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Elementary Properties

Motivation

Eigenvalues are important, e.g.,

to decouple systems of ODEs,

to study physical phenomena such as resonance,

to tackle the same kind of applications as the SVD (whenever the
matrix is symmetric).
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Elementary Properties

Definition
Let A be an n × n matrix. The scalars λ and nonzero n-vectors x
satisfying

Ax = λx

are called eigenvalues and eigenvectors of A. We call (λ,x) an
eigenpair of A.

The set of all eigenvalues of A is called the spectrum σ(A), i.e.,

σ(A) = {λ : λ is an eigenvalue of A}.

The spectral radius of A is given by

ρ(A) = max
λ∈σ(A)

|λ|.
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Elementary Properties

Theorem
The following are equivalent:

1 λ is a eigenvalue of A.
2 A− λI is singular.
3 det(A− λI) = 0.
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Elementary Properties

Proof.
By definition, λ satisfies Ax = λx . This can be written as

(A− λI)x = 0.

We get a nontrivial solution (recall that eigenvectors are always
nonzero) if and only if

A− λI is singular.

Remark
This proof shows that the eigenvector x ∈ N(A− λI).
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Elementary Properties

Remark
In fact, any vector in N(A− λI) is an eigenvector of A associated
with λ, i.e., eigenvectors are not unique.

Terminology: N(A− λI) is called the eigenspace of A associated
with λ.

Geometric interpretation: For eigenpairs, matrix multiplication by
A acts just like scalar multiplication, i.e., Ax differs from x only by
a stretch factor or a change in orientation (if λ < 0).

fasshauer@iit.edu MATH 532 8

http://math.iit.edu/~fass


Elementary Properties

Remark
In fact, any vector in N(A− λI) is an eigenvector of A associated
with λ, i.e., eigenvectors are not unique.

Terminology: N(A− λI) is called the eigenspace of A associated
with λ.

Geometric interpretation: For eigenpairs, matrix multiplication by
A acts just like scalar multiplication, i.e., Ax differs from x only by
a stretch factor or a change in orientation (if λ < 0).

fasshauer@iit.edu MATH 532 8

http://math.iit.edu/~fass


Elementary Properties

Remark
In fact, any vector in N(A− λI) is an eigenvector of A associated
with λ, i.e., eigenvectors are not unique.

Terminology: N(A− λI) is called the eigenspace of A associated
with λ.

Geometric interpretation: For eigenpairs, matrix multiplication by
A acts just like scalar multiplication, i.e., Ax differs from x only by
a stretch factor or a change in orientation (if λ < 0).

fasshauer@iit.edu MATH 532 8

http://math.iit.edu/~fass


Elementary Properties

Definition
Let A be an n× n matrix. The characteristic polynomial of A is given by

p(λ) = det(A− λI),

and p(λ) = 0 is called the characteristic equation.

Remark
The basic properties of determinant show that

degree(p) = n,
the leading coefficient, i.e., the coefficient of λn is (−1)n.
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Elementary Properties

Immediate consequences

1 The eigenvalues of A are roots of the characteristic polynomial.

2 A has n (possibly complex, but necessarily distinct) eigenvalues.

3 If A is real, then complex eigenvalues appear in conjugate pairs,
i.e., λ ∈ σ(A) =⇒ λ ∈ σ(A).

4 In particular, simple real (even integer) matrices can have complex
eigenvalues and eigenvectors.
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Elementary Properties

Example

Find the eigenvalues and eigenvectors of A =

(
1 2
−1 1

)
.

We need to solve

p(λ) = det(A− λI) = (1− λ)2 + 2 = 0

⇐⇒ λ2 − 2λ+ 3 = 0

=⇒ λ =
2±
√

4− 12
2

= 1±
√

2i.

Therefore, σ(A) = {1 + i
√

2,1− i
√

2}.
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Elementary Properties

Example (cont.)
Now, compute the eigenvectors for
λ1 = 1 + i

√
2:

A− λ1I =
(
−i
√

2 2
−1 −i

√
2

)
−→

(
0 0
−1 −i

√
2

)
so that N(A− λ1I) = span{(i

√
2, −1)T}.

λ1 = 1− i
√

2:

A− λ2I =
(

i
√

2 2
−1 i

√
2

)
−→

(
0 0
−1 i

√
2

)
so that N(A− λ2I) = span{(i

√
2, 1)T}.
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Elementary Properties

Example (cont.)
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Elementary Properties

Remark
Since eigenvalues are the solution of polynomial equations and we
know due to Abel’s theorem that there is no closed form expression for
roots of polynomials of degree five or greater, general methods for
finding eigenvalues necessarily have to be iterative (and numerical).
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Elementary Properties

Formulas for coefficients of characteristic polynomial

If we write

(−1)np(λ) = λn + c1λ
n−1 + c2λ

n−2 + . . .+ cn−1λ+ cn

then without proof/derivation (see [Mey00] for details)

ck = (−1)ksk , c0 = 1,

where

sk =
∑

(all k × k determinant of principal submatrices)

=
∑

(all products of subsets of k eigenvalues)

Special cases

trace(A) = λ1 + λ2 + . . .+ λn = −c1,

det(A) = λ1λ2 . . . λn = (−1)ncn.
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Elementary Properties

Example
Compute the characteristic polynomial for

A =

1 2 1
0 −1 1
0 0 1


We first compute

(−1)3p(λ) = −det(A− λI) = (1− λ)2(1 + λ)

= (λ2 − 2λ+ 1)(1 + λ)

= λ3 − λ2 − λ+ 1.
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Elementary Properties

Example (cont.)
On the other hand (using the above formulas)

c0= 1,
s1 = det(1) = 1 =⇒ c1 = −s1 = −1,

s2 = det
(

1 2
0 −1

)
+ det

(
1 1
0 1

)
+ det

(
−1 1
0 1

)
= −1 + 1− 1 = −1 =⇒ c2 = s2 = −1,

s3 = det(A) = −1 =⇒ c3 = −s3 = 1.
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Elementary Properties

Example (cont.)
The corresponding eigenvectors are

λ = −1: x = (1, −1, 0)T

λ = 1: x = (1, 0, 0)T

Note that λ = 1 is a double eigenvalue, but the eigenspace is only
one-dimensional, i.e., there is a deficiency (see algebraic
vs. geometric multiplicities later).
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Elementary Properties

Example
The trace and determinant combination is particularly applicable to
2× 2 problems. Consider

A =

(
1 2
−1 1

)
then

trace(A) = 2 = λ1 + λ2

det(A) = 3 = λ1λ2

so that λ1 = 2− λ2 implies

(2− λ2)λ2 = 3 =⇒ λ2
2 − 2λ2 + 3 = 0

as earlier.
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Elementary Properties

Often, the largest eigenvalue is especially important.
Recall spectral radius: ρ(A) = maxλ∈σ(A) |λ|.
A simple upper bound is, using any matrix norm,

ρ(A) ≤ ‖A‖.

We now prove this.
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Elementary Properties

Proof.
First, we remember submultiplicativity of matrix norms, i.e.,

‖AX‖ ≤ ‖A‖‖X‖ for any X. (1)

Now, take X =
(
x 0 · · · 0

)
with (λ,x) and eigenpair of A.

Then AX = λX and
‖AX‖ = ‖λX‖ = |λ|‖X‖. (2)

Combine (1) and (2):

|λ|‖X‖ = ‖AX‖ ≤ ‖A‖‖X‖
‖X‖6=0
=⇒ |λ| ≤ ‖A‖
λ arb.
=⇒ ρ(A) ≤ ‖A‖
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Elementary Properties

More precise estimates of eigenvalues can be obtained with
Gerschgorin circles.

Definition
Let A ∈ Cn×n. The Gerschgorin circles Gi of A are defined by

Gi = {z ∈ C : |z − aii | ≤ ri}, i = 1, . . . ,n

with ri =
n∑

j=1
j 6=i

|aij |, the (off-diagonal) row sums of A.

Remark
Analogous (but not the same) circles can be defined via column sums.
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Elementary Properties

Theorem
Let A ∈ Cn×n and Gi , i = 1, . . . ,n, be its Gerschgorin circles. Then

σ(A) ⊆
n⋃

i=1

Gi .

Remark
If we use two sets of Gerschgorin circles, Gr and Gc (defined via rows
sums and via column sums, respectively), then we get a better
estimate:

σ(A) ⊆ Gr ∩ Gc .
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Elementary Properties

Before we prove the theorem we illustrate with an example.

Example
Consider

A =

1 0 1
2 −1 0
1 0 1


with rough estimate ρ(A) ≤ ‖A‖∞ = 3.
The Gerschgorin circles are

G1 = {z : |z − 1| ≤ 1}
G2 = {z : |z + 1| ≤ 2}
G1 = {z : |z − 1| ≤ 1}
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Elementary Properties

Proof
Assume (λ,x) us an eigenpair with x normalized, i.e., ‖x‖∞ = 1.
Consider i such that |xi | = ‖x‖∞ = 1. Then

λxi = (λx)i = (Ax)i =
n∑

j=1

aijxj = aiixi +
n∑

j=1
j 6=i

aijxj

so that

(λ− aii)xi =
n∑

j=1
j 6=i

aijxj .
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Elementary Properties

Proof (cont.)
Then

|λ− aii | = |λ− aii | |xi |︸︷︷︸
=1

=

∣∣∣∣∣∣∣
n∑

j=1
j 6=i

aijxj

∣∣∣∣∣∣∣
∆ ineq.
≤

n∑
j=1
j 6=i

|aij | |xj |︸︷︷︸
≤‖x‖∞=1

≤
n∑

j=1
j 6=i

|aij | = ri .

Therefore λ ∈ Gi and each λ will lie in some Gi , i.e.,

σ(A) ⊆
n⋃

i=1

Gi .

�
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Elementary Properties

Remark
There is no reason to believe that every Gerschgorin circle contains an
eigenvalue.

Example

The eigenvalues of A =

(
0 1
4 0

)
are λ1,2 = ±2.

But we have

G1 = {z : |z| ≤ 1}
G2 = {z : |z| ≤ 4}

and G1 does not contain an eigenvalue.
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Elementary Properties

Remark
Recall that a diagonally dominant matrix satisfies

|aii | >
n∑

j=1
j 6=i

|aij |, i = 1, . . . ,n.

However, then the proof above shows that λ = 0 cannot be an
eigenvalue of a diagonally dominant matrix.
Therefore, diagonally dominant matrices are nonsingular (cf. HW).
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Diagonalization via Similarity Transforms

Recall: Equivalence

A ∼ B if and only if there exist P,Q nonsingular s.t. PAQ = B.

Now

Definition
Two n × n matrices A and B are called similar if there exists a
nonsingular P such that

P−1AP = B.

Definition
An n × n matrix A is called diagonalizable if A is similar to a diagonal
matrix, i.e., if

P−1AP = D

for some nonsingular matrix P.
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Diagonalization via Similarity Transforms

Remark
We already know the SVD, i.e.,

A = UDVT ⇐⇒ UT AV = D, U,V unitary,

where D contains the singular values of A.

Now we use a single transformation matrix, and D will contain the
eigenvalues of A.

However, every matrix A has an SVD. Not so now...
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Diagonalization via Similarity Transforms

Theorem
An n × n matrix A is diagonalizable if and only if A possesses a
complete set of eigenvectors (i.e., it has n linearly independent
eigenvectors). Moreover,

P−1AP = D = diag(λ1, . . . , λn)

if and only if (λj ,P∗j), j = 1, . . . ,n, are eigenpairs of A.

Remark
If A possesses a complete set of eigenvectors it is called nondefective
(or nondeficient).
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Diagonalization via Similarity Transforms

Proof.

P−1AP = D =

λ1
. . .

λn


⇐⇒ AP = PD

⇐⇒ A
(
P∗1 P∗2 · · · P∗n

)
=
(
P∗1 P∗2 · · · P∗n

)λ1
. . .

λn


⇐⇒

(
AP∗1 AP∗2 · · · AP∗n

)
=
(
λ1P∗1 λ2P∗2 · · · λnP∗n

)
⇐⇒ (λj ,P∗j) is an eigenpair of A

Note that P is invertible if and only if the columns of P are linearly
independent.
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Diagonalization via Similarity Transforms

Example
Consider

A =

1 2 1
0 −1 1
0 0 1


with

λ1 = 1, N(A− I) = span{

1
0
0

}
and

λ2 = −1, N(A + I) = span{

 1
−1
0

}
is not diagonalizable since the set of eigenvectors in not complete.
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Diagonalization via Similarity Transforms

Example
Consider

A =

1 0 1
2 −1 0
1 0 1


with characteristic polynomial

p(λ) = (1− λ)2(1 + λ) + 1 = λ2 − λ2 − 2λ = λ(λ+ 1)(λ− 2)

and spectrum
σ(A) = {−1,0,2}.
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Diagonalization via Similarity Transforms

Example (cont.)

Also, N(A + I): 2 0 1
2 0 0
1 0 2

 −→

2 0 1
0 0 0
0 0 3

2


so that N(A + I) = span{(0,1,0)T} (first eigenvector).

N(A): 1 0 1
2 −1 0
1 0 1

 −→

1 0 1
0 −1 −2
0 0 0


so that N(A) = span{(−1,−2,1)T}.
N(A− 2I): −1 0 1

2 −3 0
1 0 −11

 −→

−1 0 1
0 −3 2
0 0 0


so that N(A− 2I) = span{(1, 2

3 ,1)
T}.
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Example (cont.)
Therefore

P =

0 −1 1
1 −2 2

3
0 1 1

 , so that P−1 =

−4
3 1 2

3
−1

2 0 1
2

1
2 0 1

2


and

P−1AP =

−1 0 0
0 0 0
0 0 2

 .
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Theorem
If A,B are similar, then σ(A) = σ(B).

Proof.
We show det(A− λI) = det(B− λI), i.e., A and B have the same
characteristic polynomials.
Since A,B are similar there exists a nonsingular P such that
P−1AP = B. Now,

det(B− λI) = det(P−1AP− λI)

= det(P−1AP− λP−1IP)

= det
(

P−1(A− λI)P
)

= det(P−1)det(A− λI)det(P) = det(A− λI)

since det(P−1) = 1
det(P) .
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Diagonalization via Similarity Transforms

Remark
We saw above that there exist matrices that are not diagonalizable,
i.e., are not similar to a diagonal matrix (of its eigenvalues).

However, every square matrix A is similar to a triangular matrix whose
diagonal elements are the eigenvalues of A

−→ Schur factorization (next).
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Diagonalization via Similarity Transforms

Theorem (Schur factorization)
For every n × n matrix A there exists a unitary matrix U (which is not
unique) and an upper triangular matrix T (which is also not unique)
such that

U∗AU = T,

and the diagonal entries of T are the eigenvalues of A.
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Diagonalization via Similarity Transforms

Proof
By induction. n = 1 is easy: A = a = λ, U = 1, T = λ.
Assume the statement is true for n − 1, and show it also holds for n:
Take (λ,x), an eigenpair of A with ‖x‖2 = 1 and construct a
Householder reflector R whose first column is x (see Sect. 5.6), i.e.,

x = Re1
R−1=R⇐⇒ Rx = e1.

Thus
R =

(
x V

)
for some V.

fasshauer@iit.edu MATH 532 40

http://math.iit.edu/~fass


Diagonalization via Similarity Transforms

Proof (cont.)
Now

R∗AR R=R∗
= RAR = RA

(
x V

)
= R

(
Ax AV

)
= R

(
λx AV

)
=

(
λ Rx︸︷︷︸

=e1

RAV
)

=
(
λe1 R∗AV

)
=

(
λ x∗AV
0 V∗AV

)
By the induction hypothesis V∗AV is similar to an upper triangular
matrix, i.e., there exists a unitary Q such that

Q∗(V∗AV)Q = T̂.
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Diagonalization via Similarity Transforms

Proof (cont.)

Finally, let U = R
(

1 0∗

0 Q

)
so that

U∗AU =

(
1 0∗

0 Q∗

)
R∗AR︸ ︷︷ ︸

=

λ x∗AV
0 V∗AV



(
1 0∗

0 Q

)

=

(
1 0∗

0 Q∗

)(
λ x∗AVQ
0 V∗AVQ

)

=

λ x∗AVQ
0 Q∗V∗AVQ︸ ︷︷ ︸

=T̂


= T upper triangular
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Diagonalization via Similarity Transforms

Proof (cont.)
The diagonal entries of T are the eigenvalues of A since

the similarity transformation preserves eigenvalues, and
the eigenvalues of a triangular matrix are its diagonal elements.

�
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Diagonalization via Similarity Transforms

Theorem (Cayley–Hamilton Theorem)

Let A ∈ Cn×n and let p(λ) = 0 be its characteristic equation. Then

p(A) = 0,

i.e., every square matrix satisfies its characteristic equation.

Proof.
There exist many different proofs. One possibility is via the Schur
factorization theorem (see [Mey00, Ex. 7.2.2]).
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Diagonalization via Similarity Transforms

Multiplicities

Definition
Let λ ∈ σ(A) = {λ1, λ2, . . . , λk}.

1 The algebraic multiplicity of λ, algmultA(λ), is its multiplicity as a
root of the characteristic equation p(λ) = 0.

2 If algmultA(λ) = 1, then λ is called simple.
3 The geometric multiplicity of λ, geomultA(λ), is dim N(A− λI), the

dimension of the eigenspace of λ, i.e., the number of linearly
independent eigenvectors associated with λ.

4 If algmultA(λ) = geomultA(λ), then λ is called semi-simple.
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Diagonalization via Similarity Transforms

Example
Consider

A =

 −1 −1 −2
8 −11 −8
−10 11 7

 , B =

 1 −4 −4
8 −11 −8
−8 8 5


with

pA(λ) = pB(λ) = λ3 + 5λ2 + 3λ− 9 = (λ− 1)(λ+ 3)2

so that the eigenvalues are
λ = 1: simple,

λ = −3: with algmultA(−3) = algmultB(−3) = 2.
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Example ((cont.))
Eigenvectors for λ = −3, A:

A + 3I =

 2 −1 −2
8 −8 −8
−10 11 10

 −→

2 −1 −2
0 −4 0
0 6 0


=⇒ N(A + 3I) = span{

1
0
1

}
=⇒ 1 = geomultA(−3) < algmultA(−3) = 2.
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Diagonalization via Similarity Transforms

Example ((cont.))
Eigenvectors for λ = −3, B:

B + 3I =

 4 −4 −4
8 −8 −8
−8 8 8


=⇒ N(B + 3I) = span{

−1
0
1

 ,

1
1
0

}
=⇒ geomultB(−3) = 2 = algmultB(−3).
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Diagonalization via Similarity Transforms

In general we can say

Theorem
Let A ∈ Cn×n and λ ∈ σ(A). Then

geomultA(λ) ≤ algmultA(λ).

Proof
Let’s assume that algmultA(λ) = k . If we apply the Schur factorization
to A we get

U∗AU =

(
T11 T12
O T22

)
,

where T11 is k × k upper triangular with diag(T11) = (λ, . . . , λ).
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Diagonalization via Similarity Transforms

Proof (cont.)
Also, λ /∈ diag(T22) (where T22 is also upper triangular).
Thus λ /∈ σ(T22) and

T22 − λI is nonsingular,

i.e., rank(T22 − λI) = n − k .
Now,

geomultA(λ) = dim N(A− λI) = n − rank(A− λI).

But, using a unitary (and therefore nonsingular) U,

rank(A− λI) = rank(U∗(A− λI)U)

= rank
(

T11 − λI T12
O T22 − λI

)
≥ rank(T22 − λI) = n − k .

Therefore
geomultA(λ) ≤ n − (n − k) = k = algmultA(λ). �
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Diagonalization via Similarity Transforms

Diagonalizability

Theorem
A matrix A ∈ Cn×n is diagonalizable if and only if

geomultA(λ) = algmultA(λ) for all λ ∈ σ(A),

i.e., if and only if every eigenvalue is semi-simple.

Remark
This provides another interpretation for defective matrices, i.e., a
matrix is diagonalizable if and only if it is not defective.
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Diagonalization via Similarity Transforms

Proof
“⇐=”: Assume geomultA(λi) = algmultA(λi) = ai for all i .
Furthermore, assume we have k distinct eigenvalues, i.e.,

σ(A) = {λ1, . . . , λk}.

Take Bi as a basis for N(A− λi I), then

B =
k⋃

i=1

Bi

consists of
∑k

i=1 ai = n vectors.
Moreover, B is linearly independent (see HW), and it forms a complete
set of eigenvectors so that A is diagonalizable.
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Diagonalization via Similarity Transforms

Proof (cont.)

“=⇒”: Assume A is diagonalizable with λ such that algmultA(λ) = a.
Then

P−1AP = D =

(
λIa×a O

O B

)
,

where P is nonsingular and B is diagonal with λ /∈ B.
As above,

geomultA(λ) = dim N(A− λI) = n − rank(A− λI).

However,

rank(A− λI) = rank(P(D− λI)P−1)

= rank
(

O O
O B− λI

)
= n − a.

Together,
geomultA(λ) = n − (n − a) = algmultA(λ). �
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Diagonalization via Similarity Transforms

Corollary
If all eigenvalues of A are simple, then A is diagonalizable.

Remark
The converse is not true. Our earlier example showed that B is
diagonalizable since σ(B) = {−3,1} with

geomultB(−3) = algmultB(−3) = 2
geomultB(1) = algmultB(1) = 1,

but λ = −3 is a double eigenvalue.
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Spectral Theorem

Theorem
A matrix A ∈ Cn×n with σ(A) = {λ1, . . . , λk} is diagonalizable if and
only if there exist spectral projectors Gi , i = 1, . . . , k such that we have
the spectral decomposition

A = λ1G1 + λ2G2 + . . .+ λkGk ,

where the Gi satisfy
1 G1 + G2 + . . .+ Gk = I,
2 GiGj = O, i 6= j ,
3 Gi is a projector onto N(A− λi I) along R(A− λi I).
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Proof
We discuss only “=⇒” for (1) and (2).
Assume A is diagonalizable, i.e., A = PDP−1 with

P =
(
X1 X2 · · · Xk

)
,

where the columns of Xi form a basis for N(A− λi I), i.e.,

A =
(
X1 X2 · · · Xk

)

λ1I O

λ2I
. . .

O λk I




YT
1

YT
2
...

YT
k


︸ ︷︷ ︸

=P−1

= λ1 X1YT
1︸ ︷︷ ︸

=G1

+λ2 X2YT
2︸ ︷︷ ︸

=G2

+ . . .+ λk XkYT
k︸ ︷︷ ︸

=Gk

.
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Proof (cont.)
The identity

A = λ1G1 + λ2G2 + . . .+ λkGk

is the spectral decomposition of A.

If λ1 = λ2 = . . . = λk = 1 then

PIP−1 = I = G1 + G2 + . . .+ Gk

and we have established (1).
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Proof (cont.)
Moreover,

P−1P = I ⇐⇒


YT

1 X1 YT
1 X2 · · · YT

1 Xk
YT

2 X1 YT
2 X2

. . .
YT

k X1 · · · YT
k Xk

 = I

so that YT
i Xj =

{
I, i = j ,
O, i 6= j ,

and

GiGj = Xi YT
i Xj︸ ︷︷ ︸

=δij I

YT
j

=

{
XiYT

j , i = j ,
O, i 6= j .

Thus G2
i = Gi are projectors and we have established (2). �
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Proof (cont.)
Moreover,

P−1P = I ⇐⇒


YT

1 X1 YT
1 X2 · · · YT

1 Xk
YT

2 X1 YT
2 X2

. . .
YT

k X1 · · · YT
k Xk

 = I

so that YT
i Xj =

{
I, i = j ,
O, i 6= j ,

and

GiGj

= Xi YT
i Xj︸ ︷︷ ︸

=δij I

YT
j

=

{
XiYT

j , i = j ,
O, i 6= j .

Thus G2
i = Gi are projectors and we have established (2). �

fasshauer@iit.edu MATH 532 58

http://math.iit.edu/~fass


Diagonalization via Similarity Transforms

Proof (cont.)
Moreover,

P−1P = I ⇐⇒


YT

1 X1 YT
1 X2 · · · YT

1 Xk
YT

2 X1 YT
2 X2

. . .
YT

k X1 · · · YT
k Xk

 = I

so that YT
i Xj =

{
I, i = j ,
O, i 6= j ,

and

GiGj = Xi YT
i Xj︸ ︷︷ ︸

=δij I

YT
j

=

{
XiYT

j , i = j ,
O, i 6= j .

Thus G2
i = Gi are projectors and we have established (2). �

fasshauer@iit.edu MATH 532 58

http://math.iit.edu/~fass


Diagonalization via Similarity Transforms

Proof (cont.)
Moreover,

P−1P = I ⇐⇒


YT

1 X1 YT
1 X2 · · · YT

1 Xk
YT

2 X1 YT
2 X2

. . .
YT

k X1 · · · YT
k Xk

 = I

so that YT
i Xj =

{
I, i = j ,
O, i 6= j ,

and

GiGj = Xi YT
i Xj︸ ︷︷ ︸

=δij I

YT
j =

{
XiYT

j , i = j ,
O, i 6= j .

Thus G2
i = Gi are projectors and we have established (2). �

fasshauer@iit.edu MATH 532 58

http://math.iit.edu/~fass


Diagonalization via Similarity Transforms

Proof (cont.)
Moreover,

P−1P = I ⇐⇒


YT

1 X1 YT
1 X2 · · · YT

1 Xk
YT

2 X1 YT
2 X2

. . .
YT

k X1 · · · YT
k Xk

 = I

so that YT
i Xj =

{
I, i = j ,
O, i 6= j ,

and

GiGj = Xi YT
i Xj︸ ︷︷ ︸

=δij I

YT
j =

{
XiYT

j , i = j ,
O, i 6= j .

Thus G2
i = Gi are projectors and we have established (2). �

fasshauer@iit.edu MATH 532 58

http://math.iit.edu/~fass


Diagonalization via Similarity Transforms

Remark
If λi is simple, then

Gi =
xy∗

y∗x
,

where x ,y∗, respectively, are the right and left eigenvectors of A
associated with λi .
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Functions of Diagonalizable Matrices
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Functions of Diagonalizable Matrices

Functions of Diagonalizable Matrices

We want to give meaning to
f (A),

where
A: a square n × n matrix (below also diagonalizable),
f : a continuous function.

Functions of matrices play an important role, e.g., in solving systems
of ODEs.
One possible approach is to use infinite series, such as

eA =
∞∑

k=0

Ak

k !
.

However, it is not so easy to compute this series in practice (see, e.g.,
[MVL78, MVL03]) or to analyze the convergence of such types of
series.
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Functions of Diagonalizable Matrices

If A is diagonalizable then the series are easier to analyze:

Recall: A diagonalizable means that there exists a nonsingular P such
that

P−1AP = D = diag(λ1, . . . , λn),

where the eigenvalues λ1, . . . , λn need not be distinct.

Moreover, from HW 11 we know that

P−1AkP = diag(λk
1, . . . , λ

k
n) = Dk .

With this setup we can represent f (A) as a power series in A.
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Functions of Diagonalizable Matrices

f (A) =
∞∑

k=0

ckAk

=
∞∑

k=0

ckPDkP−1 = P

( ∞∑
k=0

ckDk

)
P−1

= P

( ∞∑
k=0

ck diag(λk
1, . . . , λ

k
n)

)
P−1

= P diag

( ∞∑
k=0

ckλ
k
1, . . . ,

∞∑
k=0

ckλ
k
n

)
P−1

= P diag (f (λ1), . . . , f (λn))P−1

= Pf (D)P−1

Note how the matrix power series now has become a diagonal matrix
of regular (scalar) power series in the eigenvalues of A.
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Functions of Diagonalizable Matrices

Thus we can now define f (A), A diagonalizable, as

f (A) = Pf (D)P−1

= P diag(f (λ1), . . . , f (λn))P−1.

The advantage of this approach is that we have no problems analyzing
convergence of the series (this is now standard calculus).

However, now there is a potential problem with uniqueness since P is
not unique.
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Functions of Diagonalizable Matrices

To understand the uniqueness issue we look more carefully and write

f (A) = Pf (D)P−1

=
(
X1 · · · Xn

)f (λ1)I
. . .

f (λn)I


YT

1
...

YT
n


=

n∑
i=1

f (λi)XiYT
i

=
n∑

i=1

f (λi)Gi ,

where the spectral projectors Gi are unique.

Remark
Note how the spectral theorem helps us convert the problem from one
with an infinite series to a single finite sum of length n.
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Functions of Diagonalizable Matrices

The representation

f (A) =
n∑

i=1

f (λi)Gi

implies that any function of a diagonalizable matrix A is a polynomial in
A.

To see this, we construct p(λi) = f (λi), i.e., we construct a Lagrange
interpolating polynomial to f at the eigenvalues of A:

p(z) =
n∑

i=1

f (λi)Li(z)

with Li(z) =
n∏

j=1
j 6=i

(z − λj)/
n∏

j=1
j 6=i

(λi − λj).
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Functions of Diagonalizable Matrices

Thus,

f (A) =
n∑

i=1
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=
n∑

i=1

p(λi)Gi = p(A).

On the other hand,

p(A) =
n∑

i=1

f (λi)Li(A)

and we see that
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Functions of Diagonalizable Matrices

Remark
In fact, f (A) is a polynomial in A for any square A (see HW — uses
Cayley–Hamilton theorem).

Moreover, for general (square) A we can always define f (A) via an
infinite series. Then one can prove

Theorem

If f (z) =
∑∞

k=1 ck (z − z0)
k converges for |z − z0| < r and |λi − z0| < r

for all λi ∈ σ(A), then

f (A) =
∞∑

k=0

ck (A− z0I)k .
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Functions of Diagonalizable Matrices

The power method to compute the largest eigenvalue
of A

Consider a matrix A ∈ Cn×n with eigenvalues

|λ1| > |λ2| ≥ . . . ≥ |λn|,

i.e., A has a dominant (real) eigenvalue.

Note that λ1 is real since if it were complex, then we would also have
λ1 with |λ1| = |λ1|, so not dominant.

We now describe a numerical method to find λ1 and explain how it can
be viewed in the framework of this section.
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Functions of Diagonalizable Matrices

Consider f (z) =
(

z
λ1

)k
. Then

f (A) =
(

A
λ1

)k

=
n∑

i=1

f (λi)Gi

=
n∑

i=1

(
λi

λ1

)k

Gi

= G1 +

(
λ2

λ1

)k

︸ ︷︷ ︸
→0

G2 + . . .+

(
λn

λ1

)k

︸ ︷︷ ︸
→0

Gn → G1 for k →∞.

Therefore (
A
λ1

)k

x0 → G1x0 ∈ N(A− λ1I)

since G1 is a projector onto N(A− λ1I).
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Functions of Diagonalizable Matrices

Thus any initial vector x0 such that G1x0 6= 0 (i.e., x0 /∈ R(A− λ1I)) will
converge to an eigenvector of A associated with λ1 via the iteration

Akx0

λk
1
, k = 1,2, . . .

In fact, Akx0 converges to the first eigenvector, as does any scalar
multiple.

To find the eigenvalue λ1 one iterates for k = 0,1,2, . . .

y (k) = Ax (k), ν(k) = maxcomp(y (k)), x (k+1) =
y (k)

ν(k)
.

In fact, ν(k) → λ1 since

Ax (k+1)︸ ︷︷ ︸
→Ax1=λ1x1

= A
y (k)

ν(k)
= A2x (k)︸ ︷︷ ︸
→A2x1=λ2

1x1

/ν(k).
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Functions of Diagonalizable Matrices

Remark
More details of the power method — as well as several other methods
for finding eigenvalues — are discussed in MATH 577.
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Normal Matrices

Outline

1 Elementary Properties

2 Diagonalization via Similarity Transforms

3 Functions of Diagonalizable Matrices

4 Normal Matrices

5 Positive Definite Matrices

6 Iterative Solvers

7 Krylov Methods
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Normal Matrices

Normal Matrices

Consider an n × n matrix A. We know that

A is diagonalizable (in the sense of similarity) if and only if A is
nondefective, and

A is unitarily similar to a triangular matrix (Schur).

Question: What are the conditions on A such that it is unitarily
diagonalizable?

fasshauer@iit.edu MATH 532 74

http://math.iit.edu/~fass


Normal Matrices

Normal Matrices

Consider an n × n matrix A. We know that

A is diagonalizable (in the sense of similarity) if and only if A is
nondefective, and

A is unitarily similar to a triangular matrix (Schur).

Question: What are the conditions on A such that it is unitarily
diagonalizable?

fasshauer@iit.edu MATH 532 74

http://math.iit.edu/~fass


Normal Matrices

Definition
A matrix A ∈ Cn×n is called normal if

A∗A = AA∗.

Theorem
The matrix A ∈ Cn×n is unitarily diagonalizable if and only if it is normal.
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Normal Matrices

Proof (only easy direction).
Assume A is unitarily diagonalizable, i.e., there exists a unitary U such
that

U∗AU = D ⇐⇒ A = UDU∗, A∗ = UDU∗.

Then

A∗A = UD U∗U︸︷︷︸
=I

DU∗,

AA∗ = UD U∗U︸︷︷︸
=I

DU∗.

Since

DD =
n∑

i=1

|di |2 = DD

we have A∗A = AA∗ and A is normal.
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Normal Matrices

Remark
Normal matrices are unitarily diagonalizable, i.e., they have an
associated complete set of orthogonal eigenvectors.

However, not all complete sets of eigenvectors of normal matrices
are orthogonal (see HW).
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Normal Matrices

Theorem
Let A be normal with σ(A) = {λ1, . . . , λk}. Then

1 R(A) ⊥ N(A).
2 Eigenvectors to distinct eigenvalues are orthogonal, i.e.,

N(A− λi I) ⊥ N(A− λj I), λi 6= λj .

3 The spectral projectors Gi are orthogonal projectors.
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Normal Matrices

Proof
1 We know

N(A∗A) = N(A), N(AA∗) = N(A∗),

R(A)⊥ = N(A∗).

Since A is normal we know N(A∗) = N(A) and the statement
follows.

2 From above we know that R(A)⊥ = N(A∗) = N(A) whenever A is
normal.
Moreover, A− λI is also normal since

(A− λI)∗(A− λI) = A∗A− λA∗ − λA + |λ|2I,

(A− λI)(A− λI)∗ = AA∗ − λA− λA∗ + |λ|2I.

Therefore,

N(A− λI) = N ((A− λI)∗) = N
(
A∗ − λI

)
.
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Normal Matrices

Proof (cont.)
We also have

λ ∈ σ(A) ⇐⇒ λ ∈ σ(A∗)

since

det(A− λI) = 0 ⇐⇒ det(A− λI) = 0

det(A)=det(A∗)⇐⇒ det ((A− λI)∗) = 0

⇐⇒ det(A∗ − λI) = 0.

fasshauer@iit.edu MATH 532 80

http://math.iit.edu/~fass


Normal Matrices

Proof (cont.)

So we can consider two eigenpairs (λi ,x i) and (λj ,x j) of A.

Conjugate transposition yields

Ax j = λjx j ⇐⇒ x∗j A∗ = λjx∗j ,

and from above this is equivalent to

x∗j A = λjx∗j .

Now we multiply by x i

x∗j Ax i︸︷︷︸
=λi x i

= λjx∗j x i ⇐⇒ λix∗j x i = λjx∗j x i

λi 6=λj⇐⇒ x∗j x i = 0.
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Normal Matrices

Proof (cont.)
3 The spectral theorem states that the Gi are projectors onto

N(A− λi I) along R(A− λi I).

Above we showed that
A− λi I is normal provided A is normal, and
R(A)⊥ = N(A) whenever A is normal.

Therefore
R(A− λi I)⊥ = N(A− λi I)

and Gi are orthogonal projectors. �
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Normal Matrices

Proof (cont.)
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Normal Matrices

Remark
Normal matrices include

real symmetric, Hermitian, skew-symmetric, skew-Hermitian,
orthogonal, and unitary matrices.

All eigenvalues of Hermitian (or real symmetric) matrices are real:
First,

Ax = λx ⇐⇒ x∗A∗ = λx∗.

Multiply by x∗ and x , respectively:

x∗Ax = λx∗x ⇐⇒ x∗A∗x = λx∗x .

Then, since A∗ = A,

λx∗x = λx∗x x 6=0⇐⇒ λ = λ.
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All eigenvalues of Hermitian (or real symmetric) matrices are real:
First,

Ax = λx ⇐⇒ x∗A∗ = λx∗.

Multiply by x∗ and x , respectively:

x∗Ax = λx∗x ⇐⇒ x∗A∗x = λx∗x .

Then, since A∗ = A,
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Normal Matrices

Moreover, one can show

Theorem
A is real symmetric if and only if A is orthogonally diagonalizable, i.e.,

PT AP = D,

where P is orthogonal and D is real.
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Normal Matrices

Rayleigh quotient

Definition
Let A ∈ Cn×n and x ∈ Cn. Then

r(x) =
x∗Ax
x∗x

is called the Rayleigh quotient of A associated with x .

Remark
If x is an eigenvector of A then r(x) = λ, the associated eigenvalue,
i.e.,

Ax = λx =⇒ x∗Ax = λx∗x ⇐⇒ r(x) = λ.
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Normal Matrices

Theorem
Let A ∈ Cn×n be Hermitian. Then

λmax = max
x 6=0

r(x), λmin = min
x 6=0

r(x).

Remark
Since the eigenvalues of a Hermitian matrix are real they can indeed
be ordered.

Proof (Only for the maximum eigenvalue).

First, we consider an equivalent formulation:

λmax = max
‖x‖2=1

x∗Ax .
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Normal Matrices

Proof (cont.)
Now, since A is Hermitian, A is normal and therefore unitarily
diagonalizable so that

max
‖x‖2=1

x∗Ax = max
‖x‖2=1

x∗UDU∗x .

Let y = U∗x . Then
‖y‖2 = ‖U∗x‖2 = ‖x‖2

and
max
‖x‖2=1

x∗Ax = max
‖y‖2=1

y∗Dy

= max
‖y‖2=1

n∑
i=1

λi |yi |2

≤ λmax max
‖y‖2=1

n∑
i=1

|yi |2︸ ︷︷ ︸
=‖y‖2

2

= λmax.

Thus, max‖x‖2=1 x∗Ax ≤ λmax.
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Normal Matrices
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Normal Matrices

Proof (cont.)
However, the upper bound can be achieved by making x a normalized
eigenvector for λmax. Then

x∗Ax = x∗λmaxx = λmax ‖x‖22︸ ︷︷ ︸
=1

= λmax.

So the claim is true. �
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Normal Matrices

As a generalization one can prove

Theorem (Courant–Fischer Theorem)
Let A be an n × n Hermitian matrix. Its eigenvalues
λmax = λ1 ≥ λ2 ≤ . . . ≤ λn = λmin are given by

λi = max
dimV=i

min
x∈V
‖x‖2=1

x∗Ax

or
λi = min

dimV=n−i+1
max
x∈V
‖x‖2=1

x∗Ax .

Remark
Here V is a subspace of Cn.
i = n in the max-min characterization leads to V = Cn and λmin.
i = 1 in the min-max characterization leads to V = Cn and λmin.

fasshauer@iit.edu MATH 532 89

http://math.iit.edu/~fass


Normal Matrices

As a generalization one can prove

Theorem (Courant–Fischer Theorem)
Let A be an n × n Hermitian matrix. Its eigenvalues
λmax = λ1 ≥ λ2 ≤ . . . ≤ λn = λmin are given by

λi = max
dimV=i

min
x∈V
‖x‖2=1

x∗Ax

or
λi = min

dimV=n−i+1
max
x∈V
‖x‖2=1

x∗Ax .

Remark
Here V is a subspace of Cn.
i = n in the max-min characterization leads to V = Cn and λmin.
i = 1 in the min-max characterization leads to V = Cn and λmin.

fasshauer@iit.edu MATH 532 89

http://math.iit.edu/~fass


Normal Matrices

Remark
Since the singular values of A are the square roots of the eigenvalues
of A∗A an analogous theorem holds for the singular values of A (see
[Mey00, p. 555] for more details).

In particular,

σmax = max
‖x‖2=1

x∗A∗Ax = max
‖x‖2=1

‖Ax‖2 = ‖A‖2.
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Positive Definite Matrices

Outline

1 Elementary Properties
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Positive Definite Matrices

Positive Definite Matrices

Earlier we saw that if A ∈ Rn×n is symmetric, then

PT AP = D,

where P is an orthogonal matrix of eigenvectors and D is a real
diagonal matrix of eigenvalues.

Question: What additional properties of A will ensure that its
eigenvalues are all positive (nonnegative)?
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Positive Definite Matrices

A necessary condition

Let’s assume that λi ≥ 0, i = 1, . . . ,n. Then

D = diag(λ1, . . . , λn)

= diag(
√
λ1, . . . ,

√
λn)diag(

√
λ1, . . . ,

√
λn) = D1/2D1/2.

So
A = PDPT = PD1/2D1/2PT = BT B,

where B = D1/2PT .

Moreover, λi > 0, i = 1, . . . ,n, implies D is nonsingular, and therefore
B is nonsingular.

The converse is also true, i.e., if B nonsingular, then λi > 0 (since
D1/2 = BP and P orthogonal).
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Positive Definite Matrices

A sufficient condition

Having a factorization
A = BT B

is also sufficient:

Assume (λ,x) is an eigenpair of A. Then the Rayleigh quotient shows

λ =
xT Ax
xT x

=
xT BT Bx

xT x
=
‖Bx‖22
‖x‖22

≥ 0.

Moreover, if B is nonsingular, then N(B) = {0} so that Bx 6= 0 and
λ > 0.
Conversely, if λ > 0, then Bx 6= 0, and — if x 6= 0 —then B is
nonsingular.
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Positive Definite Matrices

Remark
On slide #78 of Chapter 3 we defined:
A symmetric matrix A is positive definite if it has an LU decomposition
with positive pivots, i.e.,

A = LDLT = RT R,

where R = D1/2LT is the upper triangular Cholesky factor of A.

This agrees with our discussion above.
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Positive Definite Matrices

Theorem
A real symmetric matrix A is positive definite if and only if any of the
following equivalent conditions hold:

1 A has an LU factorization with positive pivots, or A has a Cholesky
factorization A = RT R with upper triangular matrix R with positive
diagonal entries.

2 All eigenvalues of A are positive.

3 xT Ax > 0 for all nonzero x ∈ Rn.
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Positive Definite Matrices

Remark
Earlier we used (1) as the definition of positive definiteness. Often
positive definiteness is defined via (3).

For a Hermitian matrix A we replace the transpose T by conjugate
transpose ∗ and “real”’ by “complex”.

A few more criteria are listed in [Mey00]. In particular, all principal
minors of A must be positive. Therefore, if A has a nonpositive
diagonal entry, then it can’t be positive definite.
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Positive Definite Matrices

Finally,

Definition
Let A be a real symmetric matrix. If

xT Ax ≥ 0

for all x ∈ Rn, then A is called positive semidefinite.

Theorem
A is positive semidefinite if and only if all eigenvalues of A are
nonnegative.

Remark
A few more criteria are listed in [Mey00].
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Positive Definite Matrices

Positive definite matrices in applications

Gram matrix in interpolation/least squares approximation:

Aij = 〈v i ,v j〉

where {v1, . . . ,vn} ⊆ V, V some inner product space.

If the v i are linearly independent, then A is positive definite;
otherwise positive semidefinite.

If v i are the columns of some matrix V, then A = VT V is the matrix
of the normal equations VT Vx = VT b.
If v i = K (·,x i) is a (reproducing) kernel function centered at x i ,
then Aij = 〈K (·,x i),K (·,x j)〉HK = K (x i ,x j). This is the matrix that
appears in kriging and RBF interpolation.
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Positive Definite Matrices

Hessian matrix in optimization:

Start with n-dimensional Taylor
theorem:

f (x) = f (z) +
n∑

i=1

(xi − zi)
∂f
∂xi

(z) +
1
2

n∑
i=1

n∑
j=1

(xi − zi)(xj − zj)
∂2f
∂xi∂xj

(z) + . . .

= f (z) + (x − z)T∇f (z) +
1
2
(x − z)T Hf (z)(x − z) + . . . ,

where ∇f is the gradient of f and Hf is its Hessian matrix.

From calculus it is known that convexity/concavity at a critical point
z , i.e., ∇f (z) = 0, can be determined by the Hessian matrix. In
fact,

If Hf (z) is positive definite, then f has a minimum at z .
If Hf (z) is negative definite, then f has a maximum at z .

Moreover, if Hf (z) is positive semidefinite for all points in the
domain of f , then f is a convex function.
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Positive Definite Matrices

Covariance matrix in probability/statistics:

Let X = (X1, . . . ,Xn)
T

be a vector of random variables with mean µi = E[Xi ], i = 1, . . . ,n.
Then the covariance matrix of X is given by

Aij = E[(Xi − µi)(Xj − µj)]

We can see that A is positive semidefinite:

zT Az = E

 n∑
i=1

n∑
j=1

zi(Xi − µi)(Xj − µj)zj



= E

( n∑
i=1

zi(Xi − µi)

)2
 ≥ 0.
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Positive Definite Matrices

Finite difference matrices: See, e.g., [Mey00, Example 7.6.2].

“Stiffness” matrices: in finite element formulations, based on the
interpretation of energy of some state x as a quadratic form
xT Ax . Positive energy (a fundamental physical assumption)
means positive definite A.

More details in MATH 581.
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Positive Definite Matrices

Quadratic forms

Definition
Let A ∈ Rn×n and x ∈ Rn. The scalar function

f (x) = xT Ax =
n∑

i=1

n∑
j=1

aijxixj

is called a quadratic form.

The quadratic form xT Ax is called positive definite if the matrix A is
positive definite.
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Positive Definite Matrices

Remark
We always assume that the matrix of a quadratic form is symmetric:

Even if A is not symmetric, A+AT

2 always is symmetric.

And we have for the quadratic form

xT
(

A + AT

2

)
x =

1
2

xT Ax +
1
2

xT AT x

= xT Ax

because xT AT x = xT Ax is a scalar.
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Positive Definite Matrices

Every quadratic form can be written in standard (i.e., diagonal) form
since every real symmetric matrix is orthogonally similar to a diagonal
matrix.

Example
Take

f (x) = x1x2 = xT
(

0 1
0 0

)
x

= xT
(

0 1
2

1
2 0

)
x = xT Ax .

We want to find the standard form f (y) = yT Dy , where D is diagonal
and y are transformed coordinates.
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Positive Definite Matrices

Example (cont.)
We can compute the eigenvalues and (orthogonal) eigenvectors of A,
i.e.,

A = QDQT

⇐⇒ 1
2

(
0 1
1 0

)
=

1√
2

(
1 −1
1 1

)(1
2 0
0 −1

2

)
1√
2

(
1 1
−1 1

)

so that
f (x) = xT Ax = xT Q︸︷︷︸

=yT

DQT x = yT Dy

and the standard form is

yT
(1

2 0
0 −1

2

)
y =

1
2

(
y2

1 − y2
2

)
.
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Positive Definite Matrices

Remark
Instead of computing the eigenvalues and eigenvectors of A in the
example, we can also consider the factorization

A = LDLT .

For a positive definite A this is the Cholesky factorization, and it is
cheaper to compute than eigenvalues and eigenvectors.

Then

xT Ax = xT L︸︷︷︸
=yT

DLT x = yT Dy =
n∑

i=1

piy2
i ,

where D = diag(p1, . . . ,pn) contains the pivots used in Gaussian
elimination.
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Positive Definite Matrices

Congruence transformations

Formally, the preceding argument uses a congruence transformation.

Definition
Two matrices A,B ∈ Rn×n are called congruent if

B = CT AC

for some nonsingular matrix C. Commonly used notation: A ' B.
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Positive Definite Matrices

Recall: A and B are similar if B = P−1AP, and similar matrices have
the same eigenvalues.

Now,

Definition
Let A be a real symmetric matrix. The triple (ρ, ν, ζ), where ρ, ν, and ζ,
respectively, denote the number of positive, negative, and zero
eigenvalues of A is called the inertia of A.
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Positive Definite Matrices

Theorem (Sylvester’s Law of Inertia)

Let A,B ∈ Rn×n be symmetric. Then A and B are congruent, i.e.,
A ' B, if and only if A and B have the same inertias.

Proof.
See [Mey00].
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Iterative Solvers

Outline

1 Elementary Properties
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Iterative Solvers

Iterative Solvers

Consider the linear system
Ax = b,

where A has many zero entries, i.e., A is sparse.

In this case, direct factorization methods (such as LU, QR, SVD) are
very inefficient to solve Ax = b.

Instead, one uses iterative solvers.
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Iterative Solvers

The general framework for classical iterative solvers is as follows:

We split A into
A = M− N,

where M−1 exists and — ideally — is easy to compute.
Then

Ax = b ⇐⇒ (M− N)x = b ⇐⇒ Mx = Nx + b

and we iterate

Mx (k) = Nx (k−1) + b

⇐⇒ x (k) = M−1N︸ ︷︷ ︸
=H

x (k−1) + M−1b︸ ︷︷ ︸
=d

, k = 1,2,3, . . . ,

where x (0) is some initial guess and H = M−1N is called the
iteration matrix.
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Iterative Solvers

Theorem

Let M and N be two matrices such that A = M− N and H = M−1N. If
ρ(H) < 1 then A is nonsingular and limk→∞ x (k) = x = A−1b, i.e., the
iterative method with iteration matrix H, converges for any initial guess
x (0) to the solution of Ax = b.
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Iterative Solvers

Proof
First we show that A is nonsingular.

Since H = M−1N (invertibility of M is an assumption) we have

A = M− N
= M−MH
= M(I− H). (3)

Now, since ρ(H) < 1 we know that I− H is invertible via its Neumann
series, and therefore A is invertible.
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Iterative Solvers

Proof (cont.)

Now we show that limk→∞ x (k) = x = A−1b:

x (k) = Hx (k−1) + d

= H
(

Hx (k−2) + d
)
+ d = H2x (k−2) + (I + H)d

...
= Hkx (0) + (I + H + . . .+ Hk−1)d ,

where

Hk → O and (I + H + . . .+ Hk−1)→ (I− H)−1 for k →∞

so that — using (3), i.e., (I− H)−1 = A−1M,

lim
k→∞

x (k) = (I− H)−1d

= (I− H)−1M−1b = A−1b = x .

�
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Iterative Solvers

Remark
In order to have a “good” iterative solver we will want

fast convergence — ensured by ρ(H)� 1,
simple computation — ensured by easy computation of M−1 (or
H = M−1N and d = M−1b).

We conclude by presenting two standard examples:
Jacobi iteration,
Gauss-Seidel iteration.
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Iterative Solvers

Jacobi iteration

We take M = D = diag(A), which is easy to invert.

Then
A = M− N = D− N,

i.e., N = −(A− D) or, if A = L + D + U, N = −(L + U).
Therefore Ax = b is solved via

Dx (k) = Nx (k−1) + b, k = 1,2,3, . . . ,

or componentwise

x (k)
i =

1
aii

bi −
n∑

j=1
j 6=i

aijx
(k−1)
j

 , i = 1,2, . . . ,n.
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Iterative Solvers

Remark
Jacobi iteration is embarrassingly parallel, i.e., the above
componentwise equations can be directly implemented on n
parallel processors.

Also, only entries from the i th row of the matrix are needed to
update the i th component of x .

Jacobi iteration had long been considered as too simple (and too
slow) to be useful. However, a recent modification [YM14] using
relaxation has changed that. This modification was customized to
solve elliptic PDEs via a finite difference discretization.
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Iterative Solvers

Theorem
If A is diagonally dominant, then Jacobi iteration converges for any
initial guess.
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Iterative Solvers

Proof.
Diagonal dominance says

|aii | >
n∑

j=1
j 6=i

|aij |, i = 1, . . . ,n

⇐⇒
n∑

j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

Now

‖H‖∞ =

‖D−1N‖∞ = max
1≤i≤n

n∑
j=1

∣∣∣∣aij

aii

∣∣∣∣
diag(N)=0

= max
1≤i≤n

n∑
j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

fasshauer@iit.edu MATH 532 121

http://math.iit.edu/~fass


Iterative Solvers

Proof.
Diagonal dominance says

|aii | >
n∑

j=1
j 6=i

|aij |, i = 1, . . . ,n ⇐⇒
n∑

j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

Now

‖H‖∞ =

‖D−1N‖∞ = max
1≤i≤n

n∑
j=1

∣∣∣∣aij

aii

∣∣∣∣
diag(N)=0

= max
1≤i≤n

n∑
j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

fasshauer@iit.edu MATH 532 121

http://math.iit.edu/~fass


Iterative Solvers

Proof.
Diagonal dominance says

|aii | >
n∑

j=1
j 6=i

|aij |, i = 1, . . . ,n ⇐⇒
n∑

j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

Now

‖H‖∞ =

‖D−1N‖∞ = max
1≤i≤n

n∑
j=1

∣∣∣∣aij

aii

∣∣∣∣
diag(N)=0

= max
1≤i≤n

n∑
j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

fasshauer@iit.edu MATH 532 121

http://math.iit.edu/~fass


Iterative Solvers

Proof.
Diagonal dominance says

|aii | >
n∑

j=1
j 6=i

|aij |, i = 1, . . . ,n ⇐⇒
n∑

j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

Now

‖H‖∞ = ‖D−1N‖∞

= max
1≤i≤n

n∑
j=1

∣∣∣∣aij

aii

∣∣∣∣
diag(N)=0

= max
1≤i≤n

n∑
j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

fasshauer@iit.edu MATH 532 121

http://math.iit.edu/~fass


Iterative Solvers

Proof.
Diagonal dominance says

|aii | >
n∑

j=1
j 6=i

|aij |, i = 1, . . . ,n ⇐⇒
n∑

j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

Now

‖H‖∞ = ‖D−1N‖∞ = max
1≤i≤n

n∑
j=1

∣∣∣∣aij

aii

∣∣∣∣

diag(N)=0
= max

1≤i≤n

n∑
j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

fasshauer@iit.edu MATH 532 121

http://math.iit.edu/~fass


Iterative Solvers

Proof.
Diagonal dominance says

|aii | >
n∑

j=1
j 6=i

|aij |, i = 1, . . . ,n ⇐⇒
n∑

j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

Now

‖H‖∞ = ‖D−1N‖∞ = max
1≤i≤n

n∑
j=1

∣∣∣∣aij

aii

∣∣∣∣
diag(N)=0

= max
1≤i≤n

n∑
j=1
j 6=i

∣∣∣∣aij

aii

∣∣∣∣ < 1.

fasshauer@iit.edu MATH 532 121

http://math.iit.edu/~fass


Iterative Solvers

Remark
Since ρ(H) < ‖H‖, diagonal dominance (or ‖H‖∞ < 1) is a weaker
condition than ρ(H) < 1.
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Iterative Solvers

Gauss–Seidel iteration

Let’s again decompose A = L + D + U, but now take

M = D + L, N = −U.

Then

H = M−1N = −(D + L)−1U

d = M−1b = (D + L)−1b.

The iteration formula is

x (k) = −(D + L)−1Ux (k−1) + (D + L)−1b

⇐⇒ (D + L)x (k) = b − Ux (k−1).
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Iterative Solvers

Componentwise we get

i−1∑
j=1

aijx
(k)
j + aiix

(k)
i = bi −

n∑
j=i+1

aijx
(k−1)
j .

Since when we work on the i th component the components x (k)
j , j < i ,

have already been updated we can write

x (k)
i =

1
aii

bi −
i−1∑
j=1

aijx
(k)
j −

n∑
j=i+1

aijx
(k−1)
j

 , i = 1,2, . . . ,n.

Remark
Gauss–Seidel iteration is similar to Jacobi iteration, but it uses the
most recently computed information as soon as it becomes available
(instead of waiting until the next iteration, as Jacobi does).
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Iterative Solvers

Convergence of Gauss-Seidel iteration

Theorem
Gauss–Seidel iteration converges for any initial guess if

1 A is diagonally dominant, or
2 A is symmetric positive definite.

Proof.
1 In [Mey00],
2 on next few slides.

Remark
Usually Gauss–Seidel converges faster than Jacobi. However, there
are exceptions.
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Iterative Solvers

Proof (convergence for positive definite A)

Since A is symmetric, we can decompose

A = L + D + LT , H = −(D + L)−1LT .

Convergence will be ensured if we can show that ρ(H) < 1, i.e.,

ρ(−(D + L)−1LT ) < 1.

Since D has positive entries (otherwise A couldn’t be positive definite),
D is positive definite (and therefore nonsingular) so that

H̃ = D1/2HD−1/2

has the same eigenvalues as H.
Therefore, we now show that

ρ(H̃) < 1.
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Iterative Solvers

Proof (cont.)

First, we rewrite H̃. For this we require a push-through identity for the
matrix inverse ([Ber09], similar to what we had in Chapter 3):

(I + AB)−1A = A(I + BA)−1. (4)

If we let A = D−1/2 and B = LD−1/2, then we get

(I + D−1/2LD−1/2)−1D−1/2 (4)
= D−1/2(I + LD−1/2D−1/2)−1

= D−1/2(I + LD−1)−1

= D−1/2(DD−1 + LD−1)−1

= D−1/2
(
(D + L)D−1

)−1

= D−1/2D(D + L)−1 = D1/2(D + L)−1.

(5)
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Iterative Solvers

Proof (cont.)
Therefore

H̃ = D1/2HD−1/2

= −D1/2(D + L)−1LT D−1/2

(5)
= −(I + D−1/2LD−1/2)−1D−1/2LT D−1/2

= −(I + L̃)−1L̃T ,

where L̃ = D−1/2LD−1/2.
Now consider an eigenpair (λ,x) of H̃ with x∗x = 1. Then

H̃x = λx ⇐⇒ −L̃T x = λ(I + L̃)x .

Multiplying by x∗ yields

−x∗L̃T x = λ(x∗x︸︷︷︸
=1

+x∗L̃x) ⇐⇒ λ =
−x∗L̃T x
1 + x∗L̃x

.
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Iterative Solvers

Proof (cont.)

Finally, we let x∗L̃x = a + bi.

Then we have x∗L̃T x = a− bi so that

|λ|2 =

∣∣∣∣ −a + bi
1 + a + bi

∣∣∣∣2

=
a2 + b2

1 + 2a + a2 + b2 < 1

since 1 + 2a > 0, as we now show:

The matrix D−1/2AD−1/2 = L̃ + I + L̃T is positive definite, and therefore
its quadratic form is positive.
In particular, using the eigenvector x we have

0 < x∗D−1/2AD−1/2x = x∗L̃x︸ ︷︷ ︸
=a+bi

+ x∗x︸︷︷︸
=1

+x∗L̃T x︸ ︷︷ ︸
=a−bi

= 1 + 2a.

�
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its quadratic form is positive.
In particular, using the eigenvector x we have

0 < x∗D−1/2AD−1/2x = x∗L̃x︸ ︷︷ ︸
=a+bi

+ x∗x︸︷︷︸
=1

+x∗L̃T x︸ ︷︷ ︸
=a−bi

= 1 + 2a.

�
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Krylov Methods

Krylov Methods

We end with a very brief overview of Krylov methods.

This class of methods includes many of the state-of-the-art numerical
methods for solving

Ax = b or Ax = λx .

Some examples include:
Linear system solvers:

conjugate gradient (CG), biconjugate gradient (BiCG), biconjugate
gradient stabilized (BiCGSTAB), minimal residual (MINRES),
generalized minimum residual (GMRES)

Eigensolvers:
Lanczos iteration, Arnoldi iteration
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Krylov Methods

The basic building blocks for all these methods are

Definition
For an n × n matrix A and nonzero n-vector b we define

Krylov sequence: {b,Ab,A2b, . . .},

Krylov subspace: Kj = span{b,Ab, . . . ,Aj−1b},

Krylov matrix: K =
(
b Ab · · · Aj−1b

)
.
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Krylov Methods

Consider

AK =
(
Ab A2b · · · Ajb

)
= K

(
e2 e3 · · · ej −c

)
,

where c = −K−1Ajb.
Note that the first j − 1 columns of AK coincide with columns 2 to j of K.

Letting C =
(
e2 e3 · · · ej −c

)
we therefore have

AK = KC ⇐⇒ K−1AK = C,

i.e., A and C are similar and have the same eigenvalues.

Remark
The matrix C is called a companion matrix. It is upper Hessenberg,
i.e., upper triangular with an additional nonzero subdiagonal.
Computation with such matrices can be performed quite efficiently.
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Krylov Methods

If j = n and we use exact arithmetic then Kn = R(A).

Since we know that x ∈ R(A), the fundamental idea of a Krylov
method is to

iteratively produce approximate solutions x j that are projections
into Kj

with the hope that low-dimensional Krylov subspaces already
contain most of the essential information about R(A).

The main practical problem with Krylov subspaces is that the vectors
Ajb all approach the dominant eigenvector of A (cf. power method),
and so the Krylov matrix K becomes ill-conditioned.
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Krylov Methods

The goal of all Krylov methods now is to find better bases for the
Krylov subspaces Kj .

This is essentially done via QR factorization, i.e., K = QR leads to

AK = KC ⇐⇒ AQR = QRC

⇐⇒ QT AQ = RCR−1 = H,

where H is another upper Hessenberg matrix.
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Krylov Methods

Arnoldi iteration

Arnoldi iteration is the standard algorithm used to find the matrices Q
and H.
At the j th iteration it will produce matrices

Qj , n × j with orthogonal columns that form a basis for Kj ;
Qj+1, n × j + 1 with orthogonal columns that form a basis for Kj+1;

H̃j , upper Hessenberg.

These matrices satisfy
AQj = Qj+1H̃j .
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Krylov Methods

GMRES

The GMRES methods attempts to solve Ax = b by minimizing the
residual ‖b − Ax j‖2 at each iteration.

Since the approximate solution x j ∈ Kj we can express it using an
orthogonal basis, i.e.,

x j = Qjz ,
for an appropriate z .
Then

‖b − Ax j‖2 = ‖b − AQjz‖2 = ‖b −Qj+1H̃jz‖2.
Multiplication by an orthogonal matrix does not change the 2-norm, so

‖b − Ax j‖2 = ‖QT
j+1b −QT

j+1Qj+1︸ ︷︷ ︸
=I

H̃jz‖2.

The minimizer z of the 2-norm on the right can be computed efficiently,
and x j = Qjz .
More details are provided, e.g., in [Mey00].

fasshauer@iit.edu MATH 532 137

http://math.iit.edu/~fass


Krylov Methods

GMRES

The GMRES methods attempts to solve Ax = b by minimizing the
residual ‖b − Ax j‖2 at each iteration.

Since the approximate solution x j ∈ Kj we can express it using an
orthogonal basis, i.e.,

x j = Qjz ,
for an appropriate z .

Then
‖b − Ax j‖2 = ‖b − AQjz‖2 = ‖b −Qj+1H̃jz‖2.

Multiplication by an orthogonal matrix does not change the 2-norm, so

‖b − Ax j‖2 = ‖QT
j+1b −QT

j+1Qj+1︸ ︷︷ ︸
=I

H̃jz‖2.

The minimizer z of the 2-norm on the right can be computed efficiently,
and x j = Qjz .
More details are provided, e.g., in [Mey00].

fasshauer@iit.edu MATH 532 137

http://math.iit.edu/~fass


Krylov Methods

GMRES

The GMRES methods attempts to solve Ax = b by minimizing the
residual ‖b − Ax j‖2 at each iteration.

Since the approximate solution x j ∈ Kj we can express it using an
orthogonal basis, i.e.,

x j = Qjz ,
for an appropriate z .
Then

‖b − Ax j‖2 = ‖b − AQjz‖2 = ‖b −Qj+1H̃jz‖2.

Multiplication by an orthogonal matrix does not change the 2-norm, so

‖b − Ax j‖2 = ‖QT
j+1b −QT

j+1Qj+1︸ ︷︷ ︸
=I

H̃jz‖2.

The minimizer z of the 2-norm on the right can be computed efficiently,
and x j = Qjz .
More details are provided, e.g., in [Mey00].

fasshauer@iit.edu MATH 532 137

http://math.iit.edu/~fass


Krylov Methods

GMRES

The GMRES methods attempts to solve Ax = b by minimizing the
residual ‖b − Ax j‖2 at each iteration.

Since the approximate solution x j ∈ Kj we can express it using an
orthogonal basis, i.e.,

x j = Qjz ,
for an appropriate z .
Then

‖b − Ax j‖2 = ‖b − AQjz‖2 = ‖b −Qj+1H̃jz‖2.
Multiplication by an orthogonal matrix does not change the 2-norm, so

‖b − Ax j‖2 = ‖QT
j+1b −QT

j+1Qj+1︸ ︷︷ ︸
=I

H̃jz‖2.

The minimizer z of the 2-norm on the right can be computed efficiently,
and x j = Qjz .
More details are provided, e.g., in [Mey00].

fasshauer@iit.edu MATH 532 137

http://math.iit.edu/~fass


Krylov Methods

GMRES

The GMRES methods attempts to solve Ax = b by minimizing the
residual ‖b − Ax j‖2 at each iteration.

Since the approximate solution x j ∈ Kj we can express it using an
orthogonal basis, i.e.,

x j = Qjz ,
for an appropriate z .
Then

‖b − Ax j‖2 = ‖b − AQjz‖2 = ‖b −Qj+1H̃jz‖2.
Multiplication by an orthogonal matrix does not change the 2-norm, so

‖b − Ax j‖2 = ‖QT
j+1b −QT

j+1Qj+1︸ ︷︷ ︸
=I

H̃jz‖2.

The minimizer z of the 2-norm on the right can be computed efficiently,
and x j = Qjz .
More details are provided, e.g., in [Mey00].

fasshauer@iit.edu MATH 532 137

http://math.iit.edu/~fass


Appendix References

References I

[Ber09] Dennis S. Bernstein, Matrix Mathematics: Theory, Facts, and Formulas, 2nd
ed., Princeton University Press, Princeton, N.J., July 2009.

[Mey00] Carl D. Meyer, Matrix Analysis and Applied Linear Algebra, SIAM,
Philadelphia, PA, 2000.

[MVL78] C. Moler and C. Van Loan, Nineteen Dubious Ways to Compute the
Exponential of a Matrix, SIAM Rev. 20 (1978), no. 4, 801–836.

[MVL03] , Nineteen Dubious Ways to Compute the Exponential of a Matrix,
Twenty-Five Years Later, SIAM Rev. 45 (2003), no. 1, 3–49.

[YM14] Xiyang I. A. Yang and Rajat Mittal, Acceleration of the Jacobi iterative
method by factors exceeding 100 using scheduled relaxation, Journal of
Computational Physics 274 (2014), 695–708.

fasshauer@iit.edu MATH 532 138

http://math.iit.edu/~fass

	Elementary Properties
	Diagonalization via Similarity Transforms
	Functions of Diagonalizable Matrices
	Normal Matrices
	Positive Definite Matrices
	Iterative Solvers
	Krylov Methods
	Appendix

