stable, both for least squares and
QR
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Orthogonal Reduction

Computational cost (for n × n matrices)

LU with partial pivoting: O(n3

3 )

Gram–Schmidt: O(n3)

Householder: O(2n3

3 )

Givens: O(4n3

3 )

Householder reflections are often the preferred method since they
provide both stability and also decent efficiency.
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Complementary Subspaces

Complementary Subspaces
Definition
Let V be a vector space and X ,Y ⊆ V be subspaces. X and Y are
called complementary provided

V = X + Y and X ∩ Y = {0}.

In this case, V is also called the direct sum of X and Y, and we write

V = X ⊕ Y.

Example

Any two lines through the origin in R2 are complementary.
Any plane through the origin in R3 is complementary to any line
through the origin not contained in the plane.
Two planes through the origin in R3 are not complementary since
they must intersect in a line.
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Complementary Subspaces

Theorem
Let V be a vector space, and X ,Y ⊆ V be subspaces with bases BX
and BY . The following are equivalent:

1 V = X ⊕ Y.
2 For every v ∈ V there exist unique x ∈ X and y ∈ Y such that

v = x + y .
3 BX ∩ BY = {} and BX ∪ BY is a basis for V.

Proof.
See [Mey00].

Definition
Suppose V = X ⊕ Y, i.e., any v ∈ V can be uniquely decomposed as
v = x + y . Then

1 x is called the projection of v onto X along Y.
2 y is called the projection of v onto Y along X .
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Complementary Subspaces

Properties of projectors
Theorem
Let X ,Y be complementary subspaces of V. Let P, defined by Pv = x ,
be the projector onto X along Y. Then

1 P is unique.
2 P2 = P, i.e., P is idempotent.
3 I− P is the complementary projector (onto Y along X ).
4 R(P) = {x : Px = x} = X (“fixed points” for P).
5 N(I− P) = X = R(P) and R(I− P) = N(P) = Y.
6 If V = Rn (or Cn), then

P =
(
X O

) (
X Y

)−1

=
(
X Y

)( I O
O O

)(
X Y

)−1
,

where the columns of X and Y are bases for X and Y.
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Complementary Subspaces

Proof
1 Assume P1v = x = P2v for all v ∈ V. But then P1 = P2.
2 We know

Pv = x for every v ∈ V

so that
P2v = P(Pv) = Px = x .

Together we therefore have P2 = P.
3 Using the unique decomposition of v we can write

v = x + y = Pv + y
⇐⇒ (I− P)v = y ,

the projection of v onto Y along X .
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Complementary Subspaces

Proof (cont.)
4 Note that x ∈ R(P) if and only if x = Px . This is true since if

x = Px then x obviously in R(P). On the other hand, if x ∈ R(P)
then x = Pv for some v ∈ V and so

Px = P2v
(2)
= Pv = x .

Therefore

R(P) = {x : x = Pv , v ∈ V} = X
= {x : Px = x}.

5 Since N(I− P) = {x : (I− P)x = 0}, and

(I− P)x = 0 ⇐⇒ Px = x

we have N(I− P) = X = R(P).
The claim R(I− P) = Y = N(P) is shown similarly.

fasshauer@iit.edu MATH 532 136

http://math.iit.edu/~fass


Complementary Subspaces

Proof (cont.)
6 Take B =

(
X Y

)
, where the columns of X and Y form a basis for

X and Y, respectively.
Then the columns of B form a basis for V and B is nonsingular.
From above we have Px = x , where x can be any column of X.
Also, Py = 0, where y is any column of Y.
So

PB = P
(
X Y

)
=
(
X O

)
or

P =
(
X O

)
B−1 =

(
X Y

)−1
.

This establishes the first part of (6).
The second part follows by noting that

B
(

I O
O O

)
=
(
X Y

)( I O
O O

)
=
(
X O

)
.

�
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Complementary Subspaces

We just saw that any projector is idempotent, i.e., P2 = P. In fact,

Theorem

A matrix P is a projector if and only if P2 = P.

Proof.
One direction is given above. For the other see [Mey00].

Remark
This theorem is sometimes used to define projectors.
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Complementary Subspaces

Angle between subspaces

In some applications, e.g., when determining the convergence rates of
iterative algorithms, it is useful to know the angle between subspaces.

If R,N are complementary then

sin θ =
1
‖P‖2

=
1

λmax
=

1
σ1
,

where P is the projector onto R
along N , λmax is the largest
eigenvalue of PT P and σ1 is the
largest singular value of P.

See [Mey00, Example 5.9.2] for more details.
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Complementary Subspaces

Remark
We will skip [Mey00, Section 5.10] on the range–nullspace
decomposition.

While the range–nullspace decomposition is theoretically important, its
practical usefulness is limited because computation is very unstable
due to lack of orthogonality.

This also means we will not discuss nilpotent matrices and — later on
— the Jordan normal form.
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Orthogonal Decomposition

Definition
Let V be an inner product space andM⊆ V. The orthogonal
complementM⊥ ofM is

M⊥ = {x ∈ V : 〈m,x〉 = 0 for all m ∈M}.

Remark

Even ifM is not a subspace of V (i.e., only a subset),M⊥ is (see HW).

fasshauer@iit.edu MATH 532 142

[0]

1 Vector Norms

2 Matrix Norms

3 Inner Product Spaces

4 Orthogonal Vectors

5 Gram–Schmidt Orthogonalization & QR Factorization

6 Unitary and Orthogonal Matrices

7 Orthogonal Reduction

8 Complementary Subspaces

9 Orthogonal Decomposition

10 Singular Value Decomposition

11 Orthogonal Projections

http://math.iit.edu/~fass


Orthogonal Decomposition

Theorem
Let V be an inner product space andM⊆ V. IfM is a subspace of V,
then

V =M⊕M⊥.

Proof
According to the definition of complementary subspaces we need to
show

1 M∩M⊥ = {0},
2 M+M⊥ = V.
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Orthogonal Decomposition

Proof (cont.)
1 Let’s assume there exists an x ∈M∩M⊥, i.e., x ∈M and

x ∈M⊥.

The definition ofM⊥ implies

〈x ,x〉 = 0.

But then the definition of an inner product implies x = 0.

This is true for any x ∈M∩M⊥, so x = 0 is the only such vector.
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Orthogonal Decomposition

Proof (cont.)
2 We let BM and BM⊥ be ON bases forM andM⊥, respectively.

SinceM∩M⊥ = {0} we know that BM ∪ BM⊥ is an ON basis for
some S ⊆ V.

In fact, S = V since otherwise we could extend BM ∪ BM⊥ to an
ON basis of V (using the extension theorem and GS).

However, any vector in the extension must be orthogonal toM,
i.e., inM⊥, but this is not possible since the extended basis must
be linearly independent.

Therefore, the extension set is empty.

�
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Orthogonal Decomposition

Theorem
Let V be an inner product space with dim(V) = n andM be a
subspace of V. Then

1 dimM⊥ = n − dimM,
2 M⊥⊥ =M.

Proof
For (1) recall our dimension formula from Chapter 4

dim(X + Y) = dimX + dimY − dim(X ∩ Y).

HereM∩M⊥ = {0}, so that dim(M∩M⊥) = 0.

Also, sinceM is a subspace of V we have V =M+M⊥ and the
dimension formula implies (1).
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Orthogonal Decomposition

Proof (cont.)
2 Instead of directly establishing equality we first show that
M⊥⊥ ⊆M.
SinceM⊕M⊥ = V any x ∈ V can be uniquely decomposed into

x = m + n with m ∈M, n ∈M⊥.

Now we take x ∈M⊥⊥ so that 〈x ,n〉 = 0 for all n ∈M⊥, and
therefore

0 = 〈x ,n〉 = 〈m + n,n〉 = 〈m,n〉︸ ︷︷ ︸
=0

+〈n,n〉.

But
〈n,n〉 = 0 ⇐⇒ n = 0,

and therefore x = m is inM.
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Orthogonal Decomposition

Proof (cont.)
Now, recall from Chapter 4 that for subspaces X ⊆ Y

dimX = dimY =⇒ X = Y.

We take X =M⊥⊥ and Y =M (and know from the work just
performed thatM⊥⊥ is a subspace of ⊆M).
From (1) we know

dimM⊥ = n − dimM

dimM⊥⊥ = n − dimM⊥

= n − (n − dimM) = dimM.

But thenM⊥⊥ =M. �
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Orthogonal Decomposition

Back to Fundamental Subspaces

Theorem
Let A be a real m × n matrix. Then

1 R(A)⊥ = N(AT ),
2 N(A)⊥ = R(AT ).

Corollary

Rm = R(A)︸ ︷︷ ︸
⊆Rm

⊕R(A)⊥ = R(A)⊕ N(AT ),

Rn = N(A)︸ ︷︷ ︸
⊆Rn

⊕N(A)⊥ = N(A)⊕ R(AT ).
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Orthogonal Decomposition

Proof (of Theorem)
1 We show that x ∈ R(A)⊥ implies x ∈ N(AT ) and vice versa.

x ∈ R(A)⊥ ⇐⇒ 〈Ay ,x〉 = 0 for any y ∈ Rn

⇐⇒ yT AT x = 0 for any y ∈ Rn

⇐⇒ 〈y ,AT x〉 = 0 for any y ∈ Rn

⇐⇒ AT x = 0 ⇐⇒ x ∈ N(AT )

by the definitions of these subspaces and of an inner product.
2 Using (1), we have

R(A)⊥
(1)
= N(AT )

⊥⇐⇒ R(A) = N(AT )⊥

A→AT
⇐⇒ R(AT ) = N(A)⊥.

�
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Orthogonal Decomposition

Starting to think about the SVD
The decompositions of Rm and Rn from the corollary help prepare for
the SVD of an m × n matrix A.
Assume rank(A) = r and let

BR(A) = {u1, . . . ,ur} ON basis for R(A) ⊆ Rm,

BN(AT ) = {ur+1, . . . ,um} ON basis for N(AT ) ⊆ Rm,

BR(AT ) = {v1, . . . ,v r} ON basis for R(AT ) ⊆ Rn,

BN(A) = {v r+1, . . . ,vn} ON basis for N(A) ⊆ Rn.

By the corollary

BR(A) ∪ BN(AT ) ON basis for Rm,

BR(AT ) ∪ BN(A) ON basis for Rn,

and therefore the following are orthogonal matrices

U =
(
u1 u2 · · · um

)
V =

(
v1 v2 · · · vn

)
.
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Orthogonal Decomposition

Consider
R = UT AV =

(
uT

i Av j

)m,n

i,j=1
.

Note that

Av j = 0, j = r + 1, . . . ,n,

uT
i A = 0 ⇐⇒ AT ui = 0, i = r + 1, . . . ,m,

so

R =


uT

1 Av1 · · · uT
1 Av r

...
... O

uT
r Av1 · · · uT

r Av r
O O

 =

(
Cr×r O

O O

)
.
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Orthogonal Decomposition

Thus

R = UT AV =

(
Cr×r O

O O

)
⇐⇒ A = URVT = U

(
Cr×r O

O O

)
VT ,

the URV factorization of A.

Remark
The matrix Cr×r is nonsingular since

rank(C) = rank(UT AV) = rank(A) = r

because multiplication by the orthogonal (and therefore nonsingular)
matrices UT and V does not change the rank of A.
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Orthogonal Decomposition

We have now shown that the ON bases for the fundamental subspaces
of A yield the URV factorization.

As we show next, the converse is also true, i.e., any URV factorization
of A yields a ON bases for the fundamental subspaces of A.

However, the URV factorization is not unique. Different ON bases
result in different factorizations.
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Orthogonal Decomposition

Consider A = URVT with U,V orthogonal m ×m and n × n matrices,

respectively, and R =

(
C O
O O

)
with C nonsingular.

We partition

U =

(
U1︸︷︷︸
m×r

U2︸︷︷︸
m×m−r

)
, V =

(
V1︸︷︷︸
n×r

V2︸︷︷︸
n×n−r

)
Then V (and therefore also VT ) is nonsingular and we see that

R(A) = R(URVT )

= R(UR)

= R
((

U1C O
))

= R(U1C︸︷︷︸
m×r

)
rank(C)=r

= R(U1) (12)

so that the columns of U1 are an ON basis for R(A).
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Orthogonal Decomposition

Moreover,

N(AT )
prev. thm

= R(A)⊥
(12)
= R(U1)⊥ = R(U2)

since U is orthogonal and Rm = R(U1)⊕ R(U2).

This implies that the columns of U2 are an ON basis for N(AT ).

The other two cases can be argued similarly using N(AB) = N(B)
provided rank(A) = n.
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Orthogonal Decomposition

The main difference between a URV factorization and the SVD is that
the SVD will contain a diagonal matrix Σ with r nonzero singular
values, while R contains the full r × r block C.

As a first step in this direction, we can easily obtain a URV factorization
of A with a lower triangular matrix C.

Idea: use Householder reflections (or Givens rotations)
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Orthogonal Decomposition

Consider an m × n matrix A.
We apply an m ×m orthogonal (Householder reflection) matrix P so
that

A −→ PA =

(
B
O

)
, with r ×m matrix B, rank(B) = r .

Next, use n × n orthogonal Q as follows:

BT −→ QBT =

(
T
O

)
, with r × r upper triangular T, rank(T) = r .

Then
BQT =

(
TT O

)
⇐⇒ B =

(
TT O

)
Q

and (
B
O

)
=

(
TT O
O O

)
Q.
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Orthogonal Decomposition

Together,

PA =

(
TT O
O O

)
Q

⇐⇒ A = PT
(

TT O
O O

)
Q,

a URV factorization with lower triangular block TT .

Remark
See HW for an example of this process with numbers.
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Singular Value Decomposition

Singular Value Decomposition

We know

A = URVT = U
(

C O
O O

)
VT ,

where C is upper triangular and U,V are orthogonal.

Now we want to establish that C can even be made diagonal.
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Singular Value Decomposition

Note that
‖A‖2 = ‖C‖2 =: σ1

since multiplication by an orthogonal matrix does not change the
2-norm (see HW).
Also,

‖C‖2 = max
‖z‖2=1

‖Cz‖2

so that
‖C‖2 = ‖Cx‖2 for some x , ‖x‖2 = 1.

In fact (see Sect.5.2), x is such that (CT C− λI)x = 0, i.e., x is an
eigenvector of CT C so that

‖C‖2 = σ1 =
√
λ =

√
xT CT Cx . (13)
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Singular Value Decomposition

Since x is a unit vector we can extend it to an orthogonal matrix

Rx =
(
x X

)
,

e.g., using Householder reflectors as discussed at the end of Sect.5.6.

Similarly, let

y =
Cx
‖Cx‖2

=
Cx
σ1

. (14)

Then
Ry =

(
y Y

)
is also orthogonal (and Hermitian/symmetric) since it’s a Householder
reflector.
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Singular Value Decomposition

Now

RT
y︸︷︷︸

=Ry

CRx =

(
yT

YT

)
C
(
x X

)
=

(
yT Cx yT CX
YT Cx YT CX

)
.

From above

σ2
1 = λ

(13)
= xT CT Cx

(14)
= σ1yT Cx

=⇒ yT Cx = σ1.

Also,
YT Cx

(14)
= YT (σ1y) = 0

since Ry is orthogonal, i.e., y is orthogonal to the columns of Y.
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Singular Value Decomposition

Let YT CX = C2 and yT CX = cT so that

RyCRx =

(
σ1 cT

0 C2

)
.

To show that cT = 0T consider

cT = yT CX
(14)
=

(
Cx
σ1

)T

CX

=
xT CT CX

σ1
. (15)

From (13) x is an eigenvector of CT C, i.e.,

CT Cx = λx = σ2
1x ⇐⇒ xT CT C = σ2

1xT .

Plugging this into (15) yields

cT = σ1xT X = 0

since Rx =
(
x X

)
is orthogonal.
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Singular Value Decomposition

Moreover, σ1 ≥ ‖C2‖2 since

σ1 = ‖C‖2
HW
= ‖RyCRx‖2 = max{σ1, ‖C2‖2}.

Next, we repeat this process for C2, i.e.,

SyC2Sx =

(
σ2 0T

0 C3

)
with σ2 ≥ ‖C3‖2.

Let

P2 =

(
1 0T

0 ST
y

)
RT

y , Q2 = Rx

(
1 0T

0 Sx

)
.

Then

P2CQ2 =

σ1 0 0T

0 σ2 0T

0 0 C3

 with σ1 ≥ σ2 ≥ ‖C3‖2.
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Singular Value Decomposition

We continue this until

Pr−1CQr−1 =


σ1 O

σ2
. . .

O σr

 = D, σ1 ≥ σ2 ≥ . . . ≥ σr .

Finally, let

ŨT =

(
Pr−1 O

O I

)
UT , and Ṽ =

(
Qr−1 O

O I

)
.

Together,

ŨT AṼ =

(
D O
O O

)
or — without the tildes — the singular value decomposition (SVD) of A

A = U
(

D O
O O

)
VT ,

where A is m × n, U is m ×m, D = r × r and V = n × n.
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Singular Value Decomposition

We use the following terminology:
singular values: σ1 ≥ σ2 ≥ . . . ≥ σr > 0,
left singular vectors: columns of U,
right singular vectors: columns of V.

Remark
In Chapter 7 we will see that the columns of U and V are also special
eigenvectors of AT A.
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Singular Value Decomposition

Geometric interpretation of SVD

For the following we assume A ∈ Rn×n, n = 2.

1
v

2
v

–1

–0.5

0.5

1

–1 –0.5 0.5 1

2v2σ
1u1σ

–2

–1

0

1

2

–2 –1 1 2

This picture is true since

A = UDVT ⇐⇒ AV = UD

and σ1, σ2 are the lengths of the semi-axes of the ellipse because
‖u1‖ = ‖u2‖ = 1.

Remark
See [Mey00] for more details.
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Singular Value Decomposition

For general n, A transforms the 2-norm unit sphere to an ellipsoid
whose semi-axes have lengths

σ1 ≥ σ2 ≥ . . . ≥ σn.

Therefore,
κ2(A) =

σ1

σn

is the distortion ratio of the transformation A.
Moreover,

σ1 = ‖A‖2, σn =
1

‖A−1‖2
so that

κ2(A) = ‖A‖2‖A−1‖2
is the 2-norm condition number of A (∈ Rn×n).
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Singular Value Decomposition

Remark
The relations for σ1 and σn hold because

‖A‖2 = ‖UDVT‖2
HW
= ‖D‖2 = σ1

‖A−1‖2 = ‖VD−1UT‖2
HW
= ‖D−1‖2 =

1
σn

Remark
We always have κ2(A) ≥ 1, and κ2(A) = 1 if and only if A is a multiple
of an orthogonal matrix (typo in [Mey00], see proof on next slide).
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Singular Value Decomposition

Proof
“⇐=”: Assume A = αQ with α > 0, Q orthogonal, i.e.,

‖A‖2 = α‖Q‖2 = α max
‖x‖2=1

‖Qx‖2
invariance

= α max
‖x‖2=1

‖x‖2 = α.

Also

AT A = α2QT Q = α2I =⇒ A−1 =
1
α2 AT and ‖AT‖2 = ‖A‖2

so that ‖A−1‖2 = 1
α and

κ2(A) = ‖A‖2‖A−1‖2 = α
1
α

= 1.
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Singular Value Decomposition

Proof (cont.)

“=⇒”: Assume κ2(A) = σ1
σn

= 1 so that σ1 = σn and therefore

D = σ1I.

Thus
A = UDVT = σ1UVT

and

AT A = σ2
1(UVT )T UVT

= σ2
1VUT UVT = σ2

1I.

�
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Singular Value Decomposition

Applications of the Condition Number

Let x̃ be the answer obtained by solving Ax = b with A ∈ Rn×n.

Is a small residual
r = b − Ax̃

a good indicator for the accuracy of x̃?

Since x is the exact answer, and x̃ the computed answer we have the
relative error

‖x − x̃‖
‖x‖

.
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Singular Value Decomposition

Now

‖r‖ = ‖b − Ax̃‖ = ‖Ax − Ax̃‖
= ‖A(x − x̃)‖ ≤ ‖A‖‖x − x̃‖.

To get the relative error we multiply by ‖A
−1b‖
‖x‖ = 1.

Then

‖r‖ ≤ ‖A‖‖A−1b‖‖x − x̃‖
‖x‖

‖r‖
‖b‖

≤ κ(A)
‖x − x̃‖
‖x‖

. (16)
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Singular Value Decomposition

Moreover, using r = b − Ax̃ = b − b̃,

‖x − x̃‖ = ‖A−1(b − b̃)‖ ≤ ‖A−1‖‖r‖.

Multiplying by ‖Ax‖
‖b‖ = 1 we have

‖x − x̃‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

. (17)

Combining (16) and (17) yields

1
κ(A)

‖r‖
‖b‖

≤ ‖x − x̃‖
‖x‖

≤ κ(A)
‖r‖
‖b‖

.

Therefore, the relative residual ‖r‖‖b‖ is a good indicator of relative error if
and only if A is well conditioned, i.e., κ(A) is small (close to 1).
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Singular Value Decomposition

Applications of the SVD

1 Determination of “numerical rank(A)”:
rank(A) ≈ index of smallest singular value greater or equal a
desired threshold

2 Low-rank approximation of A:
The Eckart–Young theorem states that

Ak =
k∑

i=1

σiuivT
i

is the best rank k approximation to A in the 2-norm (also the
Frobenius norm), i.e.,

‖A− Ak‖2 = min
rank(B)=k

‖A− B‖2.

Moreover,
‖A− Ak‖2 = σk+1.

Run SVD_movie.m
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Singular Value Decomposition

3 Stable solution of least squares problems:
Use Moore–Penrose pseudoinverse

Definition

Let A ∈ Rm×n and

A = U
(

D O
O O

)
VT

be the SVD of A. Then

A† = V
(

D−1 O
O O

)
UT

is called the Moore–Penrose pseudoinverse of A.

Remark

Note that A† ∈ Rn×m and

A† =
r∑

i=1

v iuT
i

σi
, r = rank(A).
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Singular Value Decomposition

We now show that the least squares solution of

Ax = b

is given by
x = A†b.
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Singular Value Decomposition

Start with normal equations and use

A = U
(

D O
O O

)
VT = ŨDṼT ,

the reduced SVD of A, i.e., Ũ ∈ Rm×r , Ṽ ∈ Rn×r .

AT Ax = AT b ⇐⇒ ṼD ŨT Ũ︸︷︷︸
=I

DṼT x = ṼDŨT b

⇐⇒ ṼD2ṼT x = ṼDŨT b

Multiplication by D−1ṼT yields

DṼT x = ŨT b.
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Singular Value Decomposition

Thus
DṼT x = ŨT b

implies

x = ṼD−1ŨT b

⇐⇒ x = V
(

D−1 O
O O

)
UT b

⇐⇒ x = A†b.
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Singular Value Decomposition

Remark

If A is nonsingular then A† = A−1 (see HW).

If rank(A) < n (i.e., the least squares solution is not unique), then
x = A†b provides the unique solution with minimum 2-norm (see
justification on following slide).
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Singular Value Decomposition

Minimum norm solution of underdetermined systems

Note that the general solution of Ax = b is given by

z = A†b + n, n ∈ N(A).

Then

‖z‖22 = ‖A†b + n‖22
Pythag. thm

= ‖A†b‖22 + ‖n‖22 ≥ ‖A†b‖22.

The Pythagorean theorem applies since (see HW)

A†b ∈ R(A†) = R(AT )

so that, using R(AT ) = N(A)⊥,

A†b ⊥ n.
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Singular Value Decomposition

Remark
Explicit use of the pseudoinverse is usually not recommended.
Instead we solve Ax = b, A ∈ Rm×n, by

1 A = ŨDṼT (reduced SVD)

2 Ax = b ⇐⇒ DṼT x = ŨT b, so
1 Solve Dy = ŨT b for y
2 Compute x = Ṽy
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Singular Value Decomposition

Other Applications

Also known as principal component analysis (PCA), (discrete)
Karhunen-Loève (KL) transformation, Hotelling transform, or proper
orthogonal decomposition (POD)

Data compression
Noise filtering
Regularization of inverse problems

Tomography
Image deblurring
Seismology

Information retrieval and data mining (latent semantic analysis)
Bioinformatics and computational biology

Immunology
Molecular dynamics
Microarray data analysis
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Orthogonal Projections

Orthogonal Projections

Earlier we discussed orthogonal complementary subspaces of an
inner product space V, i.e.,

V =M⊕M⊥.

Definition

Consider V =M⊕M⊥ so that for every
v ∈ V there exist unique vectors m ∈M,
n ∈M⊥ such that

v = m + n.

Then m is called the orthogonal projection of
v ontoM.
The matrix PM such that PMv = m is the
orthogonal projector ontoM alongM⊥.
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Orthogonal Projections

For arbitrary complementary subspaces X ,Y we showed earlier that
the projector onto X along Y is given by

P =
(
X O

) (
X Y

)−1

=
(
X Y

)( I O
O O

)(
X Y

)−1
,

where the columns of X and Y are bases for X and Y.
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Orthogonal Projections

Now we let X =M and Y =M⊥ be orthogonal complementary
subspaces, where M and N contain the basis vectors ofM andM⊥ in
their columns.
Then

P =
(
M O

) (
M N

)−1
. (18)

To find
(
M N

)−1 we note that

MT N = NT M = O

and if N is an orthogonal matrix (i.e., contains an ON basis), then(
(MT M)−1MT

NT

)(
M N

)
=

(
I O
O I

)
(note that MT M is invertible since M is full rank because its columns
form a basis ofM).
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Orthogonal Projections

Thus (
M N

)−1
=

(
(MT M)−1MT

NT

)
. (19)

Inserting (19) into (18) yields

PM =
(
M O

)((MT M)−1MT

NT

)
= M(MT M)−1MT .

Remark
Note that PM is unique so that this formula holds for an arbitrary basis
ofM (collected in M).
In particular, if M contains an ON basis forM, then

PM = MMT .
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Orthogonal Projections

Similarly,

PM⊥ = N(NT N)−1NT (arbitrary basis for N )

PM⊥ = NNT ON basis

As before,
PM = I− PM⊥ .

Example

IfM = span{u}, ‖u‖ = 1 then

PM = Pu = uuT

and
PuT = I− Pu = I− uuT

(cf. elementary orthogonal projectors earlier).
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Orthogonal Projections

Properties of orthogonal projectors

Theorem

Let P ∈ Rn×n be a projector, i.e., P2 = P. Then the matrix P is an
orthogonal projector if

1 R(P) ⊥ N(P),
2 PT = P,
3 ‖P‖2 = 1.
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Orthogonal Projections

Proof
1 Follows directly from the definition.

2 “=⇒”: Assume P is an orthogonal projector, i.e.,

P = M(MT M)−1MT and PT = M (MT M)−T︸ ︷︷ ︸
=(MT M)−1

MT = P.

“⇐=”: Assume P = PT . Then

R(P) = R(PT )
Orth.decomp.

= N(P)⊥

so that P is an orthogonal projector via (1).
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Orthogonal Projections

Proof (cont.)
3 For complementary subspaces X ,Y we know the angle between
X and Y is given by

‖P‖2 =
1

sin θ
, θ ∈

[
0,
π

2

]
.

Assume P is an orthogonal projector, then θ = π
2 so that ‖P‖2 = 1.

Conversely, if ‖P‖2 = 1, then θ = π
2 and X ,Y are orthogonal

complements, i.e., P is an orthogonal projector.

�
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Orthogonal Projections

Why is orthogonal projection so important?

Theorem
Let V be an inner product space with subspaceM, and let b ∈ V.
Then

dist(b,M) = min
n∈M

‖b −m‖2 = ‖b − PMb‖2,

i.e., PMb is the unique vector inM closest to b. The quantity
dist(b,M) is called the (orthogonal) distance from b toM.
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Orthogonal Projections

Proof
Let p = PMb. Then p ∈M and p −m ∈M for every m ∈M.

Moreover,
b − p = (I− PM)b ∈M⊥,

so that
(p −m) ⊥ (b − p).

Then

‖b −m‖22 = ‖b − p + p −m‖22
Pythag.

= ‖b − p‖22 + ‖p −m‖22
≥ ‖b − p‖22.

Therefore minm∈M ‖b −m‖2 = ‖b − p‖2.
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Orthogonal Projections

Proof (cont.)
Uniqueness: Assume there exists a q ∈M such that

‖b − q‖2 = ‖b − p‖2. (20)

Then

‖b − q‖22 = ‖b − p︸ ︷︷ ︸
∈M⊥

+ p − q︸ ︷︷ ︸
∈M

‖22

Pythag.
= ‖b − p‖22 + ‖p − q‖22.

But then (20) implies that ‖p − q‖22 = 0 and therefore p = q. �
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Orthogonal Projections

Least squares approximation revisited

Now we give a “modern” derivation of the normal equations (without
calculus), and note that much of this remains true for best L2
approximation.
Goal of least squares: For A ∈ Rm×n, find

min
x∈Rn

√√√√ m∑
i=1

((Ax)i − bi)
2 ⇐⇒ min

x∈Rn
‖Ax − b‖2.

Now Ax ∈ R(A), so the least squares error is

dist(b,R(A)) = min
Ax∈R(A)

‖b − Ax‖2

= ‖b − PR(A)b‖2

with PR(A) the orthogonal projector onto R(A).
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Orthogonal Projections
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Orthogonal Projections

Moreover, the least squares solution of Ax = b is given by that x for
which

Ax = PR(A)b.

The following argument shows that this is equivalent to the normal
equations:

Ax = PR(A)b

⇐⇒ PR(A)Ax = P2
R(A)b = PR(A)b

⇐⇒ PR(A)(Ax − b) = 0

⇐⇒ Ax − b ∈ N(PR(A)) = R(A)⊥ (P orth. proj. onto R(A))
Orth.decomp.⇐⇒ Ax − b ∈ N(AT )

⇐⇒ AT (Ax − b) = 0

⇐⇒ AT Ax = AT b.
Remark
No we are no longer limited to the real case.
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